高中物理二级结论(超全)
物理重要二级结论(全)

4.估算原则:串联时,大为主;并联时,小为主。
5.路端电压:纯电阻时 ,随外电阻的增大而增大。
6.并联电路中的一个电阻发生变化,电路有消长关系,某个电阻增大,它本身的电流小,与它并联的电阻上电流变大。
7.外电路中任一电阻增大,总电阻增大,总电流减小,路端电压增大。
七、静电场:
1.粒子沿中心线垂直电场线飞入匀强电场,飞出时速度的反向延长线通过电场中心。
2.
3.匀强电场中,等势线是相互平行等距离的直线,与电场线垂直。
4.电容器充电后,两极间的场强: ,与板间距离无关。
八、恒定电流
1.串连电路:总电阻大于任一分电阻;
, ; ,
2.并联电路:总电阻小于任一分电阻;
; ; ;
5.粒子沿直线通过正交电、磁场(离子速度选择器) , 。与粒子的带电性质和带电量多少无关,与进入的方向有关。
十一、电磁感应
1.楞次定律:(阻碍原因)
内外环电流方向:“增反减同”自感电流的方向:“增反减同”
磁铁相对线圈运动:“你追我退,你退我追”
通电导线或线圈旁的线框:线框运动时:“你来我推,你走我拉”
电流表: ;串联测同一电流,量程大的指针摆角小。
4.电压测量值偏大,给电压表串联一比电压表内阻小得多的电阻;
电流测量值偏大,给电流表并联一比电流表内阻大得多的电阻;
5.分压电路:一般选择电阻较小而额定电流较大的电阻
1)若采用限流电路,电路中的最小电流仍超过用电器的额定电流时;
2)当用电器电阻远大于滑动变阻器的全值电阻,且实验要求的电压变化范围大(或要求多组实验数据)时;
光滑,相对静止 弹力为零 相对静止 光滑,弹力为零
8.下列各模型中,速度最大时合力为零,速度为零时,加速度最大
高中物理二级结论(超全)

上海高中物理二级结论集温馨提示1、“二级结论”是常见知识和经验的总结,都是可以推导的。
2、先想前提,后记结论,切勿盲目照搬、套用。
3、常用于解选择题,可以提高解题速度。
一般不要用于计算题中。
一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共面共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。
5.物体沿斜面匀速下滑,则tan μα=。
6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
10、轻杆一端连绞链,另一端受合力方向:沿杆方向。
10、若三个非平行的力作用在一个物体并使该物体保持平衡,则这三个力必相交于一点。
它们按比例可平移为一个封闭的矢量三角形。
(如图3所示)11、若F 1、F 2、F 3的合力为零,且夹角分别为θ1、θ2、θ3;则有F 1/sin θ1=F 2/sin θ2=F 3/sin θ3,如图4所示。
12、已知合力F 、分力F 1的大小,分力F 2于F 的夹角θ,则F 1>Fsin θ时,F 2有两个解:θθ22212sin cos F F F F -±=;F 1=Fsin θ时,有一个解,F 2=Fcos θ;F 1<Fsin θ没有解,如图6所示。
13、在不同的三角形中,如果两个角的两条边互相垂直,则这两个角必相等。
高中物理重要二级结论(全)

物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7.绳上的张力一定沿着绳子指向绳子收缩的方向。
8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G。
9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。
用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T内······位移比:S 1:S 2:S 3=12:22:3② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比:)::3:2:1n n::3:2:1 F已知方向 F 2的最小值F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。
高中物理重要二级结论(全)汇总

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7.绳上的张力一定沿着绳子指向绳子收缩的方向。
