2011年中考数学基础训练题及答案
2011年中考数学试题含答案

2011年中考数学试题(含答案)班级:姓名:全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.一、选择题:(每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是()A.4 B.2 C.-2 D.2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有()A.D点B.A点C.A点和D点D.B点和C点3.下列运算正确的是()A.(ab)5=ab5 B.a8÷a2=a6 C.(a2)3=a5 D.(a-b)2=a2-b24.如图2,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补5.下列说法正确的是()A.频数是表示所有对象出现的次数B.频率是表示每个对象出现的次数C.所有频率之和等于1D.频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为(结果保留整数)()A.-26°C B.-22°C C.-18°C D.22°C7.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是()A.r>15 B.15<r<20 C.15<r<25 D.20<r<259.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为()A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 23 24得分二、填空题:(每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.13.若A(1x,1y)、B(2x,2y)在函数12yx=的图象上,则当1x、2x满足_______________时,1y>2y.14.如图5,校园内有一块梯形草坪ABCD,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.19.(本小题满分8分)图4图2图5图1图7图3图6惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区? (2)要使救灾物资一次性地运往灾区,共有哪几种运货方案? 20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理. 21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx 的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标. 22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上. (1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少米?(结果可保留根号) 23.(本小题满分10分) 阅读下列材料,按要求解答问题:如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a2-b2=(3b)2-b2=2b2=b·c .即a2-b2= bc .于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a2-b2=bc 都成立.(1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.24.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线. (1)求抛物线所对应的函数关系式;(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图8图9-1 图9-2 图9-3 图10图72011年中考数学试题参考答案及评分意见 说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同. 一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB. 二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可; 12.3434+(或34+3);13.x1<x2<0或 0<x1<x2; 14.4; 15.10 ; 16.9,12; 三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - 3分=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x -=12–2(2)x x - 4分 =22(2)x x --–2(2)x x -=12x - 5分 当x=1时,原式=121- 6分 = 1 7分说明:以上步骤可合理省略 . 18.(1) 内. 2分(2) 证法一:连接CD , 3分 ∵ DE ∥AC ,DF ∥BC ,∴ 四边形DECF 为平行四边形, 4分 又∵ 点D 是△ABC 的内心,∴ CD 平分∠ACB ,即∠FCD =∠ECD , 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , 6分 ∴ □DECF 为菱形. 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI=DG , DG=DH .∴DH=DI . 4分∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, 5分 ∴S□DECF=CE·DH =CF·DI , ∴CE=CF . 6分∴□DECF 为菱形. 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, 1分∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区. 2分(2) 设安排甲种货车x 辆,则安排乙种货车(9–x)辆, 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩ 5分解得:1.5≤x ≤5 6分注意到x 为正整数,∴x=2,3,4,5 7分 ∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车2345乙种货车 7 6 5 48分说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程也给全分. 20.(1) 大双的设计游戏方案不公平. 