人教版六年级数学上册第三 单元分数除法的知识点
人教版 六年级数学上册 第三单元《分数除法》知识点归纳 综合练习题(含答案)

第三单元《分数除法》知识互联知识导航知识点一:倒数的认识1.倒数的意义乘积是1的两个数互为倒数。
倒数具备两个条件:一是两个数;二是乘积是1。
2.互为倒数的两个数特点如果两个数都是分数,那么两个分数的分子和分母正好颠倒了位置;如果一个是整数,则另一个分数的分子是1,分母是这个整数。
3.求一个数倒数的方法(1)通过计算,乘积是1的两个数互为倒数。
(2)交换这个数的分子和分母的位置。
4.特殊的1的倒数是1,0没有倒数。
知识点二:分数除法的计算法则一个数除以一个不等于0的数,等于乘这个数的倒数。
知识点三:分数四则混合运算规律1. 只有乘、除法, 按照从左到右的顺序依次进行计算。
2. 在没有括号的算式里,既有加、减法又有乘、除法,要先算乘、除法,再算加、减法。
3. 在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
知识点四:分数除法的应用题1.解决“已知一个数的几分之几是多少,求这个数”的问题,一般方法:方程法:(1)找出单位“1”,设未知量为x;(2)找出题中的等量关系式;(3)列出方程并解答;(4)检验并写出答案。
2. “已知比一个数多(少)几分之几的数是多少,求这数”的问题的解法:方程法:根据题中的等量关系:“单位‘1’的量×(1±几分之几)=已知量”或“单位‘1’的量±单位‘1’的量×几分之几=已知量”,设单位“1”的量为 x,列方程解答。
3. 已知两个量的和(差),其中一个量是另一个量的几分之几,求这两个量的问题的解法:有两个量都是未知的,先把谁看作单位“1”都可以,设其中一个量为未知数x,用这个量表示另一个量,然后找出等量关系,列方程解答出一个量,再解答第二个量。
4. 利用抽象的“1”解决实际问题:工程问题是分数问题的特例,工作总量与工作效率都不是具体的数,而是用抽象的分数来表示。
一般地,工作总量用单位“1”来表示,工作效率则用完成总量所需时间的倒数来表示。
小学人教版六年级数学上册第三单元知识点整理

小学人教版六年级数学上册第三单元知识点整理第三单元分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数divide;除数=被除数times;除数的倒数。
例 divide;3= times; = 3divide; =3times; =52、除法转化成乘法时,被除数一定不能变,“divide;”变成“times;”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:adivide;b=c 当bgt;1时,c②除以小于1的数,商大于被除数:adivide;b=c 当blt;1时,cgt;a (ane;0 bne;0)③除以等于1的数,商等于被除数:adivide;b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(ab)divide;c=adivide;cbdivide;c四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12divide;20= =0.6 12∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
人教版六年级数学上册第三单元知识点归纳

人教版六年级数学上册第三单元知识点归纳第三单元分数除法三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、 1的倒数是1; 因为1times;1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
5、运用,atimes;2/3=btimes;1/4求a和b是多少。
把atimes;2/3=btimes;1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。
1、分数除法的意义:乘法:因数 times; 因数 = 积除法:积 divide; 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例如:1/2divide;3/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、分数除法比较大小时的规律:(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。
“[ ]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
1,解法:(1)方程:根据数量关系式设未知量为X,用方程解答。
解:设未知量为X (一定要解设),再列方程用 Xtimes;分率=具体量例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。
(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。
列方程为:Xtimes;1/3=20(2)算术(用除法):单位“1”的量未知用除法:即已知单位“1”的几分之几是多少,求单位“1”的量。
最新人教版六年级数学上册《分数除法》知识点总结

分数除法1.分数除法计算(1)分数除法的意义和分数除以整数整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
练习: 1、填空(1)根据3565372=⨯和分数除法意义可得:=÷53356( ),=÷72356( )。
(2)把29m 长的绳子平均剪成4段,每段是29m 的( )。
(3)打字员打一份文件,打了20分钟后还剩52,平均每分钟打这份文件的( )。
2.列式计算。
(1)一个数的6倍是51,这个数是多少?(2)51的61是多少?3.看图列式计算。
811(2)一个数除以分数知识点一:一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0. 练习:1.算一算4851625÷ 44392213÷ 1427277⨯210÷ 2.填空。
(1)32的43是( ),它和32÷( )得数相同。
(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。
3.判断。
(1)两个真分数相除,商大于被除数。
(2)一个数除以假分数,商一定小于被除数。
人教版六年级数学上册第三单元分数除法的知识点

