福建省龙岩一中2011届高三毕业班模拟试题数学理(pdf格式)

合集下载

福建省2011届高三普通高中毕业班质量检查试题word版

福建省2011届高三普通高中毕业班质量检查试题word版

福建省2011届高三考前质量检测数学试卷理科1第Ⅰ卷(选择题 共50分)一.选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是正确的, 将正确答案填写在答题卷相应位置.) 1. 已知集合M = {1,2},N = {2a −1|a ∈M },则M ∪N 等于A .{1,2,3}B .{1,2}C .{1}D .∅ 2.复数121i,2i z b z =+=-+,若12z z 的对应点位于直线x +y =0上,则实数b 的值为A .-3B .3C .-13 D . 133.已知实数等比数列{}n a 中,S n 是它的前n 项和.若2312a a a ⋅=,且a 4与2a 7的等差中项为54,则S 5等于A .35 B.33 C.31 D.29 4. 函数f (x )=ln x +x -2的零点位于区间 ( )A.(0,1)B.(1,2)C.(2,3)D.(3,4) 5. a 的值由右边程序框图算出,则二项式9)(xax -展开式的常数 项为A. 59567C T ⨯-=B. 39347C T ⨯= C. 39347C T ⨯-= D. 49457C T ⨯=6. 函数)32sin()(π-=x x f 的图象为C ,给出以下结论:①图象C 关于直线π1211=x 对称; ②图象C 关于点)0,32(π对称;③函数)(x f 在区间)125,12(ππ-内是增函数;④由x y 2sin =的图象向右平移3π个单位长度可以得到图象C .其中正确的是A. ①②④B. ①③④C. ①②③D. ②③④7. 若圆x 2+y 2=2在点(1,1)处的切线与双曲线22221x y a b-=的一条渐近线垂直,则双曲线的离心率等于8. 下列四个命题中,错误的是A.已知函数f (x )=()x x x e e dx -+⎰,则f (x )是奇函数B.设回归直线方程为x y5.22ˆ-=,当变量x 增加一个单位时,y 平均减少2.5个单位 C.已知ξ服从正态分布 N (0,σ 2),且(20)0.4P ξ-≤≤=,则(2)0.1P ξ>=D.对于命题p :“∃x ∈R ,210x x ++<”,则⌝ p :“∀x ∈R ,210x x ++>”9. 如图,动点P 在正方体1AC 的对角线1BD 上.过点P 作垂直于平面D D B B 11的直线, 与正方体表面相交于M 、N ,设x BP =,y MN =,则)(x f y =的图象大致是10.已知函数f (x )满足:①当0≤x ≤2时,f (x )=(x -1)2,②∀ x ∈[0,8],f (x -12)= f (x +32) . 若方程 f (x )=M log 2x 在[0,8]上有偶数个根,则正数M 的取值范围是 A. M <≤103 B. M <≤103或M =1或2 C. M <≤103或M =1或12 D. M <≤103或M =1或12或log 62第Ⅱ卷(非选择题 共100分)二.填空题(本大题共5小题,每小题4分,共20分,将正确答案填写在答题卷相应位置.)11. 非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为______________.12. 一个空间几何体的三视图如右图,则该几何体的体积为 .13. 若在区域34000x y x y +-≤⎧⎪≥⎨⎪≥⎩内任取一点P ,则点 P 落在单位圆221x y +=内的概率为 .14. 某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如右图所示,则时速超过60km/h 的汽车数量为 辆.15.设集合I={1,2,3,……,n } (n ∈N ,n ≥2),构造 I 的两个非空子集A ,B ,使得B 中最小的数大于A 中最大的数,则这样的构造方法共有__________种.三、解答题(本大题共6小题,共80分,解答应写在答题卷相应位置,要写出文字说明、证明过程或演算过程.)16.(本题满分13分)在锐角ABC ∆中,三个内角A B C 、、所对的边依次为c b a 、、.设(cos ,sin )m A A =,(cos ,sin )n A A =- ,a =,12m n ⋅=- 且.(Ⅰ)若b =,求ABC ∆的面积;(Ⅱ)求b +c 的最大值.17. (本小题满分13分)对某班级50名同学一年来参加社会实践的次数进行的调查统计,得根据上表信息解答以下问题:(Ⅰ)从该班级任选两名同学,用η表示这两人参加社会实践次数之和,记“函数1)(2--=x x x f η在区间(4,6)内有零点”的事件为A ,求A 发生的概率P ;(Ⅱ)从该班级任选两名同学,用ξ表示这两人参加社会实践次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.18.(本题满分13分)如图,菱形ABCD 中,∠ABC =60o, AE ⊥平面ABCD ,CF ⊥平面ABCD ,AB = AE =2,CF =3.(Ⅰ)求证EF ⊥平面BDE ;(Ⅱ)求锐二面角E —BD —F 的大小.19. (本题满分13分)已知椭圆2222:1x y C a b +=经过点(0),离心率为12,直线l 经过椭圆C 的右焦点F 交椭圆于A 、B 两点,点A 、F 、B 在直线x =4上的射影依次为点D 、K 、E .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 交y 轴于点M ,且,MA AF MB BF λμ==,当直线l 的倾斜角变化时,探求λμ+ 的值是否为定值?若是,求出λμ+的值,否则,说明理由;(Ⅲ)连接AE 、BD ,试探索当直线l 的倾斜角变化时,直线AE 与BD 是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.20.(本小题满分14分)已知函数f (x )=ae x,g (x )= ln a -ln(x +1)(其中a 为常数,e 为自然对数底),函数y =f (x )在A (0,a )处的切线与y =g (x )在B (0,ln a )处的切线互相垂直. (Ⅰ) 求f (x ) ,g (x )的解析式;(Ⅱ) 求证:对任意n ∈N *, f (n )+g (n )>2n ;(Ⅲ) 设y =g (x -1)的图象为C 1,h (x )=-x 2+bx 的图象为C 2,若C 1与C 2相交于P 、Q ,过PQ 中点垂直于x 轴的直线分别交C 1、C 2于M 、N ,问是否存在实数b ,使得C 1在M 处的切线与C 2在N 处的切线平行?说明你的理由.21. 本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。

福建省龙岩一中高三数学高考模拟 理 新人教版

福建省龙岩一中高三数学高考模拟 理 新人教版

2010届龙岩一中高考模拟考数学(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第21(1)、(2)、(3)题为选考题,请考生根据要求选答;其它题为必考题. 本卷满分150分,考试时间120分钟。