1分可能出现的所有结果列表如下:1 23 4 4 8 12 551015或列树状图如下:4分∴P(大双得到门票)= P(积为偶数)=46=23,P(小双得到门票)= P(积为奇数)=13, 6分 ∵23≠13,∴大双的设计方案不公平. 7分 (2) 小双的设计方案不公平. 9分参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y=2kx 的图象经过点(1,1), ∴1=2k1分 解得k=2, 2分∴反比例函数的解析式为y=1x .3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A(12-,–2). 6分(3) P1(32,–2),P2(52-,–2),P3(52,2).(每个点各1分) 9分 22. (1) 在Rt △BPQ 中,PQ=10米,∠B=30°, 则BQ=cot30°×PQ =103,2分 又在Rt △APQ 中,∠PAB=45°, 则AQ=tan45°×PQ=10,即:AB=(103+10)(米); 5分 (2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B=30°,AB=103+10,∴ AE=sin30°×AB=12(103+10)=53+5, 7分∵∠CAD=75°,∠B=30°, ∴ ∠C=45°, 8分在Rt △CAE 中,sin45°=AEAC ,∴AC=2(53+5)=(56+52)(米) 10分 23. (1) 由题意,得∠A=90°,c=b ,a=2b , ∴a2–b2=(2b)2–b2=b2=bc . 3分(2) 小明的猜想是正确的. 4分理由如下:如图3,延长BA 至点D ,使AD=AC=b ,连结CD , 5分则ΔACD 为等腰三角形.∴∠BAC=2∠ACD ,又∠BAC=2∠B ,∴∠B=∠ACD=∠D ,∴ΔCBD 为等腰三角形,即CD=CB=a , 6分大双积 小双 图9-3图8图10答案图2图10答案图1又∠D =∠D ,∴ΔACD ∽ΔCBD , 7分 ∴AD CD CD BD =.即b aa b c =+.∴a2=b2+bc .∴a2–b2= bc 8分(3) a=12,b=8,c=10.10分24.(1) ∵以AB 为直径作⊙O′,交y 轴的负半轴于点C , ∴∠OCA+∠OCB=90°, 又∵∠OCB+∠OBC=90°, ∴∠OCA=∠OBC ,又∵∠AOC= ∠COB=90°, ∴ΔAOC ∽ ΔCOB , 1分 ∴OA OCOC OB =. 又∵A(–1,0),B(9,0), ∴19OC OC=,解得OC=3(负值舍去). ∴C(0,–3),3分设抛物线解析式为y=a(x+1)(x –9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x –9),即y=13x2–83x –3. 4分 (2) ∵AB 为O′的直径,且A(–1,0),B(9,0), ∴OO′=4,O′(4,0), 5分∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,∴∠BCD=12∠BCE=12×90°=45°,连结O′D 交BC 于点M ,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5. ∴D(4,–5). 6分∴设直线BD 的解析式为y=kx+b (k≠0) ∴90,4 5.k b k b +=⎧⎨+=-⎩ 7分解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y=x –9. 8分(3) 假设在抛物线上存在点P ,使得∠PDB=∠CBD ,解法一:设射线DP 交⊙O′于点Q ,则BQ CD =.分两种情况(如答案图1所示):①∵O′(4,0),D(4,–5),B(9,0),C(0,–3). ∴把点C 、D 绕点O′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q1重合, 因此,点Q1(7,–4)符合BQ CD =, ∵D(4,–5),Q1(7,–4),∴用待定系数法可求出直线DQ1解析式为y=13x –193.9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②∵Q1(7,–4),∴点Q1关于x 轴对称的点的坐标为Q2(7,4)也符合BQ CD =. ∵D(4,–5),Q2(7,4).∴用待定系数法可求出直线DQ2解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法二:分两种情况(如答案图2所示): ①当DP1∥CB 时,能使∠PDB=∠CBD . ∵B(9,0),C(0,–3).图10答案∴用待定系数法可求出直线BC 解析式为y=13x –3. 又∵DP1∥CB ,∴设直线DP1的解析式为y=13x+n .把D(4,–5)代入可求n= –193,∴直线DP1解析式为y=13x –193. 9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②在线段O′B 上取一点N ,使BN=DM 时,得ΔNBD ≌ΔMDB(SAS),∴∠NDB=∠CBD .由①知,直线BC 解析式为y=13x –3.取x=4,得y= –53,∴M(4,–53),∴O′N=O′M=53,∴N(173,0), 又∵D(4,–5),∴直线DN 解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法三:分两种情况(如答案图3所示): ①求点P1坐标同解法二. 10分②过C 点作BD 的平行线,交圆O′于G, 此时,∠GDB=∠GCB=∠CBD . 由(2)题知直线BD 的解析式为y=x –9,又∵ C (0,–3)∴可求得CG 的解析式为y=x –3, 设G (m,m –3),作GH ⊥x 轴交与x 轴与H ,连结O′G,在Rt △O′GH 中,利用勾股定理可得,m=7, 由D (4,–5)与G(7,4)可得, DG 的解析式为317y x =-,11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去]. 12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).说明:本题解法较多,如有不同的正确解法,请按此步骤给分.。
2011中考数学基础训练7

