1.质点运动学答案

合集下载

1.质点运动学答案

1.质点运动学答案

质点运动学1一、选择题1、 分别以r 、s 、υ和a 表示质点运动的位矢、路程、速度和加速度,下列表述中正确的是A 、r r ∆=∆B 、υ==dt ds dt r dC 、dt d a υ=D 、υ=dt dr [ B ] 2、 一质点沿Y 轴运动,其运动学方程为324t t y -=, 0=t 时质点位于坐标原点,当质点返回原点时,其速度和加速度分别为 A 、116-⋅s m ,216-⋅s mB 、116-⋅-s m ,216-⋅s mC 、116-⋅-s m ,216-⋅-s mD 、116-⋅s m ,216-⋅-s m [ C ]3、已知质点的运动方程为:θθcos cos 2Bt At x +=,θθsin sin 2Bt At y +=,式中θ、、B A 均为恒量,且0>A ,0>B ,则质点的运动为:A .一般曲线运动;B .圆周运动;C .椭圆运动;D .直线运动;( D )[分析] 质点的运动方程为 22cos cos sin sin x At Bt y At Bt θθθθ⎧=+⎨=+⎩由此可知θtan =xy, 即 ()x y θtan = 由于=θ恒量,所以上述轨道方程为直线方程。

又 ()()⎩⎨⎧+=+=θθsin cos Bt A v Bt A v y x 22⎩⎨⎧====恒量恒量θθsin cos B a B a yx 22由于0>A ,0>B ,显然v 与a 同号,故质点作匀加速直线运动。

4、质点在平面内运动,位矢为)(t r,若保持0=dtdr,则质点的运动是A 、匀速直线运动B 、 变速直线运动C 、圆周运动D 、匀速曲线运动 [ C ]二、填空题5、一质点沿直线运动,其运动学方程为26t t x -=,则t 由0至4s 的时间间隔内,质点的位移大小为 8 m ,在t 由0到4s 的时间间隔内质点走过的路程为 10 m 。

6、质点的运动方程为j t t i t t r)3121()21(32+++-=,当s t 2=时,其加速度=a4r i j =-+。

第1章 质点运动学

第1章 质点运动学

第1章 质点运动学一、 选择题1.一质点作曲线运动, 任一时刻的矢径为r , 速度为v, 则在∆t 时间内(A) v v ∆=∆(B) 平均速度为∆∆r t (C) r r ∆=∆ (D) 平均速度为tr∆∆[ ]2. 一质点在平面上作一般曲线运动, 其瞬时速度为v, 瞬时速率为v , 平均速度为v ,平均速率为v, 它们之间的关系必定为(A) v v = v v= (B) v v ≠ v v =(C) v v ≠ v v ≠(D) v v = v v ≠ [ ]3. 质点作曲线运动, r 表示位置矢量的大小, s 表示路程, a 表示加速度大小, 则下列各式中正确的是(A)a t =d d v(B) v =tr d d (C) v =t s d d (D) a t=d d v[ ]4.一质点在平面上运动, 已知质点位置矢量的表示式为j t b i t a r 22+=(其中a 、b 为常量) , 则该质点作(A) 匀速直线运动 (B) 变速直线运动(C) 抛物曲线运动 (D) 一般曲线运动 [ ]5. 一质点在xOy 平面内运动, 其运动方程为Rt t R x ωω+=sin , R t R y +=ωcos , 式中R 、ω均为常数.当y 达到最大值时该质点的速度为(A) 0,0==y x v v (B) 0,2==y x R v v ω(C) ωR y x -==v v ,0 (D) ωωR R y x -==v v ,2 [ ]6.某人以-1s m 4⋅的速度从A 运动至B , 再以61m s -⋅的速度沿原路从B 回到A ,则来回全程的平均速度大小为(A) 1m s5-⋅(B) 14.8m s -⋅ (C) 1m s 5.5-⋅ (D) 0 [ ]7. 物体不能出现下述哪种情况?(A) 运动中, 瞬时速率和平均速率恒相等(B) 运动中, 加速度不变, 速度时刻变化(C) 曲线运动中, 加速度越来越大, 曲率半径总不变(D) 曲线运动中, 加速度不变, 速率也不变 [ ] 8.一质点作直线运动, 某时刻的瞬时速度v =1m s 2-⋅, 瞬时加速度2m s 2a -=-⋅,则s 1后质点的速度大小(A) 等于零 (B) 等于1m s 2--⋅ (C) 等于1m s 2-⋅ (D) 不能确定 [ ]9. 某物体的运动规律为t k t2d d v v-=, 式中k 为常数.当t = 0时,初速度为0v .则速度v 与时间t 的函数关系是(A) 0221v v +=t k (B) 0221v v +-=t k (C) 02121v v +=t k (D) 02121v v +-=t k [ ] 10.如图1所示,在离水面高为h 的岸边, 一电动机用绳子拉船靠岸.如果电动机收绳速率恒为u , 则船前进速率v (A) 必小于u (B) 必等于u (C) 必大于u(D) 先大于u 后小于u [ ]二、填空题1. 已知质点的运动方程为()()t y y t x x ==,, 在计算质点的速度和加速度大小时有人先求出22y x r +=,然后根据d d r t =v 和22d d tra =求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即(1)=v ;(2) 222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=t y t x a 你认为方法正确的是 。

