高考数学总复习解题思维专题讲座(共四讲)[整理]
高考数学专题讲座

导数概念
理解导数的定义,掌握导数的几何意义和物 理意义。
导数应用
利用导数研究函数的单调性、极值、最值等 问题,以及在实际问题中的应用。
三角函数与解三角形
三角函数性质
理解三角函数的定义,掌握三角函数的图像和性质, 如周期性、奇偶性、单调性等。
三角恒等变换
熟练掌握三角恒等变换公式,如和差角公式、倍角公 式等。
函数性质理解不足
包括对函数单调性、奇偶性、周期性等基本概念的理解不清晰。
导数应用问题
如极值、最值、切线等问题中,对导数概念及运算规则掌握不熟练。
三角函数变换
对三角函数的和差化积、积化和差等公式运用不熟练,导致解题困难。
数列与数学归纳法
在数列通项公式、求和公式及数学归纳法的运用中,易出现理解偏差或计算错误。
规范书写保持卷面整洁,字迹晰,步 骤完整。严谨推理
在解题过程中,保持严谨的推 理和计算,确保每一步的正确 性。
注意检查
在解答完成后,仔细检查答案 和过程,确保没有遗漏和错误 。
04 经典例题解析与 实战演练
函数与导数经典例题解析
函数性质综合应用
通过具体例题,深入剖析函数的单调性、奇 偶性、周期性等性质,并探讨它们在解题中 的综合应用。
随机变量的分布与数字特征
详细讲解离散型随机变量和连续型随机变量的分布律、概率密度函数等概念,以及数学期 望、方差等数字特征的计算和应用。
统计推断与参数估计
介绍统计推断的基本原理和方法,包括点估计和区间估计等,通过实例演示如何利用样本 数据对总体参数进行推断和估计。
05 易错知识点剖析 及纠正方法
易错知识点归纳整理
03 高考数学常见题 型及解题技巧
选择题答题技巧
高三数学专题复习:第二部分第四讲

平面向量与三角函数(正、余弦定理)
这是综合考查知识点, 特别是向量与三角函数的结 合是近几年高考的热门知识点.平面向量具有代数 形式与几何形式的“双重身份”,与三角函数有机地 结合起来.这一结合综合性强,创新力度大,能有 效地沟通知识之间的广泛连接.处理好题目之间的 联系,巧妙地应用向量解决三角函数问题及正余弦 定理,要求我们熟记三角函数公式,诱导公式、三 角变换公式及向量的有关计算公式.
2 2 2
栏目 导引
第二部分•应试高分策略
栏目 导引
第二部分•应试高分策略
3 ∴sin α+cos α= .两端平方,得 2sin αcos α= 4 7 - , 16 2sin α+sin 2α 7 ∴ =- . 16 1+tan α
2
栏目 导引
第二部分•应试高分策略
统计与概率
统计与概率是高考必考内容,它是以实际应用 为载体,以概率统计等知识为工具,考查古典 概型、抽样方法、样本频率计算、频率分布直 方图等主要内容.命题热点是:抽样方法、样 本的频率分布、概率计算,并将统计的数字特 征、直方图与概率相结合,更注重事件的过程 分析.
栏目 导引
第二部分•应试高分策略
(4)面对难题,讲究策略,争取得分.会做的题
目当然要力求做对、做全、得满分,而对于不
能全部完成的题目应:①缺步解答;②跳步解
答.解题过程卡在其一中间环节上时,可以承
接中间结论,往下推,或直接利用前面的结论
做下面的(2)、(3)问.