中考基础训练7时间:30分钟 你实际使用 分钟 班级 姓名 学号 成绩一、选择题:在下列各题的四个备选答案中,只有一个是正确的1. 一个数的相反数是3,则这个数是( )A. 31-B. 31 C. 3-D. 3 2. 同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到5的点数,下列事件中是不可能事件的是( )A. 点数之和为12B. 点数之和小于3C. 点数之和大于4且小于8D. 点数之和为13 3. 已知02)1(2=++-n m ,则n m +的值为( )A. 1-B. 3-C. 3D. 不能确定4. 如图,C 是⊙O 上一点,O 是圆心,若∠C =35°,则∠AOB的度数为( )A. 35°B. 70°C. 105°D. 150° 5. 如图,电线杆AB 的中点C 处有一标志物,在地面D 点处测得标志物的仰角为45°,若点D 到电线杆底部点B 的距离为a ,则电线杆AB 的长可表示为( )A. aB. a 2C. a 23D. a 25 6. 用一块等边三角形的硬纸片(如图1)做一个底面为等边三角形且高相等的无盖的盒子(边缝忽略不计,如图2),在△ABC AMDN 的每个顶点处各剪掉一个四边形,其中四边形中,∠MDN 的度数为( )A. 100°B.110° C. 120° D. 130°二、填空题:7. 103000用科学记数法表示为___________________.8. 函数31-=x y 中,自变量x 的取值范围是________________. 9. 某校初三(2)班举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出10份为一等奖,那么该班某同学获一等奖的概率为_____________.10. 用“”、“”定义新运算:对于任意实数a ,b ,都有a b =a 和a b =b ,例如32=3,32=2。
2011中考数学试题及答案

A第7题B A DC 2011年中考数学试题及答案班级 考号 姓名一、选择题(本大题共有8个小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卡相应.....位置..上) 1.下面四个数中比-2小的数是( )A .1B .0C .-1D .-3 2.下列计算正确的是( )A .a +a =x 2B .a ·a 2=a 2C .(a 2) 3=a 5D .a 2 (a +1)=a 3+1 3.如图所示的几何体的左视图是( )4.今年1季度,连云港市高新技术产业产值突破110亿元,同比增长59%. 数据“110亿”用科学记数可表示为( )A .1.1×1010B .11×1010C .1.1×109D .11×1095.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是( )A .①②B .②③C .②④D .①④6.今年3月份某周,我市每天的最高气温(单位:℃)12,9,10,6,11,12,17,则这组数据的中位数与极差分别是( ) A .8,11 B .8,17 C .11,11 D .11,17 7.如图,四边形ABCD 的对角线AC 、BD 互相垂直,则下列 条件能判定四边形ABCD 为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD第8题第13题8.某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km 计算,甲汽车租凭公司每月收取的租赁费为y 1元,乙汽车租凭公司每月收取的租赁费为y 2元,若y 1、y 2与x 之间的函数关系如图所示,其中x =0对应的函数值为月固定租赁费,则下列判断错误..的是( ) A .当月用车路程为2000km 时,两家汽车租赁公司租赁费用相同B .当月用车路程为2300km 时,租赁乙汽车租赁公车比较合算C .除去月固定租赁费,甲租赁公司每公里收取的费用比乙租赁公司多D .甲租赁公司平均每公里收到的费用比乙租赁公司少二、填空题(本大题共10小题,每小题3分,共30分.不要写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.-3的倒数是___________.10.在数轴上表示-6的点到原点的距离为___________.11.函数y =1x +2中自变量的取值范围是___________.12.不等式组⎩⎨⎧>-<-21312x x 的解集是___________.13.一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为___________. 14.化简:(a -2)·a 2-4a 2-4a +4=___________.15.若关于x 的方程x 2-mx +3=0有实数根,则m 的值可以为___________.(任意给出一个符合条件的值即可)16.如图,点A 、B 、C 在⊙O 上,AB ∥CD ,∠B =22°,则∠A =________°.外来务工人员专业技术状情况扇形统计图外来务工人员专业技术状情况条形统计图技术 技术技术 技术 术状况A 第18题 ABCB ’ DE P第17题ABC A 1 A 2 A 3B 1 B 2 B 3 17.如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为34,再分别取A 1C 、B 1C 的中点A 2、B 2,A 2C 、B 2C 的中点A 3、B 3,依次取下去….利用这一图形,能直观地计算出3 4+3 42+3 43+…+34n =________.18.矩形纸片ABCD 中,AB =3,AD =4,将纸片折叠,使点B 落在边CD 上的B ’处,折痕为AE .在折痕AE 上存在一点P 到边CD 的距离与到点B 的距离相等,则此相等距离为________.三、解答题(本大题共有10个小题,共96分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)计算:(1)(-2)2+3×(-2) -( 14 ) -2;(2)已知x =2-1,求x 2+3x -1的值20.(本题满分8分)随着我市经济发展水平的提高和新兴产业的兴起,劳动力市场已由体力型向专业技能型转变,为了解我市外来务工人员的专业技术状况,劳动部门随机抽查了一批外来务工人员,并根据所收集的数据绘制了两幅不完整的统计:(1)本次共调查了名外来务工人员,其中有初级技术的务工人员有__________人,有中级技术的务工人员人数占抽查人数的百分比是____________;(2)若我市共有外来务工人员15 000人,试估计有专业技术的外来务工人员共有多少人?21.(本题满分8分)从甲地到乙地有A1、A2两条路线,从乙地到丙地有B1、B2、B3三条路线,从丙地到丁地有C1、C2两条路线.一个人任意先了一条从甲地到丁地的路线.求他恰好选到B2路线的概率是多少?22.(本题满分8分)已知反比例函数y=kx的图象与二次函数y=ax2+x-1的图象相交于点(2,2)(1)求a和k的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?A 第24题 BCBDCO23.