质点运动学答案

质点运动学答案

质点运动学1.一质点在平面上运动;已知质点位置矢量的表示式为其中a、b为常量;则该质点作A.匀速直线运动.B.变速直线运动.C.抛物线运动.D.一般曲线运动.答案:B2对于沿曲线运动的物体;以下几种说法中哪一种是正确的:A.切向加速度必不为零.B.法向加速度必不为零拐点处除外.C.由于速度沿切线方向;法向分速度必为零;因此法向加速度必为零.D.若物体作匀速率运动;其总加速度必为零.E.若物体的加速度为恒矢量;它一定作匀变速率运动.答案:B3.一个质点在做匀速率圆周运动时A.切向加速度改变;法向加速度也改变.B.切向加速度不变;法向加速度改变.C.切向加速度不变;法向加速度也不变.D.切向加速度改变;法向加速度不变.答案:B4.{一质点沿x方向运动;其加速度随时间变化关系为a= 3+2t SI;如果初始时质点的速度v0为5 m/s;则当t为3s时;质点的速度v=_________________.}答案:23m/s5.{一辆作匀加速直线运动的汽车;在6s内通过相隔60 m远的两点;已知汽车经过第二点时的速率为15m/s;则1汽车通过第一点时的速率v1=___________________;2汽车的加速度a=___________________________.}答案:5.00 m/s|1.67 m/s26.{一质点作半径为0.1 m的圆周运动;其角位置的运动学方程为:SI则其切向加速度为=_____________________.}答案:0.1 m/s27.{试说明质点作何种运动时;将出现下述各种情况:1;__________________________________2;a n=0;__________________________________a t、a n分别表示切向加速度和法向加速度..}答案:变速率曲线运动|变速率直线运动8.一质点沿x轴运动;其加速度为a= 4t SI;已知t=0时;质点位于=10 m处;初速度=0;试求其位置和时间的关系式..答案:{d v/d t t; d v t d tv t23分v x/d t t2x t3/3+x0SI 2分}9.一质点沿半径为R的圆周运动.质点所经过的弧长与时间的关系为其中b、c是大于零的常量;求从开始到切向加速度与法向加速度大小相等时所经历的时间..答案:{解:1分1分1分根据题意:a t=a n1分即解得1分}10.{如图所示;质点P在水平面内沿一半径为R=2 m的圆轨道转动.转动的角速度与时间t的函数关系为k为常量.已知时;质点P的速度值为32 m/s.试求s时;质点P的速度与加速度的大小.}答案:{解:根据已知条件确定常量k1分;时;v= 4Rt2=8 m/s 1分1分1分m/s21分}11.{一质点作直线运动;其坐标x与时间t的关系曲线如图所示.则该质点在第_____________秒瞬时速度为零;在第_____________秒至第_____________秒间速度与加速度同方向.}答案:3|3|612.{一质点沿x轴作直线运动;其v t曲线如图所示;如t=0时;质点位于坐标原点;则t=4.5 s时;质点在x轴上的位置为}A.5mB.2mC.0D.-2mE.-5m答案:B13.在一个转动的齿轮上;一个齿尖P沿半径为R的圆周运动;其路程S随时间的变化规律为;其中和b 都是正的常量.则t时刻齿尖P的速度大小为__________________;加速度大小为______________..答案:|14.{已知质点的运动学方程为SI当t= 2 s时;加速度的大小为a=__________________________;加速度与x轴正方向间夹角a=__________________________..}答案:4.12 m/s2|104o。