参考公式:样本数据12,x x ,…,n x 的标准差 锥体体积公式s =13V Sh =其中x -为样本平均数 其中S 为底面面积,h 为高柱体体积公式 球的表面积、体积公式V Sh = 2344,3S R V R ==ππ 其中S 为底面面积,h 为高 其中R 为球的半径第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数11ii-+=bi a +(R b a ∈,),则b a +=( )A .iB .i -C .lD .1-2.已知全集2,{1,0,1,2},{|}U Z A B x x x ==-==,则U AC B 为( )A .{1-,2}B .{1,2}C .{1-,0}D .{1-,0,2}3.一组数据123,,,...,n a a a a 的标准差0s >,则数据1232,2,2,...,2n a a a a 的标准差为( )AB .sCD .2s4.如图,按如下程序框图,若输出结果为170,则判断框内应补充的条件为( )A .5i >B .7i ≥C .9i >D .9i ≥5. 有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积为( )正视图 侧视图 俯视图A .2cm 12B .2cm 15πC .2cm 24πD .2cm 36π6.等比数列{}n a 的前n 项和为n S ,且11=a ,若1234,2,a a a 成等差数列,则4S =( ) A .7 B .8 C .15 D .16 7.平面//α平面β的一个充分条件是 ( )A .存在一条直线a ,a //α,a //βB .存在两条相交直线ββαα//,//,,,,b a b a b a ⊂⊂C .存在两条平行直线a 、b ,,α⊂a αββ//,//,b a b ⊂D .存在一条直线a ,βα//,a a ⊂8.设)2,1(-=,)1,(-=a ,)0,(b -=,0,0>>b a ,O 为坐标原点,若A 、B 、C 三点共线,则ba 21+的最小值是( )A .2B .4C .6D .89.将一骰子向上抛掷两次,所得点数分别为m 和n ,则函数3213y mx nx =-+在[1,)+∞上为增函数的概率是( ).A 12 .B 23 .C 34 .D 5610.定义,()max(,),()a ab a b b a b ≥⎧=⎨<⎩,2()max(1,65)f x x x x =--+-,若()f x m =有四个不同的实数解,则实数m 的取值范围是( )A .(0,4)B .(0,3)C .(3,4)D .(,4)-∞第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11.若⎰=2xdx a ,则在52)13(xa x -的二项展开式中常数项为 (用分数表示)12.若平面区域02022x y y kx ≤≤⎧⎪≤≤⎨≤-⎪⎩是一个梯形,则实数k 的取值范围是________。

龙岩一中理综试试卷

龙岩一中理综试试卷

15.经长期观测人们在宇宙中已经发现了“双星系统”。“双星系统”由两颗相距较近的恒星组成,
每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。如图,两颗星球组成的
双星,在相互之间的万有引力作用下,绕连线上的 O 点做周期相同的匀速圆周运动。现测得两颗星之
间的距离为 L,质量之比为 m1∶m2 =5∶2,则可知
o
B.合成氨工业采用 500 C 左右的温度,目的是提高 N2、H2 的转化率 C.将含有 0.1mol 氯化铁的浓溶液滴入到足量的沸水中,能形成 0.1NA 个氢氧化铁胶体粒子 D.假如有 28gFe 通过吸氧腐蚀的方式最后变成了铁锈,那么整个过程中有大于 0.25 NA 个的氧气分
子得到了电子
第 2 页 共 12 页
2
一段时间又返回曲面.g 取 10 m/s ,则下列说法正确的是
A.若 v=1 m/s,则小物块能回到 A 点
B.若 v=2 m/s,则小物块能回到 A 点
C.若 v=5 m/s,则小物块能回到 A 点
D.无论 v 等于多少,小物块都不能回到 A 点 18. 如图 a 所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始 时物体处于静止状态.现用竖直向上的拉力 F 作用在物体上,使物体开始向上做匀加速运动,拉力 F 与 物体位移 x 的关系如图 b 所示(g=10 m/s2),则正确的结论是 A. 物体与弹簧分离时,弹簧处于压缩状态 B. 弹簧的劲度系数为 7.5 N/cm C. 物体的质量为 3 kg D. 物体的加速度大小为 5 m/s2
的热量,其热化学方程式为:
N2(g)+3H2(g)
2NH3(g) △H=-38.6kJ·mol-1

福建省龙岩市一级达标学校联盟高中毕业班2011届高三理综联合考试题

福建省龙岩市一级达标学校联盟高中毕业班2011届高三理综联合考试题

龙岩市一级达标学校联盟高中2011年高中毕业班联合考试理科综合能力测试(考试时间:120分钟;满分:150分)本试卷分为第I卷(选择题)和第II卷(非选择题)。

第I卷为必考题,第II卷包括必考题和选考题两部分。

满分300分,考试时间150分钟。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上。

2.考生做答时,请将答案答在答题卡上,在本试卷上答题无效;按照题号在各题的答题区域内作答,超出答题区域书写的答案无效。

3.选择题答案必须使用2B铅笔填涂,如需改动用橡皮擦干净后,再选涂其它答案标号;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、字迹清楚。

4.做选考题时,请考生按照题目要求作答。

请按照题号在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀。

对原子质量:H-1 O-16 Na-23 Al-27 S1-28 S-32 Ba-137第Ⅰ卷(选择题共108分)本卷共18小题,每小题6分,共108分。

在每小题给出的四个选项中,只有一个选项符合题目要求。

1.下列关于细胞及代谢的叙述,正确的是()A.醋酸杆菌细胞没有线粒体,不能进行有氧呼吸B.水稻叶肉细胞叶绿体产生的ATP不能用于矿质离子的吸收C.颤藻细胞没有叶绿体,不能进行光合作用D.红细胞没有细胞核,不能进行复制与转录2.“超级细菌”是一种含超级耐药基因NDM一1的细菌,能编码一种新的耐药酶,可抵抗几乎所有的抗生素。

下列关于“超级细菌”的叙述,正确的是()A.“超级细菌”感染人体后,体内的B。

淋巴细胞数目显著增加B.“超级细菌”抗药性的产生是应用抗生素诱导基因突变的结果C.超级细菌”的遗传物质是DNA,它通过有丝分裂的方式将耐药基因传递给子代D.“超级细菌”’的耐药酶在核糖体上合成,经内质网和高尔基体加工后运输到相应部位3.下图为人体细胞内环境的示意图,①⑤表示不同细胞,②③④分别表示不同部位的液体。

福建省龙岩一中2011-2012学年第三次月考高三理科数学试卷及答案解析 (原始打印版)