分数除法的知识点一、倒数1、倒数的特征及意义。
乘积是1的两个数互为倒数。
倒数是两个数之间的一种特殊关系,互为倒数的两个数是互相依存的,因此必须说一个数是另一个数的倒数,不能孤立地说某个数是倒数。
2、求倒数的方法。
把这个数的分子和分母调换位置。
3、1的倒数仍是1;0没有倒数。
0没有倒数,是因为在分数中,0不能做分母。
4、求整数、带分数和小数的倒数的方法:(1)求整数(0除外)的倒数,要先把整数化成分母是1的假分数,再交换分子、分母的位置。
(2)求带分数的倒数,要先把带分数化成假分数,再交换分子、分母的位置。
(3)求小数的倒数,要先把小数化成分数,再交换分子、分母的位置。
二、分数除法1、分数除法的意义分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
除法是乘法的逆运算。
1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。
2、分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
.(2)分数除以整数,等于分数乘这个整数的倒数。
3、分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
一个数除以分数,等于这个数乘分数的倒数。
4、商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0.三、分数除法的混合运算1、分数除加、除减的运算顺序例:8÷32-4=8×23-4=8除加、除减混合运算,如果没有括号,先算除法,后算加减。
2、连除的计算方法 例:92÷72÷1514 分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
3、不含括号的分数混合运算的运算顺序在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
(知识汇总+练习)第三单元 分数除法-六年级数学上册(人教版)

第三单元 分数除法1、倒数的意义。
乘积是1的两个数互为倒数。
“互为”是指两个数的依存关系,所以不能单独说一个数是倒数,能说一个数是另一个数的倒数或两个数互为倒数。
2、求一个数的倒数的方法。
求一个分数的倒数,把这个分数的分子、分母交换位置即可; 求小数的倒数,先把小数化成分数,再求倒数; 求非0整数的倒数,让这个整数作分母,分子是1。
1.一个数与12互为倒数,这个数是( )。
A .2B .0.5C .122.如果x 、y 互为倒数,那么“2xy +5”的计算结果是( )。
A .2B .5C .7D .不能确定3.若a 、b 互为倒数,则2020+3ab =( ),若a 的倒数是a ,b 没有倒数,则2020+3ab =( )。
4.一个数由3个1和5个16组成,它的倒数是( )。
5.在6A中,A 是一个不为0的自然数。
(1)当A 为何值时,6A的倒数大于它本身。
(2)当A 为何值时,6A的倒数小于它本身。
(3)当A 为何值时,6A的倒数等于它本身。
精编练习6.如下图,请在每个小三角形内各填入一个数,使得任何两个有公共边的三角形内的数都互为倒数,且四个小三角形内的数的乘积为81。
1、分数除以整数的计算方法。
分数除以整数(0除外),等于分数乘这个整数的倒数。
当分子除以整数能除尽时,用分子除以整数的商作分子,分母不变。
2、一个数除以分数。
(1)整数除以分数的计算方法:整数除以分数,用这个整数乘这个分数的倒数。
(2)分数除以分数的计算方法:分数除以分数,用被除数乘除数的倒数。
(3)分数除法的一般方法:一个数除以一个不等于0的数,等于乘这个数的倒数。
3、被除数与商的变化规律。
(1)除以大于 1 的数,商小于被除数:a÷b=c 当 b>1 时,c<a (a≠0) (2)除以小于 1 的数,商大于被除数:a÷b=c 当 b<1 时,c>a (a≠0 b≠0) (3)除以等于 1 的数,商等于被除数:a÷b=c 当 b=1 时,c=a1.要计算67÷3,下面算式中不正确的是()。
人教版六年级数学上册第三单元知识点归纳

一、倒数的认识 1.定义:乘积是1的两个数互为倒数。 2.求一个数(0除外)的倒数的方法: (1)把这个数的分子、分母调换位置;(2)也可以用1除以这个数来求。 (3)求小数的倒数,可以先把小数化成分数,然后按上述方法求出倒数。
知识点
二、分数除法
1.意义:与整数除法的意义相同,都是已知两个因数的积与其中一个
(2)设单位“1”的量为x,根据分数乘法的意义列方程求解。
知识点
2.“差倍、和倍”问题
先找出单位“1”的量并设单位“1”的量为x,然后用含有x的式子表
示出另一个量,再根据和或差列方程求解。
知识点
3.工程问题
工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
因数,求另一个因数的运算。 2.计算方法:甲数除以乙数(0除外)等于甲数乘乙数的倒数。
知识点
三、分数四则混合运算
1.只含有同级运算的:按照从左到右的顺序依次计算。
2.含有不同级运算的:先算乘除,后算加减,有括号的先算括号里面的。
知识点
四、解决问题
1.已知一个数的几分之几是多少求这个数
(1)已知量÷已知量占单位“1”的几分之几=单位“1”的量
小学人教版六年级数学上册第三单元知识点整理