大学物理第一章 质点运动学-习题及答案

大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。

又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。

故该质点作变速直线运动。

1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。

(B )只有(2)、(4)是对的。

(C )只有(2)是对的。

(D )只有(3)是对的。

[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。

1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。

今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。

大学物理第一章 质点运动学-习题及答案

大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。

又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。

故该质点作变速直线运动。

1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。

(B )只有(2)、(4)是对的。

(C )只有(2)是对的。

(D )只有(3)是对的。

[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。

1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。

今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。

第一章 质点运动学习题答案

第一章   质点运动学习题答案

第一章 质点运动学习题答案 1-1 质点做直线运动,运动方程为2126x t t =-其中t 以s 为单位,x 以m 为单位,求:(1)t =4s 时,质点的位置、速度和加速度;(2)质点通过原点时的速度;(3)质点速度为零时的位置;(4) 做出x -t 图、v -t 图、a -t 图.解:(1) 根据直线运动情况下的定义,可得质点的位置、速度和加速度分别为 2126x t t =- (1) 1212dxv t dt==- (2) 2212d xa dt==- (3)当t =4s 时,代入数字得:48x =-m 36v =-m/s 12a =-m/s 2 (2)当质点通过原点时,x =0,代入运动方程得:2126t t -=0 解得:120,2t t ==,代入(2)式得: 112v =m/s 2v =-12m/s(3) 将0v =代入(2)式,得12120t -= 解得:1t =s 代入(1)式得:x =12m -6m=6m 1.2一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度.解:(1) j t t i t r)4321()53(2-+++=m(2)将1=t ,2=t 代入上式即有j i r5.081-= mj j r4112+=m j j r r r5.4312+=-=∆m(3)∵ j i r j j r1617,4540+=-=∴ 104s m 534201204-⋅+=+=--=∆∆=j i ji r r t r v(4) 1s m )3(3d d -⋅++==j t i trv则 j i v 734+= 1s m -⋅(5)∵ j i v j i v73,3340+=+=204s m 1444-⋅==-=∆∆=j v v t v a(6) 2s m 1d d -⋅==j tva这说明该点只有y 方向的加速度,且为恒量.1-4 一质点沿一直线运动,其加速度为2a x =-,式中x 的单位为m ,a 的单位为m/s 2,试求该质点的速度v 与位置坐标x 之间的关系.设0x =时,0v =4m/s 解:依题意2dv dv dx dv a v x dt dx dt dx====- 02xv v xdx vdv -=⎰⎰积分得 22201()2x v v -=-v ==1-5质点沿直线运动,加速度24a t =-,如果当t =3时,9x =,2v =,求质点的运动方程. (其中a 以m/s 2为单位,t 以s 为单位,x 以m 为单位,v 以m/s 为单位) 解:加速度表示式对t 积分,得30143v adt t t v ==-++⎰42001212x vdt t t v t x ==-+++⎰ 将t =3s ,x =9m ,2v =m/s 代入以上二式,得积分常数01v =-m/s ,0x =0.75m ,则3421413120.7512v t t x t t t =-+-=-+-+1-6 当物体以非常高的速度穿过空气时,由空气阻力产生的反向加速度大小与物体速度的平方成反比,即2a kv =-,其中k 为常量. 若物体不受其他力作用沿x 方向运动,通过原点时的速度为0v ,试证明在此后的任意位置x 处其速度为0kxv v e -=.