尚文家教理科第一学期期末模拟测试(五)
【常考题】高中必修五数学上期末第一次模拟试卷(带答案)

【常考题】高中必修五数学上期末第一次模拟试卷(带答案)一、选择题1.设x y ,满足约束条件10102x y x y y -+≤⎧⎪+-⎨⎪≤⎩>,则yx 的取值范围是( )A .()[),22,-∞-+∞U B .(]2,2-C .(][),22,-∞-+∞UD .[]22-,2.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .13.在ABC V 中,A ,B ,C 的对边分别为a ,b ,c ,2cos 22C a b a+=,则ABC V 的形状一定是( ) A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形4.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 5.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5056.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞7.若a 、b 、c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( ) A . 3-1 B . 3+1 C .23+2D .23-28.设2z x y =+,其中,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最小值是12-,则z 的最大值为( ) A .9-B .12C .12-D .99.已知变量x , y 满足约束条件13230x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最小值为( )A .1B .2C .3D .610.在中,,,,则A .B .C .D .11.一个递增的等差数列{}n a ,前三项的和12312a a a ++=,且234,,1a a a +成等比数列,则数列{}n a 的公差为 ( ) A .2±B .3C .2D .112.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .60二、填空题13.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.14.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________.15.若首项为1a ,公比为q (1q ≠)的等比数列{}n a 满足21123lim()2n n a q a a →∞-=+,则1a 的取值范围是________.16.数列{}n a 满足14a =,12nn n a a +=+,*n N ∈,则数列{}n a 的通项公式n a =______.17.已知向量()()1,,,2a x b x y ==-r r ,其中0x >,若a r 与b r 共线,则yx的最小值为__________.18.设{}n a 是公比为q 的等比数列,1q >,令1(1,2,)n n b a n =+=L ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .19.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.20.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若三角形的面积2223()4S a b c =+-,则角C =__________. 三、解答题21.已知在等比数列{}n a 中, 11a =,且2a 是1a 和31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*21n n b n a n N=-+∈,求{}nb 的前n 项和nS.22.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,且2222cos cos b c a ac C c A +-=+.(1)求A ;(2)在ABC ∆中,BC =D 为边AC 的中点,E 为AB 边上一点,且DE AC ⊥,2DE =,求ABC ∆的面积. 23.某企业生产A 、B 两种产品,生产每1t 产品所需的劳动力和煤、电消耗如下表:已知生产1t A 产品的利润是7万元,生产1t B 产品的利润是12万元.现因条件限制,企业仅有劳动力300个,煤360t ,并且供电局只能供电200kW h ⋅,则企业生产A 、B 两种产品各多少吨,才能获得最大利润?24.ABC △的内角,,A B C 的对边分别为,,a b c ,且cos )()cos a B C c b A -=-.(1)求A ;(2)若b =D 在BC 边上,2CD =,3ADC π∠=,求ABC △的面积.25.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.26.在ABC △中,内角,,A B C 所对的边分别为,,a b c ,且()sin 2sin 0b A a A C -+=. (1)求角A ;(2)若3a =,ABC △11b c +的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据题意,作出可行域,分析yx的几何意义是可行域内的点(),x y 与原点O 连线的斜率,根据图象即可求解. 【详解】作出约束条件表示的可行域,如图所示,yx 的几何意义是可行域内的点(),x y 与原点O 连线的斜率,由102x y y -+=⎧⎨=⎩,得点A 的坐标为()1,2,所以2OA k =,同理,2OB k =-, 所以yx的取值范围是()[),22,-∞-+∞U . 故选:A 【点睛】本题考查简单的线性规划,考查斜率型目标函数问题,考查数形结合思想,属于中等题型.2.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.3.A解析:A 【解析】 【分析】利用平方化倍角公式和边化角公式化简2cos22C a b a+=得到sin cos sin A C B =,结合三角形内角和定理化简得到cos sin 0A C =,即可确定ABC V 的形状. 