8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。
9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。
用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比: )::3:2:1n n::3:2:1 F已知方向F 2的最小值F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。
高中物理二级结论(超全)

高中物理二级结论集温馨提示1、 “二级结论”是常见知识和经验的总结,都是可以推导的。
2、 先想前提,后记结论,切勿盲目照搬、套用。
3、 常用于解选择题,可以提高解题速度。
一般不要用于计算题中。
一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2 .两个力的合力:F 大+F 小—F 合—F 大一 F 小。
三个大小相等的共面共点力平衡,力之间的夹角为 1200。
3.力的合成和分解是一种等效代换, 分力与合力都不是真实的力,方法、手段。
5.物体沿斜面匀速下滑,则-tan :•。
6 •两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
“没有记忆力”。
8•轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9 •轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变, 10、轻杆一端连绞链,另一端受合力方向:沿杆方向。
10、若三个非平行的力作用在一个物体并使该物体保持平衡,则这三个力必相交于一点。
它们按比例可平移为一个圭寸闭的矢量三角形。
(如图3所示)11、 若F 1、F 2、F 3的合力为零,且夹角分别为θ 1、θ 2、θ 3;则有F 〃si nθ 1=F 2∕sin θ2=F 3∕si nθ 3,如图4所示。
12、 已知合力F 、分力F 1的大小,分力F 2于F 的夹角θ ,贝U F 1>Fsin θ时,F 2有两个解:F 2 =F cos 'F 12 - F 2 Sin 2 二;F I =FSin θ 时,有一个解,F 2=Fc0s θ ; F 1<Fsinθ 没有解,如图 6 所示。
13、 在不同的三角形中,如果两个角的两条边互相垂直,则这两个角必相等。
14、 如图所示,在系于高低不同的两杆之间且长L 大于两杆间隔d 的绳上用光滑钩挂衣物时,衣物离低杆近,且AC 、BC 与杆的夹角相等,Sin θ =d∕L ,分别以A 、B 为圆心,以绳长为半径画圆且交对面杆上 A'、B'两点,贝U AA '与BB '的交点C 为平衡悬点。
高中物理重要二级结论(全)

物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7.绳上的张力一定沿着绳子指向绳子收缩的方向。
8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。
9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。
用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )2 位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···② 经过1S 0时、2 S 0时、3 S 0时···时间比: :3:2:1:3:2:1ΛF已知方向F 2的最小值F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。
高中物理重要二级结论(全)

高中物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7.绳上的张力一定沿着绳子指向绳子收缩的方向。
8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。
9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。