解:根据加速度定义得:2dv a kv dt ==-,因dv dv dx dv a v dt dx dt dx===,代入上式,分离变量,整理后得:1dv kdx v=-,应用初始条件00,x v v ==,两边积分得001vx v dv kdx v =-⎰⎰ 得 0ln v v kx =- 即 有:0kxv v e -= 1-7试写出以矢量形式表示的质点做匀速圆周运动的运动学方程,并证明做匀速圆周运动质点的速度矢量v 和加速度a 矢量的标积等于零,即0v a = 解:以直角坐标表示的质点运动学方程为cos ,sin x R t y R t ωω==以矢量形式表示的指点运动学方程为cos sin R t R t ωω=+r i j速度和加速度分别为sin cos drR t R t dtωωωω==-+v i j 22cos sin R t R t ωωωω=--a i j所以 0v a =1-8一质点在xoy 平面内运动,其运动方程为cos sin a t b t ωω=+r i j ,其中,,a b ω均为大于零的常量.解:(1)质点在任意时刻的速度sin cos d a t b t dtωωωω==-+rv i j (2)由cos ,sin x a t y b t ωω==消去t ,可得轨道方程22221x y a b+= 可见是椭圆方程,表明质点作椭圆运动 (3)加速度22(cos sin )=d a t b t dtωωωω==-+-va i j r 因为2ω>0,所以a 的方向恒与r 反向,即a 恒指向椭圆中心.1-9路灯离地面高度为H ,一个身高为h 的人,在灯下水平路面上以匀速度0v 步行. 如图所示,求当人与灯的水平距离为x 时,他的头顶在地面上的影子移动的速度的大小.解:建立如图所示的坐标,t 时刻头顶影子的坐标为'x x +,设头顶影子的移动速度为v ,则 '''0()d x x dx dx dx v v dt dt dt dt+==+=+ 由图中可看出有''H hx x x=+, 则有'hxx H h=- '0hv dx dt H h =- 所以有 000hv H v v v H h H h=+=-- 1-10 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b . 解:(1) bt v tsv -==0d d Rbt v R v a b tva n 202)(d d -==-==τ则 240222)(Rbt v b a a a n-+=+=τ 加速度与半径的夹角为20)(arctanbt v Rb a a n --==τϕ (2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v Rbt v b b∴当bv t 0=时,b a = 1-11质点做半径为20cm 的圆周运动,其切向加速度恒为5cm/s 2,若该质点由静止开始运动,需要多少时间:(1)它的法向加速度等于切向加速度;(2)法向加速度等于切向加速度的二倍.解:质点圆周运动半径r =20cm ,切向加速度a τ=5cm/s 2,t 时刻速度为v a t τ=,法向加速度为2/n a v r =,因此有 2//nn a t v a a r a r a τττ===(1) 当n a a τ=时,22045n a r t r a a ττ====s (2) 当12n a a τ=时,2240 2.835n a r t r a a ττ====s 1-12 (1)地球的半径为6.37610⨯m ,求地球赤道表面上一点相对于地球中心的向心加速度. (2)地球绕太阳运行的轨道半径为1.51110⨯m ,求地球相对于太阳的向心加速度. (3)天文测量表明,太阳系以近似圆形的轨道绕银河系中心运动,半径为 2.82010⨯m ,速率为2.5510⨯m/s ,求太阳系相对于银河系的向心加速度. 解:(1)地球赤道表面一点相对于地球中心的向心角速度为 126221126.3710() 3.3610246060n a R πω-==⨯⨯=⨯⨯⨯ m/s 2(2)地球相对太阳的向心加速度为 2211232221.510() 5.9510365246060n a R πω-==⨯⨯=⨯⨯⨯⨯ m/s 2(3)太阳系相对银河系的向心加速度3252103203(2.510) 2.23102.810n v a R -⨯===⨯⨯ m/s 21-13 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .解:设小球所作抛物线轨道如题1-13图所示.题1-13图 (1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵ 1211ρv a n =∴ m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o60cos 2⨯=g a n∴ m 8060cos 10)20(22222=︒⨯==n a v ρ1-14一架飞机在水平地面的上方,以174m/s 的速率垂直俯冲,假定飞机以圆形路径脱离俯冲,而飞机可以承受的最大加速度为78.4m/s 2,为了避免飞机撞到地面,求飞机开始脱离俯冲的最低高度. 