(本题满分10分)在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=男(女)生优分人数男(女)生测试人数 ×100%,全校优分率=全校优分人数全校测试人数 ×100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.24.(本题满分10分)如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O 为AD 边的中点,若把四边形ABCD 绕着点O 顺时针旋转,试解决下列问题:(1)画出四边形ABCD 旋转后的图形; (2)求点C 旋转过程事所经过的路径长;(3)设点B 旋转后的对应点为B ’,求tan ∠DAB ’的值.ABE F QP25.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关系.(利润=(售价-成本价)×销售量)(1)求销售量y (件)与售价x (元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?26.(本题满分10分)如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km .(1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)E图1ABC D图227.(本题满分10分)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;(2)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△ABE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.28.(本题满分14分)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为AB上一动点(1)连接CO,求证:CO⊥AB;(2)若△POA是等腰三角形,求点P的坐标;(3)当直线PO与⊙C相切时,求∠POA的度数;当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系,并写出t的取值范围.。
2011年福建省漳州市中考数学基础训练试卷及解析

2011年福建省漳州市中考数学基础训练试卷及解析时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.计算:3--=________.2.2006年5月20 日,世界上规模最大的混凝土重力坝三峡大坝浇筑完成.建成后,三峡水库库容总量为39 300 000 000立方米.用科学计数法表示库容总量为_____________立方米.3.如图,将矩形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的F 点处.若AFD △的周长为9,ECF △的周长为3,则矩形ABCD 的周长为________. 4.为考察甲、乙两种小麦的长势,分别从中抽取50株小麦,测得苗高,经过数据处理,它们的平均数相同,方差分别为 2215.412S S ==甲乙,,由此可以估计______种小麦长的比较整齐. 5.“平阳府有座大鼓楼,半截子插在天里头”.如图,为测量临汾市区鼓楼的高AB ,在距B 点50m 的C 处安装测倾器,测得鼓楼顶端A 的仰角为4012',测倾器的高CD 为 1.3m ,则鼓楼高AB 约为________m(tan 40120.85' ≈).6.写出一个图象位于第一、三象限内的反比例函数表达式__________________. 7.如图,AB 为O ⊙的直径,C D ,是O ⊙上两点,若50ABC = ∠,则D ∠的度数为________.8.为庆祝“六一”儿童节,幼儿园要用彩纸包裹底圆直径..为1m ,高为2m 的一根圆柱的侧面.若每平方米彩纸10元,则包裹这根圆柱侧面的彩纸共需________元(接缝忽略不计, 3.14π≈). 9.将图中线段AB 绕点A 按顺时针方向旋转90后,得到线段AB ',则点B '的坐标是______________.10.如图,依次连结第一个...正方形各边的中点得到第二个正方形,再依次连结第二个正方形各边的中点得到第三个正方形,按此方法继续下去.若第一个...正方形边长为1,则第.n 个.正方形的面积是_________________.二、细心填一填AD……11.下列运算正确的是( ) A= B= C .632a a a ÷=D .2336(2)8ab a b -=-12.不等式组2112x x -<⎧⎨-⎩,≤的解集在数轴上表示为( )13.半径分别为5和8的两个圆的圆心距为d ,若313d <≤,则这两个圆的位置关系一定是( )A .相交B .相切C . 内切或相交D .外切或相交 14.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为( )A .180元B . 202.5元C .180元或202.5元 D .180元或200元15.如图,在Rt ABC △中,904cm 6cm C AC BC ===,,∠,动点P 从点C 沿CA ,以1cm/s 的速度向点A 运动,同时动点Q 从点C 沿CB ,以2cm/s 的速度向点B 运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的CPQ △的面积2(cm )y 与运动时间(s)x之间的函数图象大致是( )16.一个质地均匀的小正方体的六个面上分别标有数字1,2,3,4,5,6.如果任意抛掷小正方体两次,那么下列说法正确的是( ) A .得到的数字和必然是4 B .得到的数字和可能是3 C .得到的数字和不可能是2 D .得到的数字和有可能是1 17.某展览厅内要用相同的正方体木块搭成一个三视图如下的展台,则此展台共需这样的正方体( ) D .A .B .C . (s)x A. (s) B. (s)x C. (s)x D.正 视 图左 视 图俯视图A .3块B .4块C .5块D .6块三、开心用一用19.(1)计算:1221(1)sin 302-⎛⎫-++- ⎪⎝⎭(2)化简:22362444x x x x x -+÷-++答案:一、填空题:1.3-; 2.103.9310⨯; 3.12; 4.乙; 5.43.8; 6.(略); 7.40;8.62.8; 9.(30),; 10.112n -⎛⎫⎪⎝⎭.三、解答题18.解:(1)原式1124=++-4=. (2)原式23(2)2(2)(2)(2)x x x x x -+=÷+-+ 3(2)2x x =++ 3=.。
2011年中考数学试题及答案(Word版)