小学人教版六年级数学上册第三单元知识点整
理
学习是没有尽头的,只有在不断的学习中才能提高自
己,快快拿起你漂亮的笔记本和笔开始加入到学习的队伍中
吧!下面为大家分享六年级数学上册第三单元知识点整理,
希望对大家有所帮助。
第三单元分数除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知
两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这
个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
例÷3= × = 3÷ =3× =5
2、除法转化成乘法时,被除数一定不能变,“÷”变成
“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假
分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c
②除以小于1的数,商大于被除数:a÷b=c 当ba (a≠0 b≠0)
③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a 三、分数除法混合运算
第 1 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数除法的知识点
1、倒数
1、倒数的特征及意义。
乘积是1的两个数互为倒数。
倒数是两个数之间的一种特殊关系,互为倒数的两个数是互相依存的,因此必须说一个数是另一个数的倒数,不能孤立地说某个数是倒数。
2、求倒数的方法。
把这个数的分子和分母调换位置。
3、1的倒数仍是1;0没有倒数。
0没有倒数,是因为在分数中,0不能做分母。
4、求整数、带分数和小数的倒数的方法:
(1)求整数(0除外)的倒数,要先把整数化成分母是1的假分数,再交换分子、分母的位置。
(2)求带分数的倒数,要先把带分数化成假分数,再交换分子、分母的位置。
(3)求小数的倒数,要先把小数化成分数,再交换分子、分母的位置。
二、分数除法
1、分数除法的意义
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
除法是乘法的逆运算。
的意义是:已知两个因数的积是,其中一个因数是3,求另一个因数是多少。
2、分数除以整数的计算方法
把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
3、分数除法的统一计算法则
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
一个数除以分数,等于这个数乘分数的倒数。
4、商与被除数的大小关系
一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除
数,除以大于1的数,商小于被除数。
0除以任何数商都为0.
三、分数除法的混合运算
1、分数除加、除减的运算顺序
例:8÷-4=8×-4=8
除加、除减混合运算,如果没有括号,先算除法,后算加减。
2、连除的计算方法
例:÷÷
分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
3、不含括号的分数混合运算的运算顺序
在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
4、含有括号的分数混和运算的运算顺序
在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
5、整数的运算定律在分数混和运算中的运用
在进行分数的混和运算中,可以利用加法、减法、 乘法、除法的运算定律或运算性质,使计算简便。
四、解决问题
1、已知一个数的几分之几是多少,求这个数的应用题解法
列方程解题的关键:找出题中数量间的等量关系。
用算术法解除法应用题的关键:找准已知数量对应的单位“1”的几分之几。
解简单的“已知一个数的几分之几是多少,求这个数”的解题方法:
方程解法:(1)找出单位“1”,设未知量为x;(2)找出题中的数量关系式;(3)列出方程。
算术法:(1)找出单位“1”;(2)找出已知量和已知量占单
位“1”的几分之几;(3)列除法算式。
即已知量÷已知量占单
位“1”的几分之几=单位“1”的量。
2、分数连除应用题的解题方法
(1)分数连除应用题的结构特点:题中有3个数量,两个单位“1”,
都是未知的。
(2)分数连除应用题的解题方法:①方程解法:设所求单位“1”的量为x,根据等量关系列方程解答。
即x××=已知量。
②算术解法:用已知量连续除以它们所对应的单位“1”的几分之几。
即已知量÷÷=另一个单位“1”的量。
(3)解题关键:找准单位“1”,求出中间量。
3、稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题的解法
(1)稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题的结构特征:单位“1”是未知的,已知的比较量与所给的几分之几不对应。
(2)解题方法:①用方程解:找到题中数量间的等量关系,设未知量为x,列出方程。
②算术法解:找到题中单位“1”,计算出已知量占单位“1”的几分之几,利用已知量÷已知量占单位“1”的几分之几=单位“1”的量(标准量)列式解答。
(3)解题关键:找准单位“1”,弄清谁是谁的几分之几,谁比谁多几分之几,计算出已知量是单位“1”的几分之几。
练习:
1、 妈妈给小林一些钱买衣服,小林买毛衣花了90元,买裤子花了60元,买这两样衣物花的钱是妈妈给小林钱数的,妈妈给小林多少钱?
2、 赵老师的讲桌上有红粉笔16支,白粉笔的支数是红粉笔的,又是蓝粉笔的。
蓝粉笔有多少支?
3、 一袋面粉,用去它的,还剩20kg。
剩下的面粉是这袋面粉的几分之几?这袋面粉重多少千克?
4、六(2)班的人数是六(1)班的,六(2)班比六(1)班少5人,六(1)班有多少人。