福建省龙岩一中2011-2012学年第三次月考高三理科数学试卷及答案解析 (原始打印版)
(III)①当 时, 在 上为减函数,不合题意
②当 时, 在区间 内为增函数
或 或
当 时, 在区间 内为增函数
当 时,
在区间 内为增函数 或
当 或 时, 与 在 内均为增函数
21.(本小题满分14分)
解: .
(Ⅰ)由已知,得 且 , , , .2分
(Ⅱ)当 时, , ,
当 时, .又 ,
,故 在 上是增函数.
已知向量 ,(其中实数 和 不同时为零),当 时,有 ,当 时, .
(I)求函数式 ;
(II)若对 ,都有 ,求实数 的取值范围.
19.(本小题满分13分)
一校办服装厂花费2万元购买某品牌运动装的生产与销售权.根据以往经验,每生产1百套这种品牌运动装的成本为1万元,每生产 (百套)的销售额 (万元)满足:
而 ,故此时与 恒成立矛盾。
3)若 ,则 在 递减,从而 ,与 恒成立矛盾。
所以,实数 的取值范围为 .
(I)该服装厂生产750套此种品牌运动装可获得利润多少万元?
(II)该服装厂生产多少套此种品牌运动装利润最大?此时利润是多少万元?
20.(本小题满分14分)
函数 实数 .
(I)若 ,求函数 的单调区间;
(II)当函数 与 的图象只有一个公共点且 存在最小值时,记 的最小值为 ,求 的值域;
(III)若 与 在区间 内均为增函数,求 的取值范围。
当 时, ,故当 时, 的最大值为 .
当 时, , 故当 时, 的最大值为 .
所以生产600套该品牌运动装利润最大是3.7万元
20.(本小题满分14分)
解:(I)当 时,
得: 的单调递增区间为 ,单调递减区间为
(II)函数 与 的图象只有一个公共点

2011年高考福建省数学试卷-理科(含详细答案)

2011年高考福建省数学试卷-理科(含详细答案)

2011年普通高等学校招生全国统一考试(福建卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{}1,0,1S =-,则( ). A .i S ∈ B .2i S ∈ C . 3i S ∈ D .2iS ∈ 【解】2i 1S =-∈.故选B .2.若a ∈R ,则2a =是()()120a a --=的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件【解】当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A .3.若tan 3α=,则2sin 2cos αα的值等于( ). A .2 B .3 C .4 D .6【解】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D . 4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ΔABE 内部的概率等于( ).A .14 B .13 C .12 D .23【解】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C . 5.()1e2xx dx +⎰等于( ). A .1 B .e 1- C .e D .e 1+ 【解】()()11200e2e e 1e 0e xx x dx x+=+=+--=⎰.故选C .6.()512x +的展开式中,2x 的系数等于( ).A .80B .40C .20D .10DCBEA【解】15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .7.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2P F F F P F =,则曲线Γ的离心率等于( ). A .12或32 B .23或2 C .12或2 D .23或32【解】因为1122::4:3:2PF FF PF =,所以设14PF λ=,123F F λ=,22PF λ=.若Γ为椭圆,则12122426,23,PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩所以12c e a ==.若Γ为双曲线,则12122422,23,PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩所以32c e a ==.故选A .8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域2,1,2x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( ).A .[]1,0-B .[]0,1C .[]0,2D .[]1,2- 【解】设()()1,1,z OA OM x y x y =⋅=-⋅=-+. 作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅的取值范围是[]0,2.故选C . 9.对于函数()sin f x a x bx c =++(其中,,a b ∈R ,c ∈Z ),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是( ).A .4和6B .3和1C .2和4D .1和2【解】()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数. 故选D .10.已知函数()e x f x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:①ΔABC 一定是钝角三角形 ②ΔABC 可能是直角三角形 ③ΔABC 可能是等腰三角形 ④ΔABC 不可能是等腰三角形 其中,正确的判断是( ).A .①,③B .①,④C .②,③D .②,④【解】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=--22a ba b e e e ++=-2220a b a b a b eee+++≥=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立,于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ①设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<. 由()f x 是R 上的增函数,则A B C y y y <<, ② 如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作B F C P ⊥交CP 于F .因为()()22A C A C D f x f x y y y ++==,2ACB x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部,因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确;所以结论①,④正确.故选B.二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置. 11.运行如图所示的程序,输出的结果是_______.【解】3.123a =+=.所以输出的结果是3. 12.三棱锥P ABC -中,PA ABC ⊥底面,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______.【解2Δ112333ABC V S PA =⋅=⨯=.13.何种装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______.【解】35. 所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 14.如图,ΔABC 中,2AB AC ==,BC =点D 在BC 边上,45ADC ∠=︒,则AD 的长度等于______.【解解法1.由余弦定理222cos 22AC BC AB C AC BC +-===⋅⋅, 所以30C =︒.再由正弦定理s i n s i n A D A C C A D C =∠,即2sin 30sin 45AD =︒︒,所以AD = 解法2.作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC的中点,因为BC =EC.BCAED BCA于是1AE =,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以AD = 15.设V 是全体平面向量构成的集合,若映射:f V →R 满足:对任意向量()11,a x y V =∈,()22,b x y V =∈,以及任意λ∈R ,均有()()()()()11f a b f a f b +-=+-λλλλ则称映射f 具有性质P .先给出如下映射:① ()()11:,,,f V f m x y m x y V→=-=∈R ;② ()()222:,,,f V f m x y m x y V →=+=∈R ; ③ ()()33:,1,,f V f m x y m x y V →=++=∈R .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号).【解】①,③.设()11,a x y V =∈,()22,b x y V =∈,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλ.对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλ()()()11221x y x y =-+--λλ,()()()()()()112211f a f b x y x y +-=-+--λλλλ,所以()()()()()11f a b f a f b +-=+-λλλλ成立,①是具有性质P 的映射; 对于②,()()()()()()21212111f a b x x y y +-=+-++-λλλλλλ()()()()2121211x x y y =+-++-λλλλ()()()22221122121121x y x y x x =++-+-+-λλλλλλ,()()()()()()22112211f a f b x y x y +-=++--λλλλ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλ成立, 所以②不是具有性质P 的映射; 对于③,()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλ()()()112211x y x y =++-++λλ,()()()()()()11221111f a f b x y x y +-=+++-++λλλλ()()()()112211x y x y =++-+++-λλλλ ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλ成立,③是具有性质P 的映射. 因此,具有性质P 的映射的序号为①,③.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若函数()sin(2)(0,0)f x A x A =+><<ϕϕπ在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解】(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =.所以11211333n n n n a a q---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =. 又因为函数()f x 在6x π=处取得最大值,则sin 216⎛⎫⨯+= ⎪⎝⎭πϕ,因为0<<ϕπ,所以6=πϕ.函数()f x 的解析式为()3sin 26f x x ⎛⎫=+⎪⎝⎭π. 17.(本小题满分13分)已知直线:l y x m =+,m ∈R .(Ⅰ)若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由.【解】(Ⅰ)解法1.由题意,点P 的坐标为()0,m . 因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=,则r MP ===,所以,所求的圆的方程为()2228x y -+=. 解法2.设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,,m r r ⎧+==解得2,m r =⎧⎪⎨=⎪⎩所以,所求的圆的方程为()2228x y -+=.(Ⅱ)解法1.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=, 2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:lyx m '=--.设直线l '与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-.所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =.所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.18.(本小题满分13分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。

福建省龙岩一中高三数学下学期考前模拟试卷 理

福建省龙岩一中高三数学下学期考前模拟试卷 理

龙岩一中2015届高考模拟试题理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)全卷满分150分,考试时间120分钟注意事项:1.考生将自己的姓名、准考证号及所有的答案均填写在答题卡上.2.答题要求见答题卡上的“填涂样例”和“注意事项”.第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.错误!未找到引用源。