栏目 导引
第二部分•应试高分策略
解题方法例析
栏目 导引
第二部分•应试高分策略
再让考生解答,而且“题设”和“要求”的模式多
种多样.考生解答时,应把已知条件作为出发
高三数学复习专题讲座(第一讲)集合与集合思想

第一讲、对集合的理解及集合思想应用的问题一、1、集合语言是一种特殊的符号语言,是现代数学的基本语言,所以要学好高中的数学,首先必须深层次的理解集合的概念及其内涵,跟我们生活是一样的,如果连语言都不通的话,就跟谈不上很好的交流和表达了。
2、《集合》的学习,不仅仅局限与集合里面简单的计算,而需要更深层次的理解集合思想内涵,许多同学在学习集合,在学习高中数学的时候,有种“力不从心”的感觉,总是“一看就会,一听就懂,一做就错”,很大程度上是因为没有真正理解其中的思想内涵,仅仅是停留在表面的理解。
3、集合是个原始概念,只作描述性的解释:若干个确定对象的全体,可以看作一个集合,组成集合的对象称为集合的元素。
从这个概念,至少可以看到三个研究方向:集合中元素的研究;单个集合本身的研究;若干个集合之间关系的研究(函数就是两个集合之间按照一定规则的对应关系)。
二、透过集合的描述法理解集合。
对于用描述法给出的集合{x |x ∈P }1、翻译,高中数学的学习,要注意自然语言,符号语言,图像语言……之间的相互转化。
代表元素x 可以翻译成:是什么?它所具有的性质P 可以翻译成:有多少?2、研究两个集合之间的关系,也就可以通过研究集合里面元素之间的关系来解决。
3、形式:对于性质P ,在数学语言中,代表着一种形式,也就是说,只要满足这样形式的个体x ,则可以看着是集合的元素。
在许多的数学题型中,需要对数学表达式进行变形,变成我们需要或者是熟悉的能够解决问题的形式。
如:+∈R y x ,,yx y x 21,2+=+求的最小值,这里有两种方式:1、用消元法,2、讲当成整体,y x +即:)21)((21yx y x ++=原式,这里显然方法第二种形式要简洁一些。
如:},14/{},,12/{Z k k x x B Z k k x x A ∈±==∈+==,(1)判断集合B A ,的关系 (2)证明B A ,之间的关系解析:(1)这作为一个判断题目,可以通过对集合的翻译研究他们之间的关系对集合A :1、x :数——2、奇数——3、观察,x 可以去到……-3,-2,1,3……——4、A 集合为全体奇数,同理:B 集合也是全体奇数,故:A=B(2)要证明A=B ,即需要证明A ,B 互为彼此的子集,即⎩⎨⎧∈⇒∈∀∈⇒∈∀⇔=Ax B x B x A x B A ,这里也就需要证明A 中的元素能够表示成B 中元素具有的形式P 的形式,反之亦然。
2005年高考数学总复习解题思维专题讲座之一-数学思维的变通性

2005年高考数学总复习解题思维专题讲座之一数学思维的变通性一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。
根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练:(1)善于观察心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。
观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。
任何一道数学题,都包含一定的数学条件和关系。
要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。
例如,求和)1(1431321211+++⋅+⋅+⋅n n .这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且111)1(1+-=+n n n n ,因此,原式等于1111113121211+-=+-++-+-n n n 问题很快就解决了。
(2)善于联想联想是问题转化的桥梁。
稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。
因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。
例如,解方程组⎩⎨⎧-==+32xy y x .这个方程指明两个数的和为2,这两个数的积为3-。
由此联想到韦达定理,x 、y 是一元二次方程0322=--t t 的两个根,所以⎩⎨⎧=-=31y x 或⎩⎨⎧-==13y x .可见,联想可使问题变得简单。
(3)善于将问题进行转化数学家G .波利亚在《怎样解题》中说过:数学解题是命题的连续变换。
可思维方法。
那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。
在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。