假定整个运动中速率恒定. 解:设飞机以半径为R 圆形路径俯冲,其加速度为2/n a v R =当n a 为飞机所能承受的最大加速度时,R 即为最小,所以22min min 78.4174/,174/78.4386.2R R ===m1-15一飞轮以速度1500n =rev/min 转动,受制动而均匀减速,经50t =s 静止,求 (1) 角加速度β和从制动开始到静止飞轮转过的转数N ;(2) 求制动开始后,25t =s 时飞轮的角速度ω;(3) 设飞轮半径R =1m ,求25t =s 时,飞轮边缘上一点的速度和加速度.解:(1)飞轮的初角速度01500225060n ωπππ==⨯=,当50t =s 时,0ω=;代入0t ωωβ=+得 0tωωβπ-==-从开始到静止,飞轮转过的角度及其转数为:220115050(50)125022t t θωβπππ=+=⨯-= rad6252N θπ== rev (2)25t =s 时,飞轮的角速度为 0502525t ωωβπππ=+=-= rad/s (3)25t =s 时,飞轮边缘上一点的速度为12525v R ωππ==⨯= m/s 相应的切线和法线加速度为1t a R βππ==-⨯=-m/s 2222(25)1625n a R ωππ==⨯= m/s 21-16一质点沿半径为1m 的圆周运动,运动方程为223t θ=+,式中θ以弧度计,t 以秒计,求:(1)t =2s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45︒角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω (1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成45︒角时,有即 βωR R =2亦即 t t 18)9(22= 则解得 923=t 于是角位移为rad 67.29232323=⨯+=+=t θ 1-17一圆盘半径为3m ,它的角速度在t =0时为3.33πrad/s ,以后均匀地减小,到t =4s 时角速度变为零. 试计算圆盘边缘上一点在t =2s 时的切向加速度和法向加速度的大小.解:角速度均匀减小,因此,角加速度为tan 451na a τ︒==(4)(0)0 3.330.83404ωωπβπ--===-- rad/s 2 圆盘做匀角加速度,故有0 3.330.83t t ωωβππ=+=-当2t =s 时, 3.330.83216.7ωπππ=-⨯=rad/s 法向和切向加速度分别为282.4n a R ω==m/s 2 a R τβ==-7.8 m/s 21-18某雷达站对一个飞行中的炮弹进行观测,发现炮弹达最高点时,正好位于雷达站的上方,且速率为v ,高度为h ,求在炮弹此后的飞行过程中,在t (以s 为单位)时刻雷达的观测方向与铅垂直方向之间的夹角θ及其变化率d dtθω=(雷达的转动角速度)解:以雷达位置为坐标原点,取坐标系xoy 如图所示 ,根据题意,炮弹的运动方程为 21,2x vt y h gt ==-可解得: 212cot h gt y x vt θ-== (1) 则212arccoth gt vtθ-= 将(1)式两边对t 求导数,得222212csc gt h gt d dt vtθθ--+-= 则有22222222222111()2221csc (cot 1)()2h gt h gt v h gt d dt vt vt h gt v t θωθθ+++====+-+1-19 汽车在大雨中行驶,车速为80km/h ,车中乘客看见侧面的玻璃上雨滴和铅垂线成60︒角,当车停下来时,他发现雨滴是垂直下落的,求雨滴下落的速度.解:取车为运动参考系'S ,雨滴相对于车的速度为ps 'v ,雨滴对地速度为ps v ,车对地的速度为's s v ,相对运动速度合成定理为'psps s s '=+v v v 见如图所示的速度合成图,则有'ps ps 1000cot 60800.57712.83600v v ︒==⨯⨯=m/s1-20一升降机以加速度1.22m/s 2上升,当上升速度为2.44 m/s 2时,有一螺帽自升降机的天花板松落,天花板与升降机底面相距2.74m ,计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.解:以升降机外固定柱子为参考系,竖直向上为y 坐标轴正向,螺帽松落时升降机底面位置为原点. 螺帽从0y =2.74m 处松落,以初速度0v =2.44m/s 做竖直上抛运动,升降机底面则从原点以同样的初速度做向上的加速运动,加速度a =1.22m/s 2,它们的运动方程分别为 螺帽:210012y y v t gt =+-底面:22012y v t at =+ 螺帽落到底面上时,12y y =,由以上两式得 t =0.705s (2)螺帽相对于升降机外固定柱子的下降距离为 201010.7152s y y v t gt =-=-+=m1-21某人骑自行车以速率v 向西行使,北风以速率v 吹来(对地面),问骑车者遇到风速及风向如何?解:地为静系E ,人为动系M 。

