数值分析函数的数值逼近

合集下载

(整理)数值分析课件 第3章 函数逼近与曲线拟合

(整理)数值分析课件 第3章 函数逼近与曲线拟合

第三章 函数逼近与曲线拟合1 函数的逼近与基本概念1.1问题的提出多数计算机的硬件系统只提供加、减、乘、除四种算术运算指令,因此为了计算大多数有解析表达式的函数的值,必须产生可用四则运算进行计算的近似式,一般为多项式和有理分式函数.实际上,我们已经接触到两种逼近多项式,一种是泰乐多项式,一种是插值多项式.泰乐多项式是一种局部方法,误差分布不均匀,满足一定精度要求的泰乐多项式次数太高,不宜在计算机上直接使用.例如,设()f x 是[1,1]-上的光滑函数,它的Taylor 级数0()k k k f x a x ∞==∑,()(0)!k k f a k =在[1,1]-上收敛。

当此级数收敛比较快时,11()()()n n n n e x f x s x a x ++=-≈。

这个误差分布是不均匀的。

当0x =时,(0)0n e =,而x 离开零点增加时,()n e x 单调增加,在1x =±误差最大。

为了使[1,1]-的所有x 满足()()n f x s x ε-<,必须选取足够大的n ,这显然是不经济的。

插值函数出现的龙格现象表明,非节点处函数和它的插值多项式相差太大。

更重要的是,实际中通过观测得到的节点数据往往有各种误差,此时如果要求逼近函数过全部节点,相当于保留全部数据误差,这是不适宜的。

如图1所示,给出五个点上的实验测量数据,理论上的结果应该满足线性关系,即图1中的实线。

由于实验数据的误差太大,不能用过任意两点的直线逼近函数。

如果用过5个点的4次多项式逼近线性函数,显然误差会很大。

实验数据真函数插值多项式逼近精确的线性逼近图11.2范数与逼近一、线性空间及赋范线性空间要深入研究客观事物,不得不研究事物间的内在联系,给集合的元素之间赋予某种“确定关系”也正是这样的道理.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将这样的集合称为空间.最常用的给集合赋予一种“加法”和“数乘”运算,使其构成线性空间.例如将所有实n 维数对组成的集合,按照“加法”和“数乘”运算构成实数域上的线性空间,记作n R ,称为n 维向量空间.类似地,对次数不超过n 的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域R 上一个线性空间,用n H 表示,称为多项式空间.所有定义在[,]a b 上的连续函数集合,按函数加法和数与函数乘法构成数域R 上的线性空间,记作[,]C a b .类似地,记[,]p C a b 为具有p 阶连续导数的函数空间.在实数的计算问题中,对实数的大小、距离及误差界等是通过绝对值来度量的.实践中,我们常常会遇到对一般线性空间中的向量大小和向量之间的距离进行度量的问题,因此有必要在一般线性空间上,赋予“长度”结构,使线性空间成为赋范线性空间.定义1 设X 是数域K 上一个线性空间,在其上定义一个实值函数,即对于任意,x y X ∈及K α∈,有对应的实数x 和y ,满足下列条件(1) 正定性:0x ≥,而且0x =当且仅当0x =;(2) 齐次性:x x αα=;(3) 三角不等式:x y x y +≤+;称为X 上的范数,定义了范数的线性空间就称为赋范线性空间.以上三个条件刻划了“长度”、“大小”及“距离”的本质,因此称为范数公理.对n X 上的任一种范数,n X ∀∈x,y ,显然有±≥-x y x y .n R 上常用的几种范数有:(1) 向量的∞-范数:1max i i nx ∞≤≤=x(2) 向量的1-范数:11n i i x ==∑x(3) 向量的2-范数:12221()n i i x ==∑x (4) 向量的p -范数:11()n p pi p i x ==∑x其中[1,)p ∈∞,可以证明向量函数()p N x x ≡是nR 上向量的范数. 前三种范数是p -范数的特殊情况(lim p p ∞→∞=x x ).我们只需表明(1).事实上1111111max max max n n p pp p i i i i i n i n i n i i x x x x ≤≤≤≤≤≤==⎛⎫⎛⎫≤≤≤ ⎪ ⎪⎝⎭⎝⎭∑∑及max 1p →∞=,故由数学分析的夹逼定理有1l i m ma x i p p i nx ∞→∞≤≤==x x 。