高考数学复习专题讲座化归思想

高考数学复习专题讲座 化归思想高考要求化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想 等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法重难点归纳转化有等价转化与不等价转化 等价转化后的新问题与原问题实质是一样的 不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正应用转化化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化 常见的转化有正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化典型题例示范讲解例1对任意函数f (x ), x ∈D ,可按图示构造一个数列发生器,其工作原理如下①输入数据x 0∈D ,经数列发生器输出x 1=f (x 0); ②若x 1∉D ,则数列发生器结束工作;若x 1∈D ,则将x 1反馈回输入端,再输出x 2=f (x 1),并依此规律继续下去现定义124)(+-=x x x f (1)若输入x 0=6549,则由数列发生器产生数列{x n },请写出{x n }的所有项; (2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x 0的值; (3)若输入x 0时,产生的无穷数列{x n },满足对任意正整数n 均有x n <x n +1;求x 0的取值范围命题意图 本题主要考查学生的阅读审题,综合理解及逻辑推理的能力知识依托 函数求值的简单运算、方程思想的应用 解不等式及化归转化思想的应用 解题的关键就是应用转化思想将题意条件转化为数学语言错解分析 考生易出现以下几种错因(1)审题后不能理解题意(2)题意转化不出数学关系式,如第2问(3)第3问不能进行从一般到特殊的转化技巧与方法 此题属于富有新意,综合性、抽象性较强的题目 由于陌生不易理解并将文意转化为数学语言 这就要求我们慎读题意,把握主脉,体会数学转换解 (1)∵f (x )的定义域D =(–∞,–1)∪(–1,+∞)∴数列{x n }只有三项,1,51,1911321-===x x x (2)∵x x x x f =+-=124)(,即x 2–3x +2=0 ∴x =1或x =2,即x 0=1或2时n n n n x x x x =+-=+1241故当x 0=1时,x n =1,当x 0=2时,x n =2(n ∈N *) (3)解不等式124+-<x x x ,得x <–1或1<x <2 要使x 1<x 2,则x 2<–1或1<x 1<2对于函数164124)(+-=+-=x x x x f 若x 1<–1,则x 2=f (x 1)>4,x 3=f (x 2)<x 2 若1<x 1<2时,x 2=f (x 1)>x 1且1<x 2<2 依次类推可得数列{x n }的所有项均满足 x n +1>x n (n ∈N *) 综上所述,x 1∈(1,2) 由x 1=f (x 0),得x 0∈(1,2)例2设椭圆C 1的方程为12222=+b y a x (a >b >0),曲线C 2的方程为y =x1,且曲线C 1与C 2在第一象限内只有一个公共点P(1)试用a 表示点P 的坐标;(2)设A 、B 是椭圆C 1的两个焦点,当a 变化时,求△ABP 的面积函数S (a )的值域;(3)记min{y 1,y 2,……,y n }为y 1,y 2,……,y n 中最小的一个 设g (a )是以椭圆C 1的半焦距为边长的正方形的面积,试求函数f (a )=min{g (a ), S (a )}的表达式命题意图 本题考查曲线的位置关系,函数的最值等基础知识,考查推理运算能力及综合运用知识解题的能力知识依托两曲线交点个数的转化及充要条件,求函数值域、解不等式错解分析 第(1)问中将交点个数转化为方程组解的个数,考查易出现计算错误,不能借助Δ找到a 、b 的关系 第(2)问中考生易忽略a >b >0这一隐性条件 第(3)问中考生往往想不起将min{g (a ),S (a )}转化为解不等式g (a )≥S (a )技巧与方法 将难以下手的题目转化为自己熟练掌握的基本问题,是应用化归思想的灵魂 要求必须将各知识的内涵及关联做到转化有目标、转化有桥梁、转化有效果解 (1)将y =x1代入椭圆方程,得 112222=+xb a x 化简,得b 2x 4–a 2b 2x 2+a 2=0由条件,有Δ=a 4b 4–4a 2b 2=0,得ab =2 解得x =2a 或x =–2a(舍去) 故P 的坐标为(aa 2,2) (2)∵在△ABP 中,|AB |=222b a -,高为a2, ∴)41(22221)(422aa b a a S -=⋅-⋅=∵a >b >0,b =a2 ∴a >a 2,即a >2,得0<44a<1 于是0<S (a )<2,故△ABP 的面积函数S (a )的值域为(0,2) (3)g (a )=c 2=a 2–b 2=a 2–24a 解不等式g (a )≥S (a ),即a 2–24a≥)41(24a - 整理,得a 8–10a 4+24≥0,即(a 4–4)(a 4–6)≥0 解得a ≤2(舍去)或a ≥46故f (a )=min{g (a ), S (a )}⎪⎪⎩⎪⎪⎨⎧<-≤<-=)6()41(262(444422a a a a a例3一条路上共有9个路灯,为了节约用电,拟关闭其中3个,要求两端的路灯不能关闭,任意两个相邻的路灯不能同时关闭,那么关闭路灯的方法总数为解析9个灯中关闭3个等价于在6个开启的路灯中,选3个间隔(不包括两端外边的装置)插入关闭的过程故有C 35=10种答案 10例4 已知平面向量a =(3–1), a =(23,21) (1)证明a ⊥b ;(2)若存在不同时为零的实数k 和t ,使x =a +(t 2–3) b ,y =–k a +t b ,且x ⊥y ,试求函数关系式k =f (t);(3)据(2)的结论,讨论关于t 的方程f (t )–k =0的解的情况(1)证明 ∵a ·b =23)1(213⋅-+⨯=0,∴a ⊥b (2)解 ∵x ⊥y ,∴x ·y =0即[a +(t 2–3) b ]·(–k a +t b )=0,整理后得 –k a 2+[t –k (t 2–3)]a ·b +t (t 2–3)·b 2=0∵a ·b =0, a 2=4, b 2=1 ∴上式化为–4k +t (t 2–3)=0,∴k =41t (t 2–3) (3)解 讨论方程41t (t 2–3)–k =0的解的情况, 可以看作曲线f (t )=41t (t 2–3)与直线y =k 的交点个数于是f ′(t )=43(t 2–1)=43(t +1)(t –1)令f ′(t )=0,解得t =1 的变化情况如下表 t (–∞,–1)–1 (–1,1) 1 (1,+∞) f ′(t ) + 0 – 0 + f (t )↗极大值↘极小值↗当t =–1时,f (t )有极大值,f (t )极大值=2; 当t =1时,f (t )有极小值,f (t )极小值=21而f (t )=41(t 2–3)t =0时,得t =–33所以f (t )的图象大致如右于是当k >21或k <–21时,直线y =k 与曲线y =f (t )仅有一个交点,则方程有一解;当k =21或k =–21时,直线与曲线有两个交点,则方程有两解;当k =0,直线与曲线有三个交点,但k 、t 不同时为零,故此时也有两解;当–21<k <0或0<k <21时,直线与曲线有三个交点,则方程有三个解学生巩固练习1 已知两条直线l 1:y =x ,l 2:ax –y =0,其中a ∈R ,当这两条直线的夹角在(0,2π)内变动时,a 的取值范围是( )A (0,1)B (33,3) C (33,1)∪(1,3) D (1,3) 2 等差数列{a n }和{b n }的前n 项和分别用S n 和T n 表示,若534+=n n T S n n ,则nn n b a ∞→lim 的值为( )A34 B 1 C 36 D 94f(t)=14t(t 2-3)1-1-1212y=koyt3 某房间有4个人,那么至少有2人生日是同一个月的概率是 (列式表示)4 函数f (x )=x 3–3bx +3b 在(0,1)内有极小值,则b 的取值范围是5 已知f (x )=lg(x +1),g (x )=2lg(2x +t ),(t ∈R 是参数)(1)当t =–1时,解不等式f (x )≤g (x );(2)如果x ∈[0,1]时,f (x )≤g (x )恒成立,求参数t 的取值范围6 已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n ,n ∈N *且a 1、a 2、a 3、……、a n 构成一个数列{a n },满足f (1)=n 2(1)求数列{a n }的通项公式,并求1lim+∞→n nn a a ;(2)证明0<f (31)<1 7 设A 、B 是双曲线x 2–22y=1上的两点,点N (1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?8 直线y =a 与函数y =x 3–3x 的图象有相异三个交点,求a 的取值范围参考答案1 解析 分析直线l 2的变化特征,化数为形,已知两直线不重合,因此问题应该有两个范围即得解答案 C2 解析 化和的比为项的比∵n n n n n b n T a n a a n S )12(;)12(2)12(1212112-=-=+-=--- ∴26485)12(3)12(41212+-=+--==--n n n n