用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2F已知方向F 2的最小值 F 2的最小值F 2的最小值F 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。
高中物理二级结论(整理)

高三物理——结论性语句及二级结论一、力和牛顿运动定律1.静力学(1)绳上的张力一定沿着绳指向绳收缩的方向.(2)支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G . (3)两个力的合力的大小范围:|F 1-F 2|≤F ≤F 1+F 2.(4)三个共点力平衡,则任意两个力的合力与第三个力大小相等,方向相反,多个共点力平衡时也有这样的特点.(5)两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值.图1(6)物体沿斜面匀速下滑,则tan μα=.2.运动和力(1)沿粗糙水平面滑行的物体:a =μg (2)沿光滑斜面下滑的物体:a =g sin α(3)沿粗糙斜面下滑的物体:a =g (sin α-μcos α) (4)沿如图2所示光滑斜面下滑的物体:(5)一起加速运动的物体系,若力是作用于m 1上,则m 1和m 2的相互作用力为N =m 2Fm 1+m 2,与有无摩擦无关,平面、斜面、竖直方向都一样.(6)下面几种物理模型,在临界情况下,a =g tan α.(7)如图5所示物理模型,刚好脱离时,弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离分析.(8)下列各模型中,速度最大时合力为零,速度为零时,加速度最大.(9)超重:a 方向竖直向上(匀加速上升,匀减速下降). 失重:a 方向竖直向下(匀减速上升,匀加速下降).(10)系统的牛顿第二定律 x x x x a m a m a m F 332211++=∑(整体法——求系统外力) y y y ya m a m a m F 332211++=∑二、直线运动和曲线运动一、直线运动1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)的常用比例时间等分(T ):①1T 末、2T 末、3T 末、…、nT 末的速度比:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . ②第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比:x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1).③连续相等时间内的位移差Δx =aT 2,进一步有x m -x n =(m -n )aT 2,此结论常用于求加速度a =Δx T 2=x m -x n m -n T 2. 位移等分(x ):通过第1个x 、第2个x 、第3个x 、…、第n 个x 所用时间比: t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1).2.匀变速直线运动的平均速度①v =v t 2=v 0+v 2=x 1+x 22T.②前一半时间的平均速度为v 1,后一半时间的平均速度为v 2,则全程的平均速度:v =v 1+v 22.③前一半路程的平均速度为v 1,后一半路程的平均速度为v 2,则全程的平均速度:v =2v 1v 2v 1+v 2.3.匀变速直线运动中间时刻、中间位置的速度v t2=v =v 0+v 2,v x 2=v 20+v22. 4.如果物体位移的表达式为x =At 2+Bt ,则物体做匀变速直线运动,初速度v 0=B (m/s),加速度a =2A (m/s 2).5.自由落体运动的时间t =2h g. 6.竖直上抛运动的时间t 上=t 下=v 0g =2Hg ,同一位置的速率v 上=v 下.上升最大高度202m v h g= 7.追及相遇问题匀减速追匀速:恰能追上或追不上的关键:v 匀=v 匀减. v 0=0的匀加速追匀速:v 匀=v 匀加时,两物体的间距最大. 同时同地出发两物体相遇:时间相等,位移相等.A 与B 相距Δs ,A 追上B :s A =s B +Δs ;如果A 、B 相向运动,相遇时:s A +s B =Δs .8.“刹车陷阱”,应先求滑行至速度为零即停止的时间t 0,如果题干中的时间t 大于t 0,用v 20=2ax 或x =v 0t 02求滑行距离;若t 小于t 0时,x =v 0t +12at 2. 