=A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

2.命题“对任意实数错误!未找到引用源。

,关于错误!未找到引用源。

的不等式错误!未找到引用源。

恒成立”为真命题的一个必要不充分条件是A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

3.如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图.估计这批产品的中位数为A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

4.已知复数错误!未找到引用源。

(错误!未找到引用源。

为虚数单位)为实数,则错误!未找到引用源。

的值为A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

5.如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是A BC.D16.如图,错误!未找到引用源。

分别是射线错误!未找到引用源。

错误!未找到引用源。

;②错误!未找到引用源。

;③错误!未找到引用源。

;④错误!到引用源。

若这些向量均以错误!未找到引用源。

A.①② B.②④ C.①③ D.③⑤7.已知过抛物线错误!未找到引用源。

焦点的一条直线与抛物线相交于错误!未找到引用源。

,错误!未找到引用源。

两点,若错误!未找到引用源。

,则线段错误!未找到引用源。

的中点到错误!未找到引用源。

轴的距离等于0.080.040.030.02353025201510长度(mm)频率组距侧视图A .错误!未找到引用源。

2011年福建高考数学理科试卷(带详解)

2011年福建高考数学理科试卷(带详解)

2011福建理第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{}1,0,1S =-,则,则( ) A .i S Î B .2i S Î C . 3i S ÎD .2iS Î 【测量目标】复数的基本概念、集合的含义.【测量目标】复数的基本概念、集合的含义.【考查方式】给出虚数单位和集合,判断它们之间的关系.【考查方式】给出虚数单位和集合,判断它们之间的关系. 【难易程度】容易【难易程度】容易 【参考答案】B【试题解析】22i 1S =-Î.故选B .2.若a ÎR ,则2a =是()()120a a --=的 ( ) A .充分而不必要条件.充分而不必要条件 B .必要而不充分条件.必要而不充分条件C .充要条件.充要条件 C .既不充分又不必要条件.既不充分又不必要条件 【测量目标】充分、必要条件.【测量目标】充分、必要条件.【考查方式】给出两个命题,判断两个命题的关系.【考查方式】给出两个命题,判断两个命题的关系. 【难易程度】容易【难易程度】容易 【参考答案】A【试题解析】当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件,但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A .3.若tan 3α=,则2sin 2cos aa的值等于的值等于 ( ) A .2 B .3 C .4D .6 【测量目标】同角三角函数的基本关系、二倍角公式.【测量目标】同角三角函数的基本关系、二倍角公式.【考查方式】给出式子和正切函数值,利用同角三角函数的基本关系和二倍角公式求解. 【难易程度】容易【难易程度】容易 【参考答案】D 【试题解析】22sin 22sin cos 2tan 6cos cos ===aa aa a a.故选D .4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE △内部的概率等于内部的概率等于 ( ) A .14 B .13 C .12D .23第4题图题图【测量目标】几何概型.【测量目标】几何概型.【考查方式】给出图形,利用几何概型求事件的概率.【考查方式】给出图形,利用几何概型求事件的概率. 【难易程度】容易【难易程度】容易 【参考答案】C 【试题解析】因为12ABE ABCD S S =△,则点Q 取自ABE △内部的概率12ABE ABCD S P S ==△.故选C . 5.()1e2xx dx +ò等于等于( ) A .1 B .e 1- C .eD .e 1+ 【测量目标】定积分.【测量目标】定积分.【考查方式】给出定积分,求解.【考查方式】给出定积分,求解. 【难易程度】容易【难易程度】容易 【参考答案】C【试题解析】()()11200e 2e e 1e 0e x x x dx x +=+=+--=ò.故选C . 6.()512x +的展开式中,2x 的系数等于的系数等于 ( ) A .80 B .40 C .20 D .10 【测量目标】二项式定理.【测量目标】二项式定理.【考查方式】给出二项式根据二项展开式的公式特点计算二项式系数.【考查方式】给出二项式根据二项展开式的公式特点计算二项式系数. 【难易程度】容易【难易程度】容易 【参考答案】B 【试题解析】15C 2rrr r Tx +=,令2r =,则2x 的系数等于225C 240=.故选B . 7.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2P F F F P F =,则曲线Γ的离心率等于的离心率等于 ( ) A .12或32B .23或2C .12或2D .23或32【测量目标】圆锥曲线的定义.【测量目标】圆锥曲线的定义. 【考查方式】通过给出圆锥曲线上的点与两个交点之间的线段长度比例关系,求圆锥曲线的离心率.离心率.【难易程度】中等【难易程度】中等 【参考答案】A【试题解析】因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=.若Γ为椭圆,则12122426,23,PF PF a λλλF F c λì+==+=ïí==ïî所以12c e a ==.若Γ为双曲线,则12122422,23,PF PF a λλλF F c λì-==-=ïí==ïî所以32c e a ==.故选A . 8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域212x y x y +ìïíïî………上的一个动点,则OA OM的取值范围是的取值范围是( ) A .[]1,0- B .[]0,1 C .[]0,2 D .[]1,2- 【测量目标】判断不等式组表示的平面区域、向量的数量积.【测量目标】判断不等式组表示的平面区域、向量的数量积.【考查方式】给出点的坐标和不等式组,判断两向量数量积的取值范围.【考查方式】给出点的坐标和不等式组,判断两向量数量积的取值范围. 【难易程度】中等【难易程度】中等 【参考答案】C【试题解析】设()()1,1,z OA OM x y x y ==-=-+ .作出可行域,如图,直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM 的取值范围是[]0,2.故选C .第8题图题图9.对于函数()sin f x a x bx c =++(其中,,a b ÎR ,c ÎZ ),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是 ( ) A .4和6 B .3和1 C .2和4D .1和2 【测量目标】函数的求值.【测量目标】函数的求值.【考查方式】给出函数式,判断两函数之和的结果.【考查方式】给出函数式,判断两函数之和的结果. 【难易程度】中等【难易程度】中等 【参考答案】D【试题解析】()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ÎZ ,则()()11f f +-为偶数,四个选项中,只有D ,123+=不是偶数.不是偶数.10.已知函数()e xf x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:给出以下判断:①ABC △一定是钝角三角形②ABC △可能是直角三角形可能是直角三角形 ③ABC △可能是等腰三角形可能是等腰三角形 ④ABC △不可能是等腰三角形不可能是等腰三角形 其中,正确的判断是其中,正确的判断是( ) A .①.①,,③ B .①.①,,④ C .②.②,,③ D .②.②,,④【测量目标】基本不等式、指数函数的性质、函数的单调性、等差数列的性质、函数图象的应用.应用.【考查方式】给出指数函数,判断其图象横坐标上的三个点所成的形状.【考查方式】给出指数函数,判断其图象横坐标上的三个点所成的形状. 【难易程度】较难【难易程度】较难 【参考答案】B【试题解析】设a b <.首先证明()()22f a f ba b f ++æö>ç÷èø.()()22f a f b a b f ++æö-ç÷èø2eee22a baba ba b +++++=--2e e e2a b ab++=-222e e e e e 0a ba ba bab+++-=-= …,(步骤1)当且仅当a b =时等号成立,由于a b <,所以等号不成立,于是,所以等号不成立,于是 ()()022f a f b a b f ++æö->ç÷èø, ()()22f a f b a b f ++æö>ç÷èø. ① (步骤2) 设点(),A A A x y ,(),B B B x y ,(),C C C C x x y y,且,,A B C x x x 成等差数列,A B C x x x <<.由()f x 是R 上的增函数,则A B C y y y <<, ② (步骤3) 如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ^交BN 于E ,作B F C P ^交CP 于F .因为()()22A C A CD f x f x y y y ++==,2A CB x x y f +æö=ç÷èø, 由①式,D B y y >,(步骤4)D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 内部,(步骤5)因而90DBA DEA °Ð>Ð=,又CB A D B A Ð>Ð,所以ABC △一定是钝角三角形.结论①正确.(步骤6)若ABC △是等腰三角形,因为D 为AC 的中点,则BD AC ^,因而AC x 轴,这是不可能的,所以ABC △不是等腰三角形.结论④正确;不是等腰三角形.结论④正确; 所以结论①,④正确.故选B .(步骤7)第10题图题图二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置. 11.运行如图所示的程序,输出的结果是_______.第11题图题图【测量目标】程序语句.【测量目标】程序语句.【考查方式】给出程序语句,计算求解.【考查方式】给出程序语句,计算求解. 【难易程度】容易【难易程度】容易【参考答案】3【试题解析】123a =+=.