A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。
2011年数学中考题及答案

12011年高中阶段学校招生统一考试一、选择题:1. -5的相反数是( ) A. 5B. -5C.15D. 15-2. 不等式3x-4≤5的解集是( ) A. x≥-3B. x≤9C. x≤3D. x≤133. 如图1,已知△ABC 为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( ) A. 90° B. 135°C. 270° D. 315°4. 调查表明,2006年资阳市城镇家庭年收入在2万元以上的家庭户数低于40%.下列说法正确的是( )A. 家庭年收入的众数一定不高于2万B. 家庭年收入的中位数一定不高于2万C. 家庭年收入的平均数一定不高于2万D. 家庭年收入的平均数和众数一定都不高于2万5. 已知一个正方体的每一表面都填有唯一一个数字,且各相对表面上所填的数互为倒数. 若这个正方体的表面展开图如图2所示,则A 、B 的值分别是( )A.13,12B.13,1 C. 12,13D. 1,136. 若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A. c ≥0B. c≥9C. c >0D. c>97. 已知坐标平面上的机器人接受指令“[a ,A]”(a ≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a. 若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A. (-1,-3)B. (-1,3)C.(3,-1)D.(-3,-1)8. 若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm 、深约为2 cm 的小坑,则该铅球的直径约为( )A. 10 cmB. 14.5 cmC. 19.5 cmD. 20 cm9. 如图3,在△ABC 中,已知∠C=90°,AC =60 cm ,AB=100 cm ,a 、b 、c…是在△ABC 内部的矩形,它们的一个顶点在AB 上,一组对边分别在AC 上或与AC 平行,另一组对边分别在BC 上或与BC 平行. 若各矩形在AC 上的边长相等,矩形a 的一边长是72 cm ,则这样的矩形a 、b 、c…的个数是( )A. 6B. 7C. 8D. 910. 已知二次函数2y ax bx c =++(a ≠0)的图象开口向上,并经过点(-1,2),(1,0) . 下列结论正确的是( )A. 当x>0时,函数值y 随x 的增大而增大B. 当x>0时,函数值y 随x 的增大而减小C. 存在一个负数x 0,使得当x<x 0时,函数值y 随x 的增大而减小;当x> x 0时,函数值y 随x 的增大而增大D. 存在一个正数x 0,使得当x<x 0时,函数值y 随x 的增大而减小;当x>x 0时,函数值y 随x 的增大而增大11. 如果某数的一个平方根是-6,那么这个数为________. 1 2A 1 3 B图2图1 图3212. n(n 为整数,且n ≥3)边形的内角和比(n+1)边形的内角和小________度. 13. 方程21044x x x--=--的解是____________ . 14. 现有50张大小、质地及背面图案均相同的北京奥运会吉祥物福娃卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘福娃的名字后原样放回,洗匀后再抽,不断重复上述过程,最后记录抽到欢欢的频率为20℅,则这些卡片中欢欢约为________张.15. 按程序x→平方→+x→÷x→-2x 进行运算后,结果用x 的代数式表示是____________ (填入运算结果的最简形式).16. 如图4,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B=2AB ,B 1C=2BC ,C 1A=2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A 5B 5C 5,则其面积S 5=_____________17.化简求值:232(1)121x x x x x ---÷--+,其中x=-2.18.某校学生会准备调查初中2008级同学每天(除课间操外)的课外锻炼时间.⑴ 确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到初中2008级每个班去随机调查一定数量的同学”. 请你指出哪位同学的调查方式最为合理;⑵ 他们采用了最为合理的调查方法收集数据,并绘制出如图5-1所示的条形统计图和如图5-2所示的扇形统计图,请将其补充完整;⑶ 若该校初中2008级共有240名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数,并根据调查情况向学生会提出一条建议.(注:图5-2中相邻两虚线形成的圆心角为30°.)19.如图6,已知A(-4,2)、B(n ,-4)是一次函数y=kx+b 的图象与反比例函数my x=的图象的两个交点. (1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.20.一座建于若干年前的水库大坝的横断面如图7所示,其中背水面的整个坡面是长为90米、宽为5米的矩形. 现需将其整修并进行美化,方案图4 图5-1 图5-2图6图73如下:① 将背水坡AB 的坡度由1∶0.75改为1∶3;② 用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花 .⑴ 求整修后背水坡面的面积;⑵ 如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?21设a 1=32-12,a 2=52-32,…,a n =(2n+1)2-(2n-1)2(n 为大于0的自然数). (1) 探究a n 是否为8的倍数,并用文字语言表述你所获得的结论;(2) 若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”. 试找出a 1,a 2,…,a n ,…这一列数中从小到大排列的前4个完全平方数,并指出当n 满足什么条件时,a n 为完全平方数(不必说明理由) .22.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元. ” 王老师算了一下,说:“你肯定搞错了. ”⑴ 王老师为什么说他搞错了?试用方程的知识给予解释; ⑵ 陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本. 但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?23.