T S b a n n n n ,取极限易得 答案 A3 解析 转化为先求对立事件的概率即四人生日各不相同的概率答案 441212A 1-4 解析 转化为f ′(x )=3x 2–3b 在(0,1)内与x 轴有两交点只须f ′(0)<0且f ′(1)>0答案 0<b <15 解 (1)原不等式等价于⎪⎩⎪⎨⎧>->⎪⎩⎪⎨⎧-≤+>->+05421)12(10120122x x x x x x x 即即⎪⎪⎩⎪⎪⎨⎧≥≤>45021x x x 或 ∴x ≥45∴原不等式的解集为{x |x ≥45} (2)x ∈[0,1]时,f (x )≤g (x )恒成立∴x ∈[0,1]时⎪⎩⎪⎨⎧+≤+>+>+2)2()1(0201t x x t x x 恒成立 即⎪⎩⎪⎨⎧++-≥->>+12201x x t x t x 恒成立即x ∈[0,1]时,t ≥–2x +1+x 恒成立,于是转化为求–2x +x +1,x ∈[0,1]的最大值问题 令μ=1+x ,则x =μ2–1,则μ∈[1,2]∴2x +1+x =–2(μ–41)2817 当μ=1即x =0时,–2x +1+x 有最大值1 ∴t 的取值范围是t ≥16 (1)解 {a n }的前n 项和S n =a 1+a 2+…+a n =f (1)=n 2,由a n =S n –S n –1=n 2–(n –1)2=2n –1(n ≥2),又a 1=S 1=1满足a n =2n –1故{a n }通项公式为a n =2n –1(n ∈N *) ∴11212lim lim1=+-=∞→+∞→n n a a n n n n(2)证明 ∵f (31)=1·31+3·91+…+(2n –1)n 31①∴31f (31)=1·91+3·271+…+(2n –3)n 31+(2n –1)131+n ②①–②得 32f (31)=1·31+2·91+2·271+…+2·n 31–(2n –1)·131+n∴f (31)=21+31+91+271+…+131-n –(2n –1)131+n =1n n 31+∵n n n n n n +>+>+⋅+⋅+=+=1212C 2C 1)21(3221 (n ∈N *)∴0<n n 31+<1,∴0<1–nn 31+<1,即0<f (31)<1 7 解 (1)设AB ∶y =k (x –1)+2代入x 2–22y=1整理得(2–k 2)x 2–2k (2–k )x –(2–k )2–2=0 ①设A (x 1,y 1)、B (x 2,y 2),x 1,x 2为方程①的两根 所以2–k 2≠0且x 1+x 2=22)2(2kk k -- 又N 为AB 中点, 有21(x 1+x 2)=1 ∴k (2–k )=2–k 2,解得k =1 故AB ∶y =x +1 (2)解出A (–1,0)、B (3,4)得CD 的方程为y =3–x 与双曲线方程联立 消y 有x 2+6x –11=0②记C (x 3,y 3)、D (x 4,y 4)及CD 中点M (x 0,y 0)由韦达定理可得x 0=–3,y 0=6∵|CD |=104)()(243243=-+-y y x x ∴|MC |=|MD |=21|CD |=210 又|MA |=|MB |=102)()(210210=-+-y y x x 即A 、B 、C 、D 四点到点M 的距离相等,所以A 、B 、C 、D 四点共圆8 提示 f ′(x )=3x 2–3=3(x –1)(x +1)易确定f (–1)=2是极大值,f (1)=–2是极小值 当–2<a <2时有三个相异交点课前后备注。
高三数学复习备考讲座PPT课件

11.空间向量: 旧考纲对立体几何有A,B两种要求,
考生可以不掌握空间向量知识,新考纲 突出了空间向量的应用,要求能用向量 语言表述线面平行、垂直关系,能用向 量方法证明线面位置关系的一些定理, 解决空间三种角的计算问题.
第33页/共92页
例(09年浙江卷理)如图,平面PAC⊥平 面ABC,△ABC是以AC为斜边的等腰直角三角 形,E,F,O分别为PA,PB,AC的中点,AC= 16,PA=PC=10.
大小分别为2和4,则F3的大小为 ( )
A. 6 B. 2
C.2 5 D.2 7
第29页/共92页
9.解三角形:
新考纲要求能运用正弦定理、余弦 定理等知识和方法解决一些与测量和 几何计算有关的实际问题,强调解三 角形的实际应用.
第30页/共92页
例(09年宁夏/海南卷)为了测量两山顶M, N间的距离,飞机沿水平方向在A,B两点进行 测量,A,B,M,N在同一个铅垂平面内,飞 机能够测量的数据有俯角和A,B间的距离, 请设计一个方案,包括:①指出需要测量的 数据(用字母表示,并在图中标出);②用 文字和公式写出计算M,N间的距离的步骤.
数y=ax(a>0且a≠1)的反函数,其图像
经过点( a, a),则f(x)=
A.log2 x B.log1 x
C.