所以输出的结果是3.12.三棱锥P ABC -中,PA ABC ^底面,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______. 【测量目标】三棱锥的体积.【测量目标】三棱锥的体积.【考查方式】给出三棱锥的底边边长和高,求其体积.【考查方式】给出三棱锥的底边边长和高,求其体积. 【难易程度】容易【难易程度】容易 【参考答案】3【试题解析】2113233334ABCV SPA ==´´´=△. 13.盒子装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______. 【测量目标】随机事件与概率.【测量目标】随机事件与概率.【考查方式】给出条件,利用随机概率求解.【考查方式】给出条件,利用随机概率求解. 【难易程度】中等【难易程度】中等 【参考答案】35【试题解析】所取出的2个球颜色不同的概率113225C C 233C 105P ´===. 14.如图,ABC △中,2AB AC ==,23BC =,点D 在BC 边上,45ADC °Ð=,则AD 的长度等于______.第14题图(1)【测量目标】余弦定理、正弦定理.【测量目标】余弦定理、正弦定理.【考查方式】给出三角形边长及角度,利用余弦定理和正弦定理求长度.【考查方式】给出三角形边长及角度,利用余弦定理和正弦定理求长度. 【难易程度】中等【难易程度】中等【参考答案】2【试题解析】解法一:由余弦定理【试题解析】解法一:由余弦定理22241243c o s 222223AC BC AB C AC BC +-+-===´´ ,(步骤1) 所以30C °=.(步骤2) 再由正弦定理再由正弦定理s i n s i n A D A C C A D C =Ð,即2sin 30sin 45AD °°=,所以2AD =.(步骤3) 解法二:作AE BC ^于E ,因为2AB AC ==,所以E 为BC 的中点,因为23BC =,则3EC =.(步骤1)于是221AE AC EC =-=,(步骤2)因为ADE △为有一角为45°的直角三角形.且1AE =,所以2AD =.(步骤3)第14题图(2) 15.设V 是全体平面向量构成的集合,若映射:f V ®R 满足:对任意向量()11,x y V =Îa ,()22,x y V =Îb ,以及任意λÎR ,均有,均有()()()()()11f f f l l l l +-=+-a b a b则称映射f 具有性质P .先给出如下映射:先给出如下映射:① ()()11:,,,f V f x y x y V®=-=ÎR m m ;② ()()222:,,,f V f x y x y V ®=+=ÎR m m ; ③ ()()33:,1,,f V f x y x y V ®=++=ÎR m m .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号). 【测量目标】向量的坐标运算、映射.【测量目标】向量的坐标运算、映射.【考查方式】给出三个映射,利用向量的坐标运算求出与f 具有相同性质的映射.具有相同性质的映射. 【难易程度】较难【难易程度】较难 【参考答案】①,③【参考答案】①,③【试题解析】设()11,x y V =Îa ,()22,x y V =Îb ,则,则()()()()11221,1,x y x y l l l l +-=+-a b()()()12121,1x x y y l l l l =+-+-.(步骤1) 对于①,对于①, ()()()()()()1212111fx x y y l l l l l l +-=+--+-a b()()()11221x y x y =-+--l l ,(步骤2)()()()()()()112211f f x y x y l l l l +-=-+--a b ,所以()()()()()11f f f l l l l +-=+-a b a b 成立,①是具有性质P 的映射;(步骤3)对于②,()()()()()()21212111f x x y y l l l l l l +-=+-++-a b()()()()2121211x x y y =+-++-l l l l()()()22221122121121x y x y x x =++-+-+-l l l l l l ,(步骤4) ()()()()()()22112211f f x y x y l l l l +-=++--a b , 显然,不是对任意λÎR ,()()()()()11ff f l l l l +-=+-a b a b 成立,成立,所以②不是具有性质P 的映射;(步骤5) 对于③,()()()()()()12121111fx x y y l l l l l l +-=+-++-+a b()()()112211x y x y =++-++l l ,(步骤6)()()()()()()11221111f f x y x y l l l l +-=+++-++a b()()()()112211x y x y =++-+++-l l l l ()()()112211x y x y =++-++l l . 所以()()()()()11ff f l l l l +-=+-a b a b 成立,③是具有性质P 的映射.的映射.(步骤7)因此,具有性质P 的映射的序号为①,③.(步骤8)三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{{}}n a 的通项公式;的通项公式;(Ⅱ)若函数()sin(2)(0,0π)f x A x A j j =+><<在π6x =处取得最大值,且最大值为3a ,求函数()f x 的解析式.的解析式.【测量目标】等比数列的通项、性质及前n 项和、函数sin()y A x w j =+的图象及性质.的图象及性质. 【考查方式】给出等比数列的公比和前几项的和,给出等比数列的公比和前几项的和,求其通项公式;求其通项公式;求其通项公式;已知函数的最大值为数列已知函数的最大值为数列的一项,求其解析式.的一项,求其解析式. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)由3q =,3133S =Þ()311313133a -=-,解得113a =.(步骤1)所以11211333n n n n a a q---==´=.(步骤2) (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.(步骤3) 又因为函数()f x 在π6x =处取得最大值,处取得最大值, 则πsin 216jæö´+=ç÷èø,因为0πj <<,所以π6j =.(步骤4) 函数()f x 的解析式为π()3sin 26f x x æö=+ç÷èø.(步骤5) 17.已知直线:l y x m =+,m ÎR .(Ⅰ)若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ¢,问直线l ¢与抛物线2:4C x y =是否相切?说明理由.明理由.【测量目标】圆的方程、直线与圆的位置关系、直线与抛物线的位置关系.【测量目标】圆的方程、直线与圆的位置关系、直线与抛物线的位置关系.【考查方式】给出直线方程,根据圆与直线的位置关系求圆的方程;根据圆与直线的位置关系求圆的方程;给出抛物线方程和直线给出抛物线方程和直线的条件,判断两者之间的位置关系.的条件,判断两者之间的位置关系. 【难易程度】较难【难易程度】较难【试题解析】(Ⅰ)解法一:由题意,点P 的坐标为(())0,m .因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ^.01102MP l m k k -==-- ,所以2m =.(步骤1) 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=, 则()()2202208r MP ==-+-=,(步骤2) 所以,所求的圆的方程为()2228x y -+=.(步骤3)第17题图(1)解法二:设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224202m r mr ì+=ï-+í=ïî,解得222m r =ìïí=ïî.(步骤1) 所以,所求的圆的方程为()2228x y -+=.(步骤2)(Ⅱ)解法一:因为直线:l y x m =+,且,且直线l ¢与直线l 关于x 轴对称,则:l y x m ¢=--.(步骤4)由24,,x y y x m ì=í=--î得2440x x m ++=, 2Δ4440m =-´=,解得1m =.(步骤5)所以,当1m =时,Δ0=,直线l ¢与抛物线2:4C x y =相切,当1m ¹时,Δ0¹,直线l ¢与抛物线2:4C x y =不相切.(步骤6)解法二:因为直线:l y x m =+,且直线l ¢与直线l 关于x 轴对称,则:l y x m ¢=--.设直线l ¢与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x ¢=,则0112x =-,02x =-, ()022y m m =---=-.(步骤3) 所以切点为()2,2m --,切点在抛物线214y x =上,则21m -=,1m =.(步骤4)所以,当1m =时,直线l ¢与抛物线2:4C x y =相切,当1m ¹时,直线l ¢与抛物线2:4C x y =不相切.(步骤5)第17题图(2)18.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.千克. (Ⅰ)求a 的值;的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.所获得的利润最大.【测量目标】一元二次函数模型,利用倒数求函数的最值.【测量目标】一元二次函数模型,利用倒数求函数的最值.【考查方式】给出函数关系式,根据条件求解,再利用导数求利润最大时的销售价格. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)因为5x =时,11y =,由函数式,由函数式210(6)3ay x x =+--得 11102a =+,所以2a =.(步骤1) (Ⅱ)因为2a =,所以该商品每日的销售量为2210(6)3y x x =+--,()36x <<.每日销售该商品所获得的利润为每日销售该商品所获得的利润为()()()222310(6)2103(6)3f xx x x x x éù=-+-=+--êú-ëû,()36x <<.(步骤2)()()()()()()21062363064f x x x x x x éù¢=-+--=--ëû.(步骤3) 于是,当x 变化时,()f x ¢,()f x 的变化情况如下表:的变化情况如下表:x()3,44()4,6()f x ¢+-()f x极大值由上表可以看出,4x =是函数在区间()3,6内的极大值点,也是最大值点.(步骤4) 所以,当4x =时,函数()f x 取得最大值42.