如图8-1,已知P 为正方形ABCD 的对角线AC 上一点(不与A 、C 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F.(1) 求证:BP=DP ;(2) 如图8-2,若四边形PECF 绕点C 按逆时针方向旋转,在旋转过程中是否总有BP=DP ?若是,请给予证明;若不是,请用反例加以说明;(3) 试选取正方形ABCD 的两个顶点,分别与四边形PECF 的两个顶点连结,使得到的两条线段在四边形PECF 绕点C 按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .24.如图9-1,在等边△ABC 中,AD⊥BC 于点D ,一个直径与AD 相等的圆与BC 相切于点E 、与AB 相切于点F ,连接EF .⑴ 判断EF 与AC 的位置关系(不必说明理由); ⑵ 如图9-2,过E 作BC 的垂线,交圆于G ,连接AG. 判断四边形ADEG 的形状,并说明理由;⑶ 求证:AC 与GE 的交点O 为此圆的圆心.图8-2 图8-1 图9-1 图9-225.如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x …-3 -2 1 2 …y …-52-4 -520 …(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2)、(3)小题换为下列问题解答(已知条件及第(1)小题与上相同,完全正确解答只能得到5分):(2) 若点D的坐标为(1,0),求矩形DEFG的面积.图1042011年高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:每小题3分,共10个小题,满分30分.1-5. ACCBA;6-10. BDBDD.二、填空题:每小题3分,共6个小题,满分18分.11. 36;12. 180;13. x=3;14. 10;15. –x+1;16. 2476099.说明:第12题填180°、第13题填3、第16题填519均可得分 .三、解答题:共9个小题,满分72分 .17. 原式=223121()112x x xx x x--+----·············· 1分=2(2)(2)(1)12x x xx x+---⨯--·················· 2分=-(x+2)(x-1) ······················ 3分=-x2-x+2 . ······················· 4分当x=2-时,原式=2(2)(2)2----+·················· 5分=-2+2+2 ························ 6分=2 . ························· 7分说明:以上步骤可合理省略 .5618.⑴ 丙同学提出的方案最为合理. ············ 1分 ⑵ 如图. ························ 4分说明:补全条形图时,未标记人数但图形基本准确,不扣分;补全扇形图时,只要在图形中标记出符合条件的“基本不参加”和“参加锻炼约10分钟”的扇形即可.⑶ 220人. ························ 6分 建议:略 . ······················· 7分 说明:提出的建议,只要言之有理(有加强体育锻炼相关内容)都可给分.19. (1) ∵ 点A(-4,2)和点B(n ,-4)都在反比例函数y=xm的图象上,∴2,44.m m n ⎧=⎪⎪-⎨⎪-=⎪⎩解得8,2.m n =-⎧⎨=⎩ ·················· 2分又由点A(-4,2)和点B(2,-4)都在一次函数y=kx+b 的图象上, ∴42,2 4.k b k b -+=⎧⎨+=-⎩ 解得1,2.k b =-⎧⎨=-⎩················· 4分∴ 反比例函数的解析式为8y x=-,一次函数的解析式为y=-x-2 . 5分 说明:两解析式出现一个错误即不给分 .(2) x 的取值范围是x>2或-4<x <0 . ··········· 7分 20. ⑴ 作AE⊥BC 于E. ∵ 原来的坡度是1∶0.75,∴10.75AE EB ==43. ······· 1分 设AE=4k ,BE=3k ,∴ AB=5k,又 ∵ AB=5米,∴k=1,则AE=4米 . 2分 设整修后的斜坡为AB ¢,由整修后坡度为1∶3,有13AE EB =¢,∴∠AB E ¢=30°,················ 3分 ∴ 2AB AE ¢==8米 . ∴ 整修后背水坡面面积为90×8=720米2 . 4分⑵ 将整修后的背水坡面分为9块相同的矩形,则每一区域的面积为80米2 . ······························ 5分解法一:∵ 要依次相间地种植花草,有两种方案:第一种是种草5块,种花4块,需要20×5×80+25×4×80=16000元; 6分 第二种是种花5块,种草4块,需要20×4×80+25×5×80=16400元 . ······························ 7分∴ 应选择种草5块、种花4块的方案,需要花费16000元 . · 8分 解法二:∵ 要依次相间地种植花草,则必然有一种是5块,有一种是4块,而栽花的成本是每平方米25元,种草的成本是每平方米20元,∴两种方案中,选择种草5块、种花4块的方案花费较少 . · 7分即:需要花费20×5×80+25×4×80=16000元 . ······· 8分21.(1) ∵ an=(2n+1)2-(2n-1)2=22n n n n n++-+-=,· 3分4414418又 n为非零的自然数,∴ an是8的倍数. ········· 4分这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数 . 5分说明:第一步用完全平方公式展开各1分,正确化简1分.(2) 这一列数中从小到大排列的前4个完全平方数为16,64,144,256.······························ 7分n为一个完全平方数的2倍时,an为完全平方数 . ······ 8分说明:找完全平方数时,错一个扣1分,错2个及以上扣2分 .22. (1) 设单价为8.0元的课外书为x本,得:812(105)1500418+-=- .x x ······························ 2分解之得:44.5x=(不符合题意) . ·············· 3分所以王老师肯定搞错了. ·················· 4分⑵ 设单价为8.0元的课外书为y本,解法一:设笔记本的单价为a元,依题意得:y y a+-=-- . ··············· 6分812(105)1500418解之得:178+a=4y,··················· 7分∵ a、y都是整数,且178+a应被4整除,∴ a为偶数,又∵a为小于10元的整数,∴ a可能为2、4、6、8 .