1 2x
2
() D.x2
第21页/共92页
3.圆的方程: 新考纲要求能根据给定的两个圆的方程
判定两圆的位置关系,提高了考查圆方程的 能力要求.
例(09年江苏卷)已知圆C1:(x+3)2+(y-1)2 =4和圆C2:(x-4)2+(y-5)2=4. (1)若直线l过点A(4,0),且被圆C1截得的弦长
高考数学专题讲座ppt课件

重视近五年新课程高考试题的演练。
21
1.选择、填空题的强化训练.
选择题要在速度,准确率上下功夫.定
时定量进行训练(每周1~2次),总量不少 于8次,14(理8+6、文10+4)道选择、填空 题一般用时30~50分钟,“优秀生” 要争取 有更多的时间完成解答题。做选择填空题要
重视直接解法的训练,不要过分依赖特殊解
强化训练 提炼方法
通过专题复习和综合演练(套卷,选择、填空题的专项 训练等),达到对知识的全面整合。在整套试卷的模拟 训练中,对错题所涉及到的知识点,题型方法、数学思 想等方面,自我检查,及时补救。做到“二个强化二个 重视” :
选择、填空题的强化训练.
前三个大题的强化训练。
重视初中与高中、高中与大学衔接知识的复习。
出同样的写出参数方程的要求。
8
减低要求部分
(1)、反函数的处理,只要求以具体的函数为例进行解释和直观理解, 不要求一般地讨论形式化的反函数定义,也不要求求已知函数的反函数;
(2)、仅要求认识柱、锥、台、球及其简单组合体的结构特征,对棱 柱、正棱锥、球的性质由“掌握”降为不作要求;
(3)、不要求使用真值表; (4)、对双曲线的定义、几何图形和标准方程度要求由“掌握”降为
高考数学专题讲座:
科学备考 迈向成功
1
合理规划复习的三个阶段:
I:现在~I模(3月中旬) II :I模(3月中旬)~II模(4月下旬) III :II模(4月下旬)~5月下旬
2
第一阶段【现在~Iห้องสมุดไป่ตู้(3月中旬)】:
夯实基础 形成能力 一、全面复习基本知识和基本技能
第一轮复习,基本上涵盖数学学科的基础知 识,这一阶段应该在老师的带领下,对每一 章的知识进行梳理,构建框架,使知识系统 化、条理化,注重“通理通法”,抓住重点, 总结规律,形成知识板块和网络。
《高考数学专题讲座》课件

平面几何基本概念
点、线、面、角等基本元素的定义和性质。
几何公理与定理
欧几里得几何的公理、定理及其推论。
几何解题方法与技巧
总结词
掌握几何解题方法与技巧
几何证明方法
演绎法、归纳法、反证法等证明技巧 。
几何计算方法
面积、体积、角度等的计算方法。
辅助线与辅助平面
如何添加辅助线或辅助平面来简化问 题。
几何题型解析与练习
与他人交流
与同学、老师或家长交流备考心得和压力, 寻求支持和帮助,共同进步。
感谢观看
THANKS
的作用。
高考数学考试大纲解析
掌握考试大纲的各项要求,明确考试内容和考试 要求。
了解考试形式和试卷结构,熟悉各类题型和分值 分布。
针对不同知识点,分析其重要程度和考试频率, 合理分配复习时间。
高考数学命题趋势分析
01
分析近年来的高考试题,总结出命题规律和趋势。
02
关注数学与其他学科的交叉点,预测可能的命题方 向。
离散概率分布
列举了几种常见的离散概率分布 ,如二项分布、泊松分布等,并 介绍了它们的概率计算公式。
连续概率分布
介绍了正态分布、指数分布等几 种常见的连续概率分布,并给出 了它们的概率密度函数和性质。
概率与统计解题方法与技巧
古典概型与几何概型的求解方法
古典概型中,事件发生的概率等于该事件所有可能情况的基本事件个数除以全部可能情况的基本事件个数;几何概型 中,事件发生的概率等于该事件对应的长度、面积或体积占全部可能对应的长度、面积或体积的比。
03
针对不同题型,研究解题方法和技巧,提高解题速 度和准确性。
02
代数部分
代数基础知识梳理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学总复习 解题思维专题讲座之一数学思维的变通性一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。
根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练: (1)善于观察心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。
观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。
任何一道数学题,都包含一定的数学条件和关系。
要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。
例如,求和)1(1431321211+++⋅+⋅+⋅n n .这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且111)1(1+-=+n n n n ,因此,原式等于1111113121211+-=+-++-+-n n n 问题很快就解决了。