因此当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.(步骤5) 19.某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,,8…,其中5X …为标准A ,3X …为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准行标准(Ⅰ)已知甲厂产品的等级系数1X 的概率分布列如下所示:的概率分布列如下所示:1X 5 6 7 8P0.4 a b0.1且1X 的数字期望16EX =,求,a b 的值;的值;(Ⅱ)为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 53 8 34 3 4 4 75 67 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望.的数学期望. (Ⅲ)在(Ⅰ),(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.“性价比”大的产品更具可购买性. 【测量目标】离散型随机变量的期望和方差.【测量目标】离散型随机变量的期望和方差.【考查方式】给出分布列和期望,求分布列中的未知数;【考查方式】给出分布列和期望,求分布列中的未知数;根据样本数据求期望;给出产品性根据样本数据求期望;给出产品性价比的公式,判断购买性.价比的公式,判断购买性. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)因为16EX =,所以,所以50.46780.16a b ´+++´=,即67 3.2a b +=,(步骤1)又0.40.11a b +++=, 所以0.5a b +=,解方程组67 3.20.5a b a b +=ìí+=î解得0.3a =,0.2b =.(步骤2)(Ⅱ)由样本的数据,样本的频率分布表如下:(Ⅱ)由样本的数据,样本的频率分布表如下:2X3 45 6 7 8 f0.30.20.20.10.10.1(步骤3)用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数2X 的概率分布列如下表:列如下表:2X 345 6 7 8P0.3 0.20.2 0.1 0.1 0.1(步骤4) 所以230.340.250.260.170.180.1 4.8EX =´+´+´+´+´+´=.(步骤5) (Ⅲ)甲厂的产品的等级系数的数学期望为6,价格为6元/件,所以性价比为616=,(步骤6)甲厂的产品的等级系数的数学期望为4.8,价格为4元/件,所以性价比为4.81.214=>.所以,乙厂的产品更具可购买性.(步骤7)20.如图甲,四棱锥P ABCD -中,PA ABCD ^底面,四边形ABCD 中,AB AD ^,4AB AD +=,2CD =,45CDA °Ð=.(Ⅰ)求证:PAB ^平面平面P AD ; (Ⅱ)设AB AP =.(i )若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;的长;(ii )在线段AD 上是否存在一个点G ,使得点G 到点,,,P B C D 的距离都相等?说明理由.明理由.第20题图题图【测量目标】面面垂直的判定、线面角、立体几何中的探索性问题.【测量目标】面面垂直的判定、线面角、立体几何中的探索性问题.【考查方式】给出四棱锥及其边角关系和条件,证明面面垂直;根据线面角求解线段长度,探索点的存在性.探索点的存在性. 【难易程度】较难【难易程度】较难 【试题解析】(Ⅰ)因为PA ABCD ^底面,AB ABCD Ì底面,所以PA AB ^.(步骤1)又AB AD ^,PA AD A =∩,所以AB ^平面P AD ,又AB Ì平面P AB , PAB ^平面平面P AD .(步骤2)(Ⅱ)以A 为坐标原点,建立如图的空间直角坐标系A xyz -.在平面ABCD 内,作//CE AB 交AD 于E . 则CE AD ^.(步骤3)在Rt CDE △中,2cos 45212DE CD °===.(步骤4) 设AB AP t ==,则(),0,0B t ,()0,0,P t .由4AB AD +=,则4AD t =-,所以()0,3,0E t -,()0,4,0D t -,()1,3,0C t -.()1,1,0CD =- ,()0,4,PD t t =--,(步骤5)(i )设平面PCD 的法向量为(),,x y z =n ,由CD ^ n ,PD ^ n 得00CDPD ì=ïí=ïîn n , ()040x y t y tz -+=ìí--=î取x t =,则y t =,4z t =-.(),,4n t t t =- ,(步骤6) 又(),0,PB t t =-,由直线PB 与平面PCD 所成的角为30°,得,得22222241cos602(4)2PB t t PBt t t t °-===++- n n .(步骤7) 解得45t =或4t =(因为40,4AD t t =-><,故舍去),故舍去)所以45AB =.(步骤8)第20题图(1)(ii )假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,的距离都相等, 设()0,,0G m ,()04mt -剟.则()1,3,0GC t m =-- ,()0,4,0GD t m =-- ,()0,,GP m t =-,(步骤9)则由GC GD = 得()()22134t m t m +--=--,即3t m =-, ①由GP GD =得()2224t m m t --=+, ②(步骤10)从①,②消去t ,并化简得2340m m -+= ③方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.(步骤11)第20题图(2)解法二:假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,的距离都相等, 由GC GD =得45GCD GDC °Ð=Ð=, 从而90CGD °Ð=,则CG GD ^,(步骤9)设AB λ=,则由4AB AD +=,得4AD λ=-,(步骤10)3AG AD GD λ=-=-.(步骤11) 在Rt ABG △中,()222223932122GB ABAG λλλæö=+=+-=-+>ç÷èø. (步骤12)与1GB GD ==矛盾,矛盾,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B CD 的距离都相等.的距离都相等. (步骤13)第20题图(3)21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.号涂黑,并将所选题号填入括号中. (1)选修42-:矩阵与变换:矩阵与变换设矩阵设矩阵 00a Mb æö=ç÷èø(其中0a >, 0b >). (Ⅰ)若2,3a b ==,求矩阵M 的逆矩阵1M -;(Ⅱ)若曲线22:1C x y +=在矩阵M 所对应的线性变换作用下得到曲线22:14x C y ¢+=,求,a b 的值.的值.【测量目标】矩阵与行列式初步.【测量目标】矩阵与行列式初步.【考查方式】给出矩阵,求其逆矩阵;给出曲线方程及其在矩阵对应的线性变化作用下得到的曲线方程,求未知量.的曲线方程,求未知量. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)设矩阵M 的逆矩阵11122xy Mx y -æö=ç÷èø,则11001MM -æö=ç÷èø,(步骤1) 因为2003M æö=ç÷èø,所以112220100301x y x y æöæöæö=ç÷ç÷ç÷èøèøèø,(步骤2) 所以121x =,120y =,230x =,231y =, 即112x =,10y =,20x =.213y =,(步骤3) 所以1102103M -æöç÷=ç÷ç÷ç÷èø.(步骤4) (Ⅱ)设曲线C 上的任意一点为(),P x y ,在矩阵M 所对应的线性变换作用下得到点(),P x y ¢¢¢.则00a x x b y y ¢æöæöæö=ç÷ç÷ç÷¢èøèøèø,即ax x by y ¢=ìí¢=î,(步骤5) 又点(),P x y ¢¢¢在曲线22:14x C y ¢+=上,所以2214x y ¢¢+=,(步骤6) 即222214a xb y +=为曲线22:1C x y +=的方程,则24a =,21b =,(步骤7)又因为0,0a b >>,则2,1a b ==.(步骤8) (2)选修44-:坐标系与参数方程:坐标系与参数方程在直接坐标系x O y 中,直线l 的方程为40x y -+=,曲线C 的参数方程为3c o s s i nx θy θì=ïí=ïî(θ为参数).(Ⅰ)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为π4,2æöç÷èø,判断点P 与直线l 的位置关系;的位置关系; (Ⅱ)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【测量目标】坐标系与参数方程、点与直线的位置关系.【测量目标】坐标系与参数方程、点与直线的位置关系.【考查方式】给出直线方程和点的极坐标,判断点与直线的位置关系;给出曲线的参数方程,求曲线上的动点到直线的最小距离.求曲线上的动点到直线的最小距离. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)点P 的极坐标为π4,2æöç÷èø,则直角坐标为()0,4,把()0,4P 代入直线l 的方程40x y -+=,(步骤1)因为0440-+=,所以点P 在直线l 上.(步骤2)(Ⅱ)因为点Q 是曲线C 上的一个动点,则点Q 的坐标可设为()3cos ,sin Q αα.点Q 到直线l 的距离为的距离为π2cos 43cos sin 4π62cos 22622αααdαæö++ç÷-+æöèø===++ç÷èø.(步骤3) 所以当πcos 16αæö+=-ç÷èø时,d 取得最小值2.(步骤4) (3)选修45-:不等式选讲:不等式选讲设不等式211x -<的解集为M . (Ⅰ)求集合M ;(Ⅱ)若,a b M Î,试比较1ab +与a b +的大小.的大小.【测量目标】不等式选讲.【测量目标】不等式选讲.【考查方式】给出不等式,求其解集;给出关于集合两个元素的式子,比较它们的大小. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)由211x -<得1211x -<-<,解得01x <<, 所以{}01M x x =<<.(步骤1)(Ⅱ)因为,a b M Î,则01a <<,01b <<,(步骤2)()()()()1110ab a b a b +-+=-->,所以1ab a b +>+.(步骤3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