9.逐差法:若是连续6段位移,则有: 21234569)()(Tx x x x x x a ++-++= 二、运动的合成与分解 1.小船过河(1)当船速大于水速时①船头的方向垂直于水流的方向则小船过河所用时间最短,t =dv 船.②合速度垂直于河岸时,航程s 最短,s =d . (2)当船速小于水速时①船头的方向垂直于水流的方向时,所用时间最短,t =dv 船.②合速度不可能垂直于河岸,最短航程s =d ×v 水v 船.2.绳端物体速度分解: 分解不沿绳那个速度为沿绳和垂直于绳三、圆周运动1.水平面内的圆周运动,F =mg tan θ,方向水平,指向圆心.图142.竖直面内的圆周运动图15(1)绳,内轨,水流星最高点最小速度为gR ,最低点最小速度为5gR ,上下两点拉压力之差为6mg .(2)离心轨道,小球在圆轨道过最高点v min =gR ,如图16所示,小球要通过最高点,小球最小下滑高度为2.5R .图16(3)竖直轨道圆周运动的两种基本模型绳端系小球,从水平位置无初速度释放下摆到最低点:绳上拉力F T =3mg ,向心加速度a =2g ,与绳长无关.小球在“杆”模型最高点v min =0,v 临=gR ,v >v 临,杆对小球有向下的拉力. v =v 临,杆对小球的作用力为零. v <v 临,杆对小球有向上的支持力.图17四、万有引力与航天1.重力加速度:某星球表面处(即距球心R ): g =GMR2.距离该星球表面h 处(即距球心R +h 处):g ′=GMr 2=2)(h R GM . 2.人造卫星:G Mm r 2=m v 2r =mω2r =m 4π2T2r =ma =mg ′.速度 GM v r=,周期 32rT GM π=,加速度2GMar =<g 第一宇宙速度v 1=gR =GMR=7.9 km/s ,211.2km/s v =,316.7km/s v = 地表附近的人造卫星:r =R =6.4×106 m ,v 运=v 1,T =2πRg=84.6分钟. 3.同步卫星T =24小时,h =5.6R =36 000 km ,v =3.1 km/s.4.重要变换式:GM =gR 2(R 为地球半径)5.行星密度:ρ=3πGT 2,式中T 为绕行星表面运转的卫星的周期.6. 卫星变轨: 2143v v v v >>>7.恒星质量: 2324r M GT π=或GgR 2=8.引力势能:P GMm E r=-,卫星动能 2k GMm E r =,卫星机械能2GMmE r =-同一卫星在半长轴为a =R 的椭圆轨道上运动的机械能,等于半径为R 圆周轨道上的机械能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vv 水v 合(a)(b)图2一、静力学:8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
10、轻杆一端连绞链,另一端受合力方向:沿杆方向。
10、若三个非平行的力作用在一个物体并使该物体保持平衡,则这三个力必相交于一点。
它们按比例可平移为一个封闭的矢量三角形。
(如图3所示)11、若F 1、F 2、F 3的合力为零,且夹角分别为θ1、θ2、θ3;则有F 1/sin θ1=F 2/sin θ2=F 3/sin θ3,如图4所示。
12、已知合力F 、分力F 1的大小,分力F 2于F 的夹角θ,则F 1>Fsin θ时,F 2有两个解:θθ22212s i n co s F F F F -±=;F 1=Fsin θ时,有一个解,F 2=Fcos θ;F 1<Fsin θ没有解,如图6所示。
14、如图所示,在系于高低不同的两杆之间且长L 大于两杆间隔d 的绳上用光滑钩挂衣物时,衣物离低杆近,且AC 、BC 与杆的夹角相等,sin θ=d/L ,分别以A 、B 为圆心,以绳长为半径画圆且交对面杆上'A 、'B 两点,则'AA 与'BB 的交点C 为平衡悬点。
二、运动学:7、船渡河时,船头总是直指对岸所用的时间最短;当船在静水中的速v 船>v 水时,船头斜指向上游,且与岸成θ角时,cos θ=v 水/v 船时位移最短;当船在静水中的速度v 船<v 水时,船头斜指向下游,且与岸成角θ,cos θ=v船/v 水。
如图2中的(a )、(b )所示。