当a=2时,4x=180,x=45,符合题意;当a=4时,4x=182,x=45.5,不符合题意;当a=6时,4x=184,x=46,符合题意;当a=8时,4x=186,x=46.5,不符合题意 .∴笔记本的单价可能2元或6元 . ············ 8分解法2:设笔记本的单价为b元,依题意得:0<1500-[8x+12(105-x)+418]<10 . ············ 6分解之得:0<4x-178<10,即:44.5<x<47 . ········ 7分∴ x应为45本或46本 .当x=45本时,b=1500-[8×45+12(105-45)+418]=2,当x=46本时,b=1500-[8×46+12(105-46)+418]=6,即:笔记本的单价可能2元或6元. ············· 8分23. ⑴ 解法一:在△ABP与△ADP中,利用全等可得BP=DP. ·· 2分解法二:利用正方形的轴对称性,可得BP=DP. ········ 2分⑵ 不是总成立 . ···················· 3分当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DP >DC>BP,此时BP=DP不成立. ····················· 5分说明:未用举反例的方法说理的不得分.⑶ 连接BE、DF,则BE与DF始终相等. ··········· 6分在图8-1中,可证四边形PECF为正方形,·········· 7分在△BEC与△DFC中,可证△BEC≌△DFC .78从而有 BE=DF . ····················· 8分 24. 解:⑴ EF∥AC . ·················· 1分 ⑵ 四边形ADEG 为矩形 . ················· 2分 理由:∵EG⊥BC,E 为切点,∴EG 为直径,∴EG=AD . ···· 3分 又∵AD⊥BC,EG⊥BC,∴AD∥EG,即四边形ADEG 为矩形 . ·· 4分 ⑶ 连接FG ,由⑵可知EG 为直径,∴ FG⊥EF,又由⑴可知,EF∥AC,∴AC⊥FG, ············· 6分 又∵四边形ADEG 为矩形,∴EG⊥AG,则AG 是已知圆的切线 . · 7分 而AB 也是已知圆的切线,则AF=AG ,∴ AC 是FG 的垂直平分线,故AC 必过圆心, ········· 8分 因此,圆心O 就是AC 与EG 的交点 . ············ 9分 说明:也可据△AGO≌△AFO 进行说理 .25. 解:⑴ 解法一:设2(0)y ax bx c a =++?, 任取x,y 的三组值代入,求出解析式2142y x x =+-, ····· 1分 令y=0,求出124,2x x =-=;令x=0,得y=-4,∴ A 、B 、C 三点的坐标分别是A(2,0),B(-4,0),C(0,-4) . 3分 解法二:由抛物线P 过点(1,-52),(-3,52-)可知, 抛物线P 的对称轴方程为x=-1, ·············· 1分 又∵ 抛物线P 过(2,0)、(-2,-4),则由抛物线的对称性可知,点A 、B 、C 的坐标分别为 A(2,0),B(-4,0),C(0,-4) . ·· 3分 ⑵ 由题意,AD DGAO OC=,而AO=2,OC=4,AD=2-m ,故DG=4-2m , · 4分 又BE EFBO OC=,EF=DG ,得BE=4-2m ,∴ DE=3m , ········ 5分 ∴SDEFG=DG·DE=(4-2m) 3m=12m-6m2 (0<m <2) . ······ 6分 注:也可通过解Rt△B OC 及Rt △AOC ,或依据△BOC 是等腰直角三角形建立关系求解.⑶ ∵SDEFG=12m-6m2 (0<m <2),∴m=1时,矩形的面积最大,且最大面积是6 .当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0),7分设直线DF 的解析式为y=kx+b ,易知,k=23,b=-23,∴2233y x =-, 又可求得抛物线P 的解析式为:2142y x x =+-, ······· 8分 令2233x -=2142x x +-,可求出x=1613-?. 设射线DF 与抛物线P 相交于点N ,则N的横坐标为1613--,过N 作x 轴的垂线交x 轴于H ,有FN HEDF DE==161233----=5619-+, ············ 9分点M不在抛物线P上,即点M不与N重合时,此时k的取值范围是-+且k>0. ··················· 10分k≠5619说明:若以上两条件错漏一个,本步不得分.若选择另一问题:⑵ ∵AD DG=,而AD=1,AO=2,OC=4,则DG=2,······ 4分AO OC又∵FG CP=,而AB=6,CP=2,OC=4,则FG=3,AB OC∴SDEFG=DG·FG=6. ···················5分9。
2011年中考数学试题及答案

2011年中考数学试题及答案第Ⅰ卷 (选择题 共36分)一、选择题(本题共12小题,在每小题给出的四个选项中.只有一个是正确的.请把正确的选项选出来.每小题选对得3分.选错、不选或选出的答案超过一个均记0分.) 1.下面计算正确的是( ).A.3= B3= C .=2=-2.我国以2010年11月1日零时为标准时点迸行了第六次全国人口普查.普查得到全国总人口为l370536875人,该数用科学记数法表示为( ).(保留3个有效数字)A .13.7亿B . 813.710⨯ C .91.3710⨯ 'D .91.410⨯3.如图,△ABC 中.BC=2.DE 是它的中位线.下面三个结论:(1)DE=1;(2)△ADE ∽△ABC ;(3)△ADE 的面积与△ABC 的面积之比为l :4.其中正确的有( ). A .0个 B .1个 C .2个 D .3个4.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑.得到新的图形(阴影部分),其中不是..轴对称图形的是( )5.不等式组1124223122x x x x ⎧+>-⎪⎪⎨⎪-≤⎪⎩的解集在数轴上表示正确的是( )6.某市2011年5月1日一10日十天的空气污染指数的数据如下(主要污染物为可吸入颗粒物):61,75.70,56.81,91,92,91,75.81. 那么这组数据的极差和中位数分别是( ).A .36,78 8.36,86 C .20,78 D .20,77.37.关千x 的方程2210x kx k ++-=的根的情况描述正确的是( ). A .k 为任何实数.方程都没有实数根B ,k 为任何实数.