期末数值分析重点总结

期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。

数值逼近的主要内容包括多项式逼近、插值和最小二乘等。

1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。

通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。

其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。

多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。

2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。

牛顿插值则利用差商的概念来构造插值多项式。

插值方法在数值微分和数值积分中有广泛的应用。

3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。

通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。

最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。

第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。

数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。

1. 迭代法迭代法是求解非线性方程组的常用方法之一。

通过不断迭代逼近方程的根,可以得到方程组的数值解。

常用的迭代法有牛顿迭代法和弦截法。

迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。

2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。

常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。

常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。

3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。

数值逼近知识点总结

数值逼近知识点总结

数值逼近知识点总结一、基本概念1.1 逼近误差在数值逼近中,我们通常会用逼近值来代替某个函数的真实值。

这个逼近值和真实值之间的差称为逼近误差,通常表示为ε。

逼近误差可以分为绝对误差和相对误差两种。

绝对误差是指逼近值与真实值之间的差值,表示为|f(x)-Pn(x)|。

相对误差是指绝对误差与真实值的比值,表示为|f(x)-Pn(x)|/|f(x)|。

通常情况下,我们希望逼近误差越小越好。

1.2 逼近多项式在数值逼近中,我们通常会用一个多项式来逼近某个函数。

这个多项式通常称为逼近多项式,记为Pn(x),其中n表示多项式的次数。

逼近方法的目的就是找到一个逼近多项式,使得它可以尽可能地接近原函数。

1.3 逼近点在进行数值逼近的过程中,逼近点的选择对逼近结果有很大的影响。

通常情况下,我们会选择一些离散的点,然后通过这些点来构造逼近多项式。

这些点通常称为逼近点,记为(xi, yi)。

1.4 逼近方法数值逼近的方法有很多种,常见的包括插值法、最小二乘法、迭代法等。

这些方法各有特点,适用于不同的逼近问题。

在接下来的篇幅中,我将详细介绍这些方法的原理和应用。

二、插值法2.1 基本概念插值法是数值逼近中常用的一种方法,它的基本思想是通过已知的数据点来构造一个插值多项式,然后用这个多项式来逼近原函数。

插值法的优点是可以通过已知的数据点来精确地确定逼近多项式。

常见的插值方法包括拉格朗日插值法、牛顿插值法等。

2.2 拉格朗日插值法拉格朗日插值法是一种通过拉格朗日基函数来构造插值多项式的方法。

假设给定n+1个互不相同的插值点(xi, yi),我们要求一个n次多项式Pn(x),满足条件Pn(xi)=yi(i=0,1,...,n)。

那么Pn(x)的表达式为:\[Pn(x)=y0L0(x)+y1L1(x)+...+ynLn(x)\]其中Li(x)为拉格朗日基函数,表达式为:\[Li(x)=\prod_{j=0,j\neq i}^n\frac{x-xi}{xi-xj}\]拉格朗日插值法的优点是简单易懂,容易编程实现。

数值分析06函数逼近

数值分析06函数逼近

函数逼近的历史与发展
早期发展
早在古希腊时期,数学家就开始研究用简单的几何图形来近 似表示复杂的曲线。随着数学的发展,函数逼近的理论和方 法不断完善和丰富。
现代进展
随着计算机科学和数值分析的兴起,函数逼近在数值计算、 信号处理、图像处理等领域的应用越来越广泛。现代的逼近 方法不仅追求形式简单,还注重逼近的精度和计算效率。
数据拟合
在数据分析和机器学习中,利用数值逼近方法对数据进行拟合, 以提高预测精度。
图像处理
在图像处理中,利用数值逼近方法对图像进行平滑、去噪等处理, 以提高图像质量。
工程计算
在工程计算中,利用数值逼近方法对复杂函数进行近似计算,以简 化计算过程和提高计算效率。
05
结论与展望
总结与评价
总结
数值分析06函数逼近课程是一门重要的数学课程,它涉及到许多实际问题的求解,如插值、拟合、最小二乘法等。 通过学习这门课程,学生可以掌握如何使用数学工具来近似描述和分析函数,从而更好地理解和解决实际问题。
数。
稳定性分析
稳定性定义
稳定性是指在逼近过程中,对于小的扰动或误差,逼近结果的变 化程度。
不稳定性影响
不稳定的逼近可能导致结果出现较大的偏差,影响数值计算的精 度和可靠性。
稳定性判据
根据稳定性判据,判断逼近函数的稳定性以及如何提高稳定性。
04
数值实例与应用
一元函数逼近实例
01
线性逼近
通过多项式逼近方法,将一元函 数在某点附近展开成线性形式, 如泰勒级数展开。
评价
这门课程的内容非常实用,对于数学专业的学生来说是一门必修课程。它不仅有助于提高学生的数学素养,还可 以为学生提供解决实际问题的能力。然而,该课程难度较大,需要学生具备较高的数学基础和思维能力。

数值分析 第3章 函数逼近与曲线拟合)

数值分析 第3章 函数逼近与曲线拟合)