第一章 质点运动学答案

第一章  质点运动学答案

一. 选择题:[ C ]1、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是(A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动.提示:如图建坐标系,设船离岸边x 米,22dx h xv i v i dt x+==- 03v dv dv dxa i dt dx dt x==⋅=-可见,加速度与速度同向,且加速度随时间变化。

[ B ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. 提示:质点在x 轴上的位置即为这段时间内v-t 图曲线下的面积的代数和。

4.50(1 2.5)22(21)122()sx vdt m ==+⨯÷-+⨯÷=⎰[ D ]3、一运动质点在某瞬时位于矢径()y x r ,的端点处, 其速度大小为(A) t r d d (B) t r d d提示:, dx dy v i j v =+∴=-12[ C ]4、一飞机相对空气的速度及伽利略速度变换式=+v v v →→→机地机空气空气地,可以画出三个速度之间的矢量关系,如图所示。

=200m/s, 56/, =192m/s m s v v v →→→=机空气空气地机地,根据余弦定理,[ C ]5、某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ B ]6、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i +2j . (B) -2i +2j . (C) -2i -2j . (D) 2i -2j.提示:v B 对A =v B 对地+v地对A=v B 对地-v A 对地=2222 (/)j ii j m s -=-+.二. 填空题1、已知质点的运动学方程为j t t i t t r)314()125(32++-+= (SI) 当t = 2 s 时,加速度的大小为a ;加速度a 与x 轴正方向间夹角α =0 104 .v →机地空气v →机地θh 122224t sx y d rai tji ja a ===-+=-++=提示:i2、质点沿半径为R 的圆周运动,运动学方程为 223t +=θ (SI) ,则t时刻质点的法向加速度分量为a n =2 16 () Rt SI ;角加速度β=2 4 (/) rad s 。

大学物理学第四版1质点运动学习题答案

大学物理学第四版1质点运动学习题答案

习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j +其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d r v dt= ,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。

1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。

求:(1)质点的轨道;(2)从0=t 到1=t s 的位移;(3)0=t 和1=t s 两时刻的速度。

解:(1)由24(32)r t i t j =++ ,可知24x t = ,32y t =+ 消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)从0=t 到1=t s 的位移为:j i j j i r r r243)54()0()1(+=-+=-=∆(3)由d r v dt= ,有速度:82v t i j =+0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。