10 B
1 ;14、 5 2
;15、①③
) 2
(2 分)

sin sin 1 sin sin cos cos cos cos
(3 分)
cos( ) 0
(0, ) 2
5 3 3 3 3 cm C.2 cm D. cm 2 2 4.在△ABC 中, “ c cos B b cos C ” 是 “△ABC 是等腰三角形”
A. 3cm
3
B.
的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.已知 O 是 ABC 所在平面内一点,D 为 BC 边中点,且
高 考
7 7
B
5 7 7
C
7 14
D
5 7 14
y C O B
y x2
9.从如图所示的正方形 OABC 区域内任取一个点 M ( x, y ) ,则点 M 取自阴影部分的概率为( )
y x
(1,1) x
1 A. 2
1 1 1 B. C. D. 3 4 6 10. 如图, 动点 P 在正方体 AC 1 的对角线 BD 1 上. 过点 P 作垂直于平面 B B1 D1 D 的直线, 与正方体表面相交于 M、N,设 BP x , MN y ,则 y f ( x ) 的图象大致是( )
第Ⅰ卷 (选择题 共 50 分) 一.选择题(本大题共 10 小题,每小题 5 分,共 50 分. 在每小题所给的四个答案中有且只 有一个答案是正确的)
1.若集合 M { y | y x , x R} , N { y | y x 2, x R } ,则 M N 等于
2
n N * , 若a1 16, 则a3 a5