在[a, b]上一致成立 。
定理:设X为一个内积空间,u1,u2,…,un∈X,矩阵
(u1, u1) (u2 , u1)
G
(u1, u2
(u1, un
) )
(u2 , u2 )
(u2 , un )
(un , u1)
(un , u2 )
(un
, un
)
称为格拉姆矩阵,则G非奇异的充分必要条件是 u1,u2,…,un线性无关 。
n1(x) (x an )n (x) n n1(x)
(n 0,1,...)
其中 0 (x) 1, -1(x) 0, n (xn (x),n (x)) /(n (x),n (x)), n (n (x),n (x)) /(n1(x),(n1(x))
(n 1,2,.....)
并且(
中找一个元素 * (x) 使 f (x) *(x) 在某种意义下
最小.
3、 范数的定义
设S为线性空间,x∈S,若存在唯一实数 || || 满足条件:
(1)‖x‖≥0;当且仅当x=0时,‖x‖=0; (正定性)
(2)‖αx‖=|α|‖x‖,α∈R; (齐次性)
(3)‖x+y‖≤‖x‖+‖y‖,x,y∈S. (三角不等式)
类较简单的便于计算的函数类B中,求函数 P(x) B , 使P(x)与f(x)
之差在某种度量意义下最小” . 函数类A通常是区间[a,b]上的连续 函数,记作C[a,b];函数类B通常是代数多项式,分式有理函数或 三角多项式.
2、函数空间 数学上常把在各种集合中引入某些不同的确定关系称为赋予
集合以某种空间结构,并将这样的集合称为空间.
1 2n n!
dn dxn
{(

《数值分析》第3讲:函数逼近与计算

《数值分析》第3讲:函数逼近与计算
想)
函数的逼近与计算
pn * ( x) ? 1、Chebyshev给出如下概念
设 f ( x) C[a,b], 如p果( x) Hn ,
f (x)
|
p( x0 )
f
(
x0
)
|
max
a xb
|
p( x)
f ( x) |
p4 0*(x)
则称 x是0 偏差点。
如果 p( x0 ) f ( x0 ) 则称 x是0 正偏差点。
b
2a
a0 (
x ) 0 (
x)k
(
x)dx
b
b
2a an( x)n( x)k ( x)dx 2a ( x) f ( x)k ( x)dx

I ak
2a0 0( x),k ( x) 2a11( x),k ( x)
2an n( x),k ( x) 2 f ( x),k ( x)
函数的逼近与计算

1
1 1
2
n1
1 H 2
1 3
1 n2
1 n 1
1 n2
1 2n 1
例3.2 (P56)
已知 f ( x) 1 x2 C[0, 1], span{1, x}

1
(0 , 0 )
1dx 1,
0
(0 , 1)
1
1
xdx
0
2
(1, 0 )
1
1
xdx ,
▲ 1856年解决了椭圆积分的雅可比逆转问题,建立了椭圆函数 新结构的定理,一致收敛的解析函数项级数的和函数的解析性的 定理,圆环上解析函数的级数展开定理等。
函数的逼近与计算