1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:(1)由d rv dt = ,有:22v t i j =+ ,d v a dt= ,有:2a i = ;(2)而v v =,有速率:1222[(2)2]v t =+=∴t dv a dt==,利用222t n a a a =+有:n a ==1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为h ,求螺钉从天花板落到底板上所需的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质点运动学1一、选择题1、 分别以r、s 、υ 和a 表示质点运动的位矢、路程、速度和加速度,下列表述中正确的是A 、r r ∆=∆B 、υ==dt ds dt r dC 、dt d a υ=D 、υ=dt dr [ B ] 2、 一质点沿Y 轴运动,其运动学方程为324t t y -=, 0=t 时质点位于坐标原点,当质点返回原点时,其速度和加速度分别为 A 、116-⋅s m ,216-⋅s mB 、116-⋅-s m ,216-⋅s mC 、116-⋅-s m ,216-⋅-s mD 、116-⋅s m ,216-⋅-s m [ C ]3、已知质点的运动方程为:θθcos cos 2Bt At x +=,θθsin sin 2Bt At y +=,式中θ、、B A 均为恒量,且0>A ,0>B ,则质点的运动为:A .一般曲线运动;B .圆周运动;C .椭圆运动;D .直线运动;( D )[分析] 质点的运动方程为 22c o s c o ssi n s i n x A t B t y A t B t θθθθ⎧=+⎨=+⎩ 由此可知θt a n =xy, 即 ()x y θt a n = 由于=θ恒量,所以上述轨道方程为直线方程。

又 ()()⎩⎨⎧+=+=θθs i n c o sBt A v Bt A v yx 22⎩⎨⎧====恒量恒量θθsin cos B a B a yx 22由于0>A ,0>B ,显然v 与a 同号,故质点作匀加速直线运动。

4、质点在平面内运动,位矢为)(t r,若保持0=dt dr ,则质点的运动是 A 、匀速直线运动 B 、 变速直线运动 C 、圆周运动D 、匀速曲线运动 [ C ]二、填空题5、一质点沿直线运动,其运动学方程为26t t x -=,则t 由0至4s 的时间间隔内,质点的位移大小为 8 m ,在t 由0到4s 的时间间隔内质点走过的路程为 10 m 。

6、质点的运动方程为j t t i t t r)3121()21(32+++-=,当s t 2=时,其加速度=a 4r i j =-+。

7、质点以加速度t k a 2υ=作直线运动,式中k 为常数,设初速度为0υ,则质点速度υ与时间t 的函数关系是20111kt v v 2-=。

8、 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M =121h v h h -。

三、计算题9、 一质点按t y t x ππ6sin 8,6cos 5==规律运动。

求(1)该质点的轨迹方程;(2)第五秒末的速度和加速度解:(1)164y 25x 22=+ (2) x 5y 5=-5.6sin 608*6cos64848t t dx v t dt yx v t dt v jπππππ==⎧⎫==⎪⎪⎪⎪⎨⎬⎪⎪===⎪⎪⎩⎭=221800180xy a a a i ππ⎧=-⎪⎨=⎪⎩=- 10、某质点的初位矢i r 2=,初速度j 2=υ,加速度j t i a24+=,求(1)该质点的速度;(2)该质点的运动方程。

解:(1)0220(4242224())2t vv i tj v t t dv a dti dt d j v j v ti t j++⋅==⎰=-=++⎰ (2) 020203(2)1(22(34)2)t rr d v dtt dt r i t j r r r r t i t t j d ++=-==⎡⎤⎰+⎦+⎰+=⎣ 11.一质点沿x 轴运动,其加速度a 与位置坐标的关系为226a x =+。

如果质点在原点处的速度为0,试求其在任意位置处的速度。

解:由题意2()26a x x =+,求()v x232()4(26)44xvdr dv dx dv a x vdt dx dt dx x dx vdvx x v Cπ==⋅=+=+=+⎰⎰原点2,0a v ==,因此0C =,只朝正方向运动v ==质点运动学2一、 选择题1、 以下五种运动形式中,a保持不变的运动是A 、圆锥摆运动.B 、匀速率圆周运动.C 、行星的椭圆轨道运动.D 、抛体运动. [ D ] 2、 下列说法正确的是A 、质点作圆周运动时的加速度指向圆心;B 、匀速圆周运动的加速度为恒量;C 、只有法向加速度的运动一定是圆周运动;D 、只有切向加速度的运动一定是直线运动。