2

x
15.在平面直角坐标系中,设点 P ( x, y ) ,定义 [OP ] | x | | y | ,其中 O 为坐标原点. 对于以下结论:①符合 [OP ] 1 的点 P 的轨迹围成的图形的面积为 2; ③设 P 为直线 y kx b( k , b R ) 上的任意一点,则“使 [OP ] 最小的点 P 有无数个”的 必要不充分条件是“ k 1 ” ;其中正确的结论有________(填上你认为正确的所有结论的 序号) 三、解答题:本大题共 6 小题,1 满分 80 分,解答须写出文字说明、证明过程或演算步骤. 16. (本题满分 13 分)
(A) 0,
(B) ( , )
(C)
(D){ (2, 4) , ( 1, 1) } ) D.90
2.已知等差数列 {an } 的前 n 项和为 Sn ,若 a4 18 a5 , 则S8 ( A.72 B.68 C.54 3. 一个空间几何体的三视图及部分数据如图所示 (单位: cm) , 则这个几何体的体积( )
(I)已知 , (0,
sin cos ;并说明理由。
说明:对于第(II)题,将根据写出区间 D 所体现的思维层次和对问题探究的完整性,给予 不同的评分.
17.(本题满分 13 分) 如图, 已知点 P 在圆柱 OO1 的底面圆 O 上,AB 为圆 O 的直径, 圆柱 OO1 的表面积为 20 ,
源 高 考 资
经市场调查后得到如下规律: 若对产品进行电视广告的宣传, 每天的销售量 S(件) 与电视广告每天的播放量 n (次)的关系可用如图所示的程序框图来体现. (注:框图中的赋值符号“ ”也可以写成“ ”或“: ” ) (I)试写出该产品每天的销售量 S (件)关于电视广告每天的播放量 n (次)的 函数关系式; (II)要使该产品每天的销售量比不做电视广告时的销售量至少增加 90% ,则每 天电视广告的播放量至少需多少次? 20. (本题满分 14 分) 函数 f ( x ) 定义在区间[a, b]上,设“ min{ f ( x) | x D} ”表示函数 f ( x) 在集合 D 上的最小值, “ max{ f ( x) | x D} ”表示函数 f ( x) 在集合 D 上的最大值.现设
(2)若取 D 是 (0,
5
,则 , 2 2 因为 2 1 , 2 1 ,而 2 0 , 1 , 2 2 2 2 2 2 即: (0, ) ,于是由 , [ 1 , 2 ] , 0 1 2 ,且 2 2 2 2 以及正弦函数的单调性得: 0 sin sin( ) ,即: 0 sin cos 2
1

其中正确命题的序号是( A.①③ B. ①②
) C.③④
D. ②③
源 网
8.如图,双曲线的中心在坐标原点 O , A, C 分别是双曲线虚轴的上、下顶点, B 是双曲线的左顶点, F 为 双曲线的左焦点,直线 AB 与 FC 相交于点 D .若双曲线的离心 率为 2,则 BDF 的余弦值是 A
2
12.已知 | a || b | 2, a与b 的夹角为 13.已知 x, y 的值如表所示:



, 则 b 在 a 上的投影为 3
3 4 4 6
x
y
2 5
如果 y 与 x 呈线性相关且回归直线方程为 y bx
2
7 ,则 b 2
2 14 . 函 数 y x ( x 0) 的 图 象 在 点 ( an , an ) 处 的 切 线 与 x 轴 交 点 的 横 坐 标 为 an 1 ,
4
龙岩一中 2011 届高中毕业班模拟考试
考 资 源
数学(理科)答案
一、选择题 题 号 答 案 二、填空题: 11、 10 三、解答题 16. 解: (1) 、 tan tan 1, , (0, ;12、 1 ;13、 1 A 2 A 3 D 4 A 5 A 6 B 7 D 8 C 9 B
若取 D ( 答完整得 4 分
) 的子集且区间的一端是变动者。且解答完整得 5 分 2 (3)若取 D [ 1 , 2 ] , 0 1 2 ,且解答完整得 6 分 2 取 D [ 1 , 2 ] , 0 1 2 2 证明如下,设 , [ 1 , 2 ] , 0 1 2 , 2
(II)设过定点 F ,且方向向量 n 3, 4 的直线与(1)中的轨迹相交于 A, B 两点且点 A 在 x 轴的上方。 判断 ACB 能否为钝角并说明理由。 进一步研究 ABC 为钝角时点 C 纵坐 标的取值范围。

3


19. (本题满分 13 分)一企业生产的某产品在不做电视广告的前提下,每天销售量为 b 件.
D1 C1 B1 P N M B y y y y
A
A1 D A
C
O A.
x
O B.
x
O C.
x
O D.
第Ⅱ卷
(非选择题 共 100 分)
二.填空题(本大题共 5 小题,每小题 4 分,共 20 分) 11.若复数 3 i 是实系数一元二次方程 x 6 x b 0 的一个根,则 b
21. 本题有(1)、 (2)、 (3)三个选答题,每题 7 分,请考生任选 2 题作答,满分 14 分.如果多作,则按 所做的前两题计分.作答时,先用 2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号 填入括号中. (1)(本小题满分 7 分) 选修 4 一 2:矩阵与变换 cos sin 若点 A(2,2)在矩阵 M ,求 对应变换的作用下得到的点为 B(-2,2) sin cos 矩阵 M 的逆矩阵. (2)(本小题满分 7 分) 选修 4 一 4:坐标系与参数方程 已知极坐标系的极点 O 与直角坐标系的原点重合,极轴与 x 轴的正半轴重合,曲线 C1: x 4t 2 , cos( ) 2 2 与曲线 C2: (t∈R)交于 A、B 两点.求证:OA⊥OB. 4 y 4t (3)(本小题满分 7 分) 选修 4 一 5:不等式选讲 设函数 f ( x ) | x 1 | | x 2 | . (Ⅰ)解不等式 f ( x ) 3 ;(Ⅱ)若 f ( x) a对x R恒成立, 求实数a 的取值范围。
输入 b, n
i 0, S b
i i 1
S S b 2i

开始
in

输出 S 结束
第 19 题图

f1 ( x) min{ f (t ) | a t x}( x [a, b]) ,
f 2 ( x) max{ f (t ) | a t x}( x [a, b]) , 若存在最小正整数 k,使得 f 2 ( x) f1 ( x) k ( x a ) 对任意的 x [ a, b] 成立,则称函数 f ( x) 为区间 [ a, b] 上的“第 k 类压缩函数” . 3 2 (Ⅰ) 若函数 f ( x) x 3 x , x [0,3] ,求 f ( x) 的最大值,写出 f 1 ( x)、f2 ( x) 的解析式; 3 2 (Ⅱ) 若 m 0 ,函数 f ( x) x mx 是 [0, m] 上的“第 3 类压缩函数” ,求 m 的取值范围.
(5 分)
(2) 、第一类解答: (1)若取 D ( 的子集并说明理由者给 2 分, (2)若取 D [ 1 , 2 ] , 理由:
,0) 或取 D [ , ] 等固定区间且 D 是 ( ,0) 2 3 6 2
1 ,则 1 sin 0 , 0 cos 1 ,即 sin cos ; 2 2 第二类解答: (1)若取 D (0, ) 或取 D [ , ] 等固定区间且 D 是 (0, ) 的子集,且解 2 6 3 2
相关文档
最新文档