数值分析与计算方法的基本原理

数值分析与计算方法的基本原理

数值分析与计算方法的基本原理数值分析与计算方法是一门涉及数学、计算机科学和工程学的学科,主要研究如何利用数值计算的方法解决实际问题。

本文将从数值分析和计算方法的基本原理两个方面进行论述。

一、数值分析的基本原理数值分析的基本原理是通过数学方法对实际问题进行近似计算,以获得问题的数值解。

它主要涉及数值逼近、数值积分、数值微分和数值代数等方面。

1. 数值逼近数值逼近是指通过一系列已知的数值来近似表示一个函数或者数值。

其中最常用的方法是插值和拟合。

插值是通过已知数据点构造一个函数,使得该函数在这些点上与原函数值相等;拟合是通过已知数据点构造一个函数,使得该函数在这些点上与原函数的差别最小。

插值和拟合可以用于曲线拟合、数据预测等问题。

2. 数值积分数值积分是指通过数值计算的方法对函数的积分进行近似计算。

常用的数值积分方法有梯形法则、辛普森法则和龙贝格法则等。

这些方法通过将积分区间划分成若干小区间,在每个小区间上用简单的数值计算方法来估计积分值,然后将这些估计值相加得到近似的积分值。

3. 数值微分数值微分是指通过数值计算的方法对函数的导数进行近似计算。

常用的数值微分方法有有限差分法和微分拟合法。

有限差分法通过计算函数在某一点的前后差值来估计导数的值;微分拟合法通过在某一点附近构造一个拟合函数,然后计算该函数的导数来估计原函数的导数。

4. 数值代数数值代数是指通过数值计算的方法解决线性代数方程组、非线性方程和矩阵特征值等问题。

常用的数值代数方法有高斯消元法、迭代法和特征值分解等。

这些方法通过将复杂的代数问题转化为简单的数值计算问题来求解。

二、计算方法的基本原理计算方法是指利用计算机进行数值计算的方法,它主要涉及数值计算软件、算法设计和计算机编程等方面。

1. 数值计算软件数值计算软件是指专门用于进行数值计算的软件工具,如MATLAB、Python的NumPy库和SciPy库等。

这些软件提供了丰富的数学函数和数值计算工具,方便用户进行各种数值计算操作。

数值分析第3章函数逼近和快速傅立叶变换

数值分析第3章函数逼近和快速傅立叶变换

数值分析第3章函数逼近和快速傅立叶变换第3章的内容主要涉及函数逼近和快速傅立叶变换。

函数逼近是指通过一系列已知数据点来估计一个函数的近似值。

快速傅立叶变换是一种高效计算连续傅立叶变换的方法。

函数逼近是数值分析中一项重要任务,它涉及到通过一组已知数据点来估计一个未知函数的值。

常用的函数逼近方法包括多项式逼近、三角函数逼近和样条函数逼近。

多项式逼近是利用一组已知数据点来构造一个多项式,使得该多项式在这些数据点上的值与已知数据点的值尽可能接近。

多项式逼近的基本思想是利用多项式的线性组合来近似未知函数,通过最小化误差函数来确定逼近多项式的系数。

多项式逼近的优点是简单易实现,但是当数据点较多或者函数较复杂时,多项式逼近的结果可能不够精确。

三角函数逼近是利用三角函数的线性组合来近似未知函数。

三角函数逼近的基本思想是利用三角函数的周期性来估计未知函数的值。

通过最小化误差函数来确定逼近三角函数的系数。

三角函数逼近适用于具有周期性的函数,在信号处理和图像处理中得到广泛应用。

样条函数逼近是利用多个局部的插值多项式来逼近未知函数。

样条函数逼近的基本思想是将整个待逼近区间分成多个子区间,每个子区间内使用一个插值多项式来逼近未知函数。

通过最小化误差函数来确定样条函数的系数。

样条函数逼近适用于具有较强光滑性的函数,在计算机图形学和计算机辅助设计领域得到广泛应用。

快速傅立叶变换(FFT)是一种高效计算连续傅立叶变换的方法。

傅立叶变换可以将一个连续函数分解成若干个正弦和余弦函数的和,它在信号处理、图像处理和通信等领域有着重要应用。

传统的傅立叶变换算法的时间复杂度为O(n^2),而快速傅立叶变换算法的时间复杂度为O(nlogn),能够极大地提高计算效率。

快速傅立叶变换的基本思想是将一个长度为n的序列分解成两个长度为n/2的序列,通过递归地进行这种分解,最终得到长度为1的序列。

然后再通过合并各个子问题的解来得到原始序列的傅立叶变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析实验四函数的数值逼近-插值与拟合
一、实验目的
(一)学习MATLAB中多项式的表示及多项式运算
(二)学习用典型的插值和拟合方法求函数的近似值或近似表达式
(三)掌握拉格朗日、牛顿插值法的基本理论及MATLAB实现,解决一些实际问题。

二、实验内容
1、多项式表示
(1)在MATLAB命令窗口中输入以下语句,观察结果,分析语句功能
1)p=[1,-5,6,-33],poly2sym(p)
2)syms x
f=4*x^3+6*x
sym2poly(f)
分析函数poly2sym和sym2polyval的功能。

(2) 多项式运算
在MATLAB命令窗口中输入以下语句,观察结果,分析语句功能
1)p=[3,2,1]; a=1:2:5;polyval (p,a)
2.拉格朗日插值法、Newton插值理论的MATLAB实现
Lagrange插值的参考程序:
X=[];Y=[]; %X,Y存放已知数据点
syms x s
n=length(X);
s=0.0;
for k=1:n
p=1.0;
for j=1:n
if j~=k
p=p*(x-X(j))/(X(k)-X(j));
end
end
s=s+p*Y(k);
end
s; s=simplify(s);
Newton插值的参考程序:
X= [];Y= [];
n=length(X);
for i=1:1:n-1
CS(i,1)=(Y(i+1)-Y(i))/(X(i+1)-X(i));
end
for j=2:1:n-1
for i=j:1:n-1
CS(i,j)=(CS(i,j-1)-CS(i-1,j-1))/(X(i+1)-X(i+1-j));
end
end
syms N x b
N=Y(1);
a=0;
b=(x-X(1));
for i=1:1:n-1
a=CS(i,i);
N=N+a*(b);
b=(b)*(x-X(i+1));
end
fprintf('插值多项式为')
N
用Lagrange或Newton插值完成课本P48 第2题, P34例5,P28 例2.。

相关文档
最新文档