[ D ]3、 一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。

从t =ωπ/到t =ωπ/2时间内(1)该质点的位移是 [ B ](A) i R 2-; (B) i R 2; (C) j 2-; (D) 0。

(2)该质点经过的路程是 [ B ](A) 2R ; (B) R π; (C) 0; (D) ωπR 。

二、 填空题4、 质点在半径为16m 的圆周上运动,切向加速度2/4s m a t =,若静止开始计时,当t =2s 时,其加速度的方向与速度的夹角为45度;此时质点在圆周上经过的路程s =8 。

5、 质点沿半径为R 的圆周运动,运动学方程为 223t +=θ,则t时刻质点的法向加速度大小为a n = 216R t π;角加速度β= 4rad/s 2 。

6、 某抛体运动,如忽略空气阻力,其轨迹最高点的曲率半径恰为 9.8m ,已知物体是以60度仰角抛出的,则其抛射时初速度的大小为 g 2ρ=2g=19.6。

7、 距河岸(看成直线)500 m 处有一艘静止的船,船上的探照灯以转速为n =1r/min 转动.当光束与岸边成60°角时,光束沿岸边移动的速度v =2009ms π. 8、两条直路交叉成α 角,两辆汽车分别以速率1v 和2v 沿两条路行驶,一车相对另一车的速度大小为αcos 2212221v v v v -+或αcos 2212221v v v v ++三、 计算题9、一质点作圆周运动,设半径为R ,运动方程为2021bt t s -=υ,其中s 为弧长,0υ为初速,b 为常数。

求:(1) 任一时刻t 质点的法向、切向和总加速度;(2) 当t 为何值时,质点的总加速度在数值上等于b ,这时质点已沿圆周运行了多少圈?解:(1)t t S b v d /d 0-==v b d /d -==t a t v ()R t a n /b v 20-=a n n t t a e a e =+方向tan n t a a θ=(2) 根据题意:22022)R bt v (b b -+=; b /v t 0=; 2b v s 20=; Rb4v n 20π=10、一飞轮以速率n=1500转/分的转速转动,受到制动后均匀地减速,经t =50秒后静止。

试求:(1) 角加速度β;(2) 制动后t =25秒时飞轮的角速度,以及从制动开始到停转,飞轮的转数N ;(3) 设飞轮半径R=1米,则t =25秒时飞轮边缘一点的速度和加速度的大小?解:(1) 0020t t 1500250r rad ad/s 60/ts 0;t πωπωβπωωωβ⋅====-=-= 减速运动(2)02t 5rad sωβπω=+=2011s t-t 5050622500252ωβππ=⋅⋅==⋅-转(3)2t 222n 25v R 25m/sa R rad /s a R 625m a /s t n a nta a ωπωπβπωπθ======-===;11.有一宽为l 的大江,江水由北向南流去.设江中心流速为u 0,靠两岸的流速为零.江中任一点的流速与江中心流速之差是和江心至该点距离的平方成正比.今有相对于水的速度为0v的汽船由西岸出发,向东偏北45°方向航行,试求其航线的轨迹方程以及到达东岸的地点.解:以出发点为坐标原点,向东取为x 轴,向北取为y 轴,因流速为-y 方向,由题意可得u x = 0u y = a (x -l /2)2+b令 x = 0, x = l 处 u y = 0, x = l /2处 u y =-u 0 ,代入上式定出a 、b,而得 ()x x l l u u y --=24 船相对于岸的速度v(v x ,v y )明显可知是2/0v v =x y y u +=)2/(0v v , 将上二式的第一式进行积分,有 t x 20v =还有, x y t x x y t y y d d 2d d d d d d 0v v ====()x x l lu --20042v 即()x x l l u x y--=020241d d v 因此,积分之后可求得如下的轨迹(航线)方程:'2300200v 3v y x x x l l =-+ 到达东岸的地点(x ',y ' )为00 , 13v x l x l y y l =⎛⎫''===- ⎪⎝⎭y。

相关文档
最新文档