三、运动定律:4.一起加速运动的物体,合力按质量正比例分配:F m m m N 212+=,与有无摩擦(μ相同)无关,平面、斜面、竖直都一样。
5.物块在斜面上A 点由静止开始下滑,到B 点再滑上水平面如图,后静止于C 点,若物块与接触面的动摩擦因数均为μ,则μ=αtg6.几个临界问题: αgtg a = 注意α角的位置!图3图5图6图4F 1 F 2F 3 F 2F 1光滑,相对静止 弹力为零 弹力为零 7.速度最大时合力为零:汽车以额定功率行驶时,fP v m =8、欲推动放在粗糙平面上的物体,物体与平面之间的动摩擦因数为μ,推力方向与水平面成θ角,tan θ=μ时最省力,2min 1μμ+=mgF 。
若平面换成倾角为α的斜面后,推力与斜面夹角满足关系tan θ=μ时,2mi n 1cos μαμ+=mg F 。
9、两个靠在一起的物体A 和B ,质量为m 1、m 2,放在同一光滑平面上,当A 受到水平推力F 作用后,A 对B 的作用力为212m m Fm +。
平面虽不光滑,但A 、B 与平面间存在相同的摩擦因数时上述结论成立,斜面取代平面。
只要推力F 与斜面平行,F 大于摩擦力与重力沿斜面分力之和时同样成立。
11、支持面对支持物的支持力随系统的加速度而变化。
若系统具有向上的加速度a ,则支持力N 为m(g+a);若系统具有向下的加速度a ,则支持力N 为m(g -a)(要求a ≤g ),12、用长为L 的绳拴一质点做圆锥摆运动时,则其周期同绳长L 、摆角θ、当地重力加速度g 之间存在gL T θπcos 2=关系。
四、圆周运动 万有引力: 3.竖直平面内的圆运动(1)“绳”类:最高点最小速度gR ,最低点最小速度5gR ,上、下两点拉力差6mg 。
要通过顶点,最小下滑高度2.5R 。
最高点与最低点的拉力差6mg 。
(2)绳端系小球,从水平位置无初速下摆到最低点:弹力3mg ,向心加速度2g (3)“杆”:最高点最小速度0,最低点最小速度gR 4。
6.人造卫星:高度大则速度小、周期大、加速度小、动能小、重力势能大、机械能大。
速率与半径的平方根成反比,周期与半径的平方根的三次方成正比。
同步卫星轨道在赤道上空,h=5.6R,v = 3.1 km/s22、若行星表面的重力加速度为 g ,行星的半径为R ,则环绕其表面的卫星最低速度v 为gR ;若行星的平均密度为ρ,则卫星周期的最小值T 同ρ、G 之间存在ρT 2=3π/G 的关系式。
25、质点若先受力F 1作用,后受反方向F 2作用,其前进位移S 后恰好又停下来,则运动的时间t 同质量m ,作用力F 1、F 2,位移S 之间存在关系2121/)(2F F s F F m t +=26、质点若先受力F 1作用一段时间后,后又在反方向的力F 2作用相同时间后恰返回出发点,则F 2=3F 1。
27、由质量为m 质点和劲度系数为K 的弹簧组成的弹簧振子的振动周期k m T /2π=与弹簧振子平放,竖放没有关系。
28、由质量为m 的质点和摆长为L 组成的单摆的周期glT π2=,与摆角θ和质量m 无关。
若单摆在加速度为a 的系统中,式中g 应改为g 和a 的矢量和。
若摆球带电荷q ,置于匀强电场中,则glT π2=中的g 由重力和电场力的矢量和与摆球的质量m 比值代替;若单摆处于由位于单摆悬点处的点电荷产生的电场中,或磁场中,周期不变。
度:Rg V =1,RGM V =1,V 1=7.9km/s五、动量和机械能中的“二次结论”5.作用力的功与反作用力的功不一定符号相反,其总功也不一定为零。
6.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体获得的动能。
30、重力、弹力、万有引力对物体做功仅与物体的初、末位置有关,而与路径无关。
选地面为零势面,重力势能E P =mgh ;选弹簧原长的位置为零势面,则弹性势能E P =kx 2/2;选两物体相距无穷远势能为零,则两物体间的万有引力势能rM M GE P 21-=。
31、相互作用的一对静摩擦力,若其中一个力做正功,则另一个力做负功,且总功代数和为零,若相互作用力是一对滑动摩擦力,也可以对其中一个物体做正功,但总功代数和一定小于零,且 W 总=-F ·S 相对。
32、人造卫星的动能E K ,势能E P ,总机械能E 之间存在E=-E K ,E P =-2E K ;当它由近地轨道到远地轨道时,总能量增加,但动能减小。