(2)善于联想联想是问题转化的桥梁。
稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。
因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。
例如,解方程组⎩⎨⎧-==+32xy y x .这个方程指明两个数的和为2,这两个数的积为3-。
由此联想到韦达定理,x 、y 是一元二次方程0322=--t t 的两个根,所以⎩⎨⎧=-=31y x 或⎩⎨⎧-==13y x .可见,联想可使问题变得简单。
(3)善于将问题进行转化数学家G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。
可见,解题过程是通过问题的转化才能完成的。
转化是解数学题的一种十分重要的思维方法。
那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。
在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。
例如,已知cb ac b a ++=++1111,)0,0(≠++≠c b a abc , 求证a 、b 、c 三数中必有两个互为相反数。
恰当的转化使问题变得熟悉、简单。
要证的结论,可以转化为:0))()((=+++a c c b b a思维变通性的对立面是思维的保守性,即思维定势。
思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题。
它表现就是记类型、记方法、套公式,使思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服。
综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现。
要想提高思维变通性,必须作相应的思维训练。
二、思维训练实例(1) 观察能力的训练虽然观察看起来是一种表面现象,但它是认识事物内部规律的基础。
所以,必须重视观察能力的训练,使学生不但能用常规方法解题,而且能根据题目的具体特征,采用特殊方法来解题。
例1 已知d c b a ,,,都是实数,求证.)()(222222d b c a d c b a -+-≥+++思路分析 从题目的外表形式观察到,要证的 结论的右端与平面上两点间的距离公式很相似,而 左端可看作是点到原点的距离公式。
根据其特点, 可采用下面巧妙而简捷的证法,这正是思维变通的体现。
证明 不妨设),(),,(d c B b a A 如图1-2-1所示,则.)()(22d b c a AB -+-=,,2222d c OB b a OA +=+=在OAB ∆中,由三角形三边之间的关系知:AB OB OA ≥+ 当且仅当O 在AB 上时,等号成立。
因此,.)()(222222d b c a d c b a -+-≥+++思维障碍 很多学生看到这个不等式证明题,马上想到采用分析法、综合法等,而此题利用这些方法证明很繁。
学生没能从外表形式上观察到它与平面上两点间距离公式相似的原因,是对这个公式不熟,进一步讲是对基础知识的掌握不牢固。
因此,平时应多注意数学公式、定理的运用练习。
例2已知x y x62322=+,试求22y x +的最大值。
解 由 x y x62322=+得.20,0323,0.3232222≤≤∴≥+-∴≥+-=x x x y x x y又,29)3(2132322222+--=+-=+x x x x y x∴当2=x 时,22y x +有最大值,最大值为.429)32(212=+--思路分析 要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,29)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值。
上述解法观察到了隐蔽条件,体现了思维的变通性。
思维障碍 大部分学生的作法如下:由 x y x62322=+得 ,32322x x y +-=,29)3(2132322222+--=+-=+∴x x x x y x∴当3=x 时,22y x +取最大值,最大值为29这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误。
因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件, 又要注意次要条件,这样,才能正确地解题,提高思维的变通性。
有些问题的观察要从相应的图像着手。
例3已知二次函数),0(0)(2>=++=a c bx ax x f 满足关系)2()2(x f x f -=+,试比较)5.0(f 与)(πf 的大小。