方程都有两个不相等的实数根C .k 为任何实数.方程都有两个相等的实数根D .根据k 的取值不同.方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种8.在今年我市初中学业水平考试体育学科的女子 800米耐力测试中,某考点同时起跑的小莹和 小梅所跑的路程S(米)与所用时间t (秒) 之间的函数图象分别为线段OA 和折线OBCD, 下列说法正确的是( ).A .小莹的建速度随时间的增大而增大B .小梅的平均速度比小莹的平均逮度大C .在起跑后180秒时.两人相遇D .在起跑后50秒时.小梅在小莹的前面9.如图.半径为1的小圆在半径为9的大圆内滚动,且始终与大圆相切.则小圆扫过的阴影部分的面积为( ). A .I7πB .32πC .49πD .80π10.身高相等的四名同学甲、乙、丙,丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的).则四名同学所放的风筝中最高的是 ( ).A .甲B .乙C .丙D .丁11. 己知直角梯形ABCD 中,AD ∥BC .∠BCD=90°,BC=CD=2AD ,E 、F 分别是BC 、CD 边的中点.连接BF 、DF 交于点P .连接CP 并延长交AB 于点Q ,连揍AF ,则下列结论不正确...的是( ). A .CP 平分∠BCDB .四边形ABED 为平行四边形C ,CQ 将直角梯形ABCD 分为面积相等的两部分 D .△ABF 为等腰三角形12.巳知一元二次方程20(0)ax bx c a ++=≠的两个实效根12x x 、满足12=4x x +和12=3x x ⋅,那么二次函救20(0)y ax bx c a =++=>的图象有可能是( )2011年潍坊市初中学业水平考试数 学 试 题第Ⅱ卷 (非选择题 共84分)二,填空题(本大题共5小题.共l5分.只要求填写最后结果,每小题填对得3分.) 13.分解因式:321a a a +--=________________.14.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当0x >时.y 随x 的增大而减小,这个函数解析式为_______________ (写出一个即可)15.方程组524050x y x y --=⎧⎨+-=⎩的解是________________.16. 已知线段AB 的长为a .以AB 为边在AB 的下方作正方形ACDB .取AB 边上一点E .以AE 为边在AB 的上方作正方形AKNM .过E 作EF ⊥CD .垂足为F 点.若正方形AENM 与四边形EFDB 的面积相等.则AE 的长为________________.17.已知长方形ABCD .AB=3cm .,AD=4cm .过对角线BD 的中点O 做BD 的垂直平分线 EF ,分别交AD 、BC 于点E 、F .则AE 的长为________________. C三、解答题 (本大题共7小题.共69分。
2011中考数学基础训练39

中考基础训练39时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩1、 计算:()22x=2、 分解因式:22a a -= 3、计算:)11=4、函数y =的定义域是5、 如果函数()1f x x =+,那么()1f =6、 点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是7、 如果将二次函数22y x =的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是 8、 已知一元二次方程有一个根为1,那么这个方程可以是 (只需写出一个方程) 9、 如果关于x 的方程240x x a ++=有两个相等的实数根,那么a = 10、 一个梯形的两底长分别为6和8,这个梯形的中位线长为 11、 在△ABC 中,点D 、E 分别在边AB 和AC 上,且DE ∥BC ,如果AD =2,DB =4,AE =3,那么EC = 12、 如图1,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为 米(结果用含α的三角比表示).13、 如果半径分别为2和3的两个圆外切,那么这两个圆的圆心距是 14、 在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图2),折痕DE的长为 15、 在下列实数中,是无理数的为 ( )A 、0B 、-3.5 CD16、 六个学生进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这六个数的中位数为( )A 、3B 、4C 、5D 、6 17、 已知Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )图1ACA 、2sin 3B =B 、2cos 3B =C 、23tgB =D 、23ctgB = 18、 在下列命题中,真命题是 ( )A 、两个钝角三角形一定相似B 、两个等腰三角形一定相似C 、两个直角三角形一定相似D 、两个等边三角形一定相似 19、解不等式组:()315216x xx x+>-⎧⎨+-<⎩,并把解集在数轴上表示出来.20. 解方程:228124x x x x x +-=+--x-5-4-3-2-15432O 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011中考数学基础题强化提高测试10
总分70分时间35分钟
一、选择题(本大题5小题,每小题4分,共20分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.4的算术平方根是()
A.?2 B.2 C
.D
2.计算(a3)2结果是()
A.a 6 B.a 9C.a 5D.a 8
3.如图所示几何体的主(正)视图是()
A. B. C. D.
4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()
A. 7.26?10元 B.72.6?10元 C.0.726?10元 D.7.26?10元
5.方程组?1091111?3x?y?0
?x?y?1022的解是()
?x1?1?x2??1?x1?3A.? ? B.??y1?3?y2??3?y1??1
?x1?3C. ??y1?1?x2??3?x1?1 D.??y??1?2?y1??3?x2??3 ??y2?1?x2??1 ?y?3?2 二、填空题:(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.
6.分解因式x?y?3x?3y .
7.已知⊙O的直径AB?8cm,C为⊙O上的一点,?BAC?30°,则 B 22BC= cm.
第7题图。