33、物体由斜面上高为h 的位置滑下来,滑到平面上的另一点停下来,若L 是释放点到停止点的水平总距离,则物体的与滑动面之间的摩擦因数μ与L ,h 之间存在关系μ=h/L ,如图7所示。
六、动量:35、两物体m 1、m 2碰撞之后,总动量必须和碰前大小方向都相同,总动能小于或等于碰前总动能,碰后在没有其他物体的情况下,保证不再发生碰撞。
6.子弹(质量为m ,初速度为0v )打入静止在光滑水平面上的木块(质量为M ),但未打穿。
从子弹刚进入木块到恰好相对静止,子弹的位移子S 、木块的位移木S 及子弹射入的深度d 三者的比为)(M ∶∶)2(∶∶m m m M d S S ++=木子7.双弹簧振子在光滑直轨道上运动,弹簧为原长时一个振子速度最大,另一个振子速度最小;弹簧最长和最短时(弹性势能最大)两振子速度一定相等。
九、静电学:1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值:电电E W ∆-=。
3.粒子飞出偏转电场时“速度的反向延长线,通过电场中心”。
5.只有电场力对质点做功时,其动能与电势能之和不变。
只有重力和电场力对质点做功时,其机械能与电势能之和不变。
6.电容器接在电源上,电压不变,d U E =; 断开电源时,电容器电量不变sQE ∝,改变两板距离,场强不变。
38、若一条直线上有三个点电荷因相互作用均平衡,则这三个点电荷的相邻电性相反,即仅有“正负正”和“负正负”的两种方式,而且中间的电量值最小。
39、两同种带电小球分别用等长细绳系住,相互作用平衡后,摆角α与质量m 存在2211sin sin ααm m =,如图9所示。
40、匀强电场中,任意两点连线中点的电势等于这两点的电势的平均值。
在任意方向上电势差与距离成正比。
十、恒定电流:44、一个电阻串联(或并联)在干路里产生的作用大于串联(或并联)在支路中的作用。
45、伏安法测电阻时,若R x <<R V ,用电流表外接法,测量值小于真实值; R x >>R A 时,用电流表内接法,测量值大于真实值。
待测电阻阻值范围未知时,可用试探法。
电压表明显变化时,用电流表外接法误差小,电流表读数明显变化时,用电流表内接法误差小。
1.串联电路:U 与R 成正比,U R R R U 2111+=。
P 与R 成正比,P R R R P 2111+=。
2.并联电路:I 与R 成反比, I R R R I 2121+=。
P 与R 成反比, P R R R P 2121+=。
α1 α2q 1 q 2图95.并联电路中的一个电阻发生变化,电流有“此消彼长”关系:一个电阻增大,它本身的电流变小,与它并联的电阻上电流变大;一个电阻减小,它本身的电流变大,与它并联的电阻上电流变小。
9.右图中,两侧电阻相等时总电阻最大。
10.纯电阻电路,内、外电路阻值相等时输出功率最大,rE P m 42。
R 1 R 2 = r 2时输出功率相等。
12.纯电阻串联电路中,一个电阻增大时,它两端的电压也增大,而电路其它部分的电压减小;其电压增加量等于其它部分电压减小量之和的绝对值。
反之,一个电阻减小时,它两端的电压也减小,而电路其它部分的电压增大;其电压减小量等于其它部分电压增大量之和。
13.含电容电路中,电容器是断路,电容不是电路的组成部分,仅借用与之并联部分的电压。
稳定时,与它串联的电阻是虚设,如导线。
在电路变化时电容器有充、放电电流。
十一、磁场:49、带电粒子在磁场中做圆周运动的周期同粒子的速率、半径无关,仅与粒子的质量、电荷和磁感应强度有关,即T=2πm/Bq 。
带电粒子垂直进入磁场中做部分圆周运动,进入磁场时与边界的夹角等于离开磁场时与边界的夹角。
带电粒子沿半径方向进入圆形磁场区域中做部分圆周运动,必将沿半径方向离开圆形磁场区域。
带电粒子垂直进入磁场中做部分圆周运动,速度的偏向角等于对应的圆心角。
50、在正交的电场和磁场区域,当电场力和磁场力方向相反,若V 为带电粒子在电磁场中的运动速度,且满足V=E/B 时,带电粒子做匀速直线运动;若B 、E 的方向使带电粒子所受电场力和磁场力方向相同时,将B 、E 、v 中任意一个方向反向既可,粒子仍做匀速直线运动,与粒子的带电正负、质量均无关。
51、在各种电磁感应现象中,电磁感应的效果总是阻碍引起电磁感应的原因,若是由相对运动引起的,则阻碍相对运动;若是由电流变化引起的,则阻碍电流变化的趋势。
52、长为L 的导体棒,在磁感应强度为B 的磁场中以其中一端为圆心转动切割磁感线时,产生的感应电动势 Ε=BL 2ω/2,ω为导体棒的角速度。