思路分析 由已知条件)2()2(x f x f -=+可知,在与2=x 左右等距离的点的函数值相等,说明该函数的图像关于直线2=x 对称,又由已知条件知它的开口向上,所以,可根据该函数的大致图像简捷地解出此题。
解 (如图1-2-2)由)2()2(x f x f -=+,知)(x f 是以直线2=x 为对称轴,开口向上的抛物线它与2=x 距离越近的点,函数值越小。
)()5.0(25.02ππf f >∴->-思维障碍 有些同学对比较)5.0(f 与)(πf 的大小,只想到求出它们的值。
而此题函数)(x f 的表达式不确定无法代值,所以无法比较。
出现这种情况的原因,是没有充分挖掘已知条件的含义,因而思维受到阻碍,做题时要全面看问题,对每一个已知条件都要仔细推敲,找出它的真正含义,这样才能顺利解题。
提高思维的变通性。
(2) 联想能力的训练 例4在ABC ∆中,若C ∠为钝角,则tgB tgA ⋅的值(A) 等于1 (B)小于1 (C) 大于1 (D) 不能确定思路分析 此题是在ABC ∆中确定三角函数tgB tgA ⋅的值。
因此,联想到三角函数正切的两角和公式tgBtgA tgBtgA B A tg ⋅-+=+1)(可得下面解法。
解 C ∠ 为钝角,0<∴tgC .在ABC ∆中)(B A C C B A +-=∴=++ππ且均为锐角,、B A[].1.01,0,0.01)()(<⋅>⋅-∴>><⋅-+-=+-=+-=∴tgB tgA tgB tgA tgB tgA tgB tgA tgBtgA B A tg B A tg tgC 即 π故应选择(B )思维障碍 有的学生可能觉得此题条件太少,难以下手,原因是对三角函数的基本公式掌握得不牢固,不能准确把握公式的特征,因而不能很快联想到运用基本公式。
例5若.2,0))((4)(2z x y z y y x x z+==----证明:思路分析 此题一般是通过因式分解来证。
但是,如果注意观察已知条件的特点,不难发现它与一元二次方程的判别式相似。
于是,我们联想到借助一元二次方程的知识来证题。
证明 当0≠-y x 时,等式 0))((4)(2=----z y y x x z可看作是关于t 的一元二次方程0)()()(2=-+-+-z y t x z t y x 有等根的条件,在进一步观察这个方程,它的两个相等实根是1 ,根据韦达定理就有:1=--yx zy 即 z x y +=2若0=-y x ,由已知条件易得 ,0=-x z 即z y x ==,显然也有z x y +=2.例6 已知c b a 、、均为正实数,满足关系式222c b a=+,又n 为不小于3的自然数,求证:.n n nc b a<+思路分析 由条件222c b a=+联想到勾股定理,c b a 、、可构成直角三角形的三边,进一步联想到三角函数的定义可得如下证法。
证明 设c b a 、、所对的角分别为A 、B 、.C 则C 是直角,A 为锐角,于是,cos ,sin cbA c a A ==且,1cos 0,1sin 0<<<<A A 当3≥n时,有A A A A n n 22cos cos ,sin sin <<于是有1cos sin cos sin 22=+<+A A A A n n即 ,1)()(<+nn cb c a 从而就有 .n n nc b a<+思维阻碍 由于这是一个关于自然数n 的命题,一些学生都会想到用数学归纳法来证明,难以进行数与形的联想,原因是平时不注意代数与几何之间的联系,单纯学代数,学几何,因而不能将题目条件的数字或式子特征与直观图形联想起来。
(3) 问题转化的训练我们所遇见的数学题大都是生疏的、复杂的。
在解题时,不仅要先观察具体特征,联想有关知识,而且要将其转化成我们比较熟悉的,简单的问题来解。
恰当的转化,往往使问题很快得到解决,所以,进行问题转化的训练是很必要的。
○1 转化成容易解决的明显题目 例11 已知,1111=++=++cb a cb a 求证a 、b 、c 中至少有一个等于1。
思路分析 结论没有用数学式子表示,很难直接证明。
首先将结论用数学式子表示,转化成我们熟悉的形式。
a 、b 、c 中至少有一个为1,也就是说111---c b a 、、中至少有一个为零,这样,问题就容易解决了。
证明 .,1111abc ab ac bc cb a =++∴=++于是 .0)()1()1)(1)(1(=+++-++-=---c b a bc ac ab abc c b a∴ 111---c b a 、、中至少有一个为零,即a 、b 、c 中至少有一个为1。
思维障碍 很多学生只在已知条件上下功夫,左变右变,还是不知如何证明三者中至少有一个为1,其原因是不能把要证的结论“翻译”成数学式子,把陌生问题变为熟悉问题。
因此,多练习这种“翻译”,是提高转化能力的一种有效手段。