【详解】22cos 2a baC +=Q 1cos sin sin 22sin C A BA ++\=化简得sin cos sin A C B = ()B A C p =-+Qsin cos sin()A C A C \=+即cos sin 0A C =sin 0C ≠Qcos 0A ∴=即0A = 90ABC ∴V 是直角三角形 故选A 【点睛】本题考查了平方化倍角公式和正弦定理的边化角公式,在化简2cos22C a b a+=时,将边化为角,使边角混杂变统一,还有三角形内角和定理的运用,这一点往往容易忽略.4.B解析:B 【解析】 【分析】利用公式1n n n a S S -=-计算得到11323,2n n n n S S S S ++==,得到答案. 【详解】由已知1112n n a S a +==,,1n n n a S S -=- 得()12n n n S S S -=-,即11323,2n n n n S S S S ++==, 而111S a ==,所以13()2n n S -=.故选B. 【点睛】本题考查了数列前N 项和公式的求法,利用公式1n n n a S S -=-是解题的关键.5.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.6.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.7.D解析:D 【解析】由a (a +b +c )+bc =4-, 得(a +c )·(a +b )=4-∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c=1)=-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误8.B解析:B 【解析】 【分析】作出不等式对应的可行域,当目标函数过点A 时,z 取最小值,即min 12z =-,可求得k 的值,当目标函数过点B 时,z 取最大值,即可求出答案. 【详解】作出不等式对应的可行域,如下图阴影部分,目标函数可化为2y x z =-+, 联立20x y y k +=⎧⎨=⎩,可得()2,A k k -,当目标函数过点A 时,z 取最小值,则()2212k k ⨯-+=-,解得4k =,联立0x y y k -=⎧⎨=⎩,可得(),B k k ,即()4,4B ,当目标函数过点B 时,z 取最大值,max 24412z =⨯+=.故选:B.【点睛】本题考查线性规划,考查学生的计算求解能力,利用数形结合方法是解决本题的关键,属于基础题.9.A解析:A 【解析】 【分析】画出可行域,平移基准直线20x y +=到可行域边界的点()1,1C -处,由此求得z 的最小值. 【详解】画出可行域如下图所示,平移基准直线20x y +=到可行域边界的点()1,1C -处,此时z 取得最小值为()2111⨯+-=. 故选:A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题. 10.D解析:D【解析】【分析】根据三角形内角和定理可知,再由正弦定理即可求出AB.【详解】由内角和定理知,所以,即,故选D.【点睛】本题主要考查了正弦定理,属于中档题.解析:C 【解析】 【分析】 【详解】解:∵234,,1a a a +成等比数列, ∴,∵数列{}n a 为递增的等差数列,设公差为d , ∴,即,又数列{}n a 前三项的和,∴,即,即d =2或d =−2(舍去), 则公差d =2. 故选:C .12.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度. 【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是3340cos sin 22356035251sin()2h CD DF EF a αββα=-=-=-=-=-.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.二、填空题13.9【解析】【分析】将分式展开利用基本不等式求解即可【详解】又x +2y =4即当且仅当等号成立故原式故填9【点睛】本题考查基本不等式求最值考查等价变换思想与求解能力注意等号成立条件解析:9 【解析】 【分析】将分式展开,利用基本不等式求解即可 【详解】(4)(2)82416161x y xy x y xy xy xy xy xy++++++===+又x +2y =422,xy ≥即2xy ≤,当且仅当2,1x y ==等号成立,故原式9≥ 故填9 【点睛】本题考查基本不等式求最值,考查等价变换思想与求解能力,注意等号成立条件14.【解析】【分析】【详解】试题分析:由题意知满足条件的线性区域如图所示:点而目标函数仅在点处取得最大值所以考点:线性规划最值问题解析:1(,)3+∞【解析】 【分析】 【详解】试题分析:由题意知满足条件的线性区域如图所示:,点(22)A ,,而目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,所以1133AB k a a ->=-∴> 考点:线性规划、最值问题.15.【解析】【分析】由题意可得且即且化简可得由不等式的性质可得的取值范围【详解】解:故有且化简可得且即故答案为:【点睛】本题考查数列极限以及不等式的性质属于中档题解析:33(0,)(,3)22U【解析】 【分析】由题意可得1q <且0q ≠,即11q -<<且0q ≠,211232a a a =+,化简可得13322a q =+由不等式的性质可得1a 的取值范围. 【详解】解:21123lim()2n n a q a a →∞-=+Q 21123lim 2n a a a →∞∴=+,lim 0nn q →∞= 故有11q -<<且0q ≠,211232a a a =+ 化简可得13322a q =+ 103a ∴<<且132a ≠即133(0,)(,3)22a ∈U 故答案为:33(0,)(,3)22U 【点睛】本题考查数列极限以及不等式的性质,属于中档题.16.【解析】【分析】由题意得出利用累加法可求出【详解】数列满足因此故答案为:【点睛】本题考查利用累加法求数列的通项解题时要注意累加法对数列递推公式的要求考查计算能力属于中等题 解析:22n +【解析】 【分析】由题意得出12nn n a a +-=,利用累加法可求出n a .【详解】数列{}n a 满足14a =,12n n n a a +=+,*n N ∈,12nn n a a +∴-=,因此,()()()211213214222n n n n a a a a a a a a --=+-+-++-=++++L L ()121242212n n --=+=+-.故答案为:22n +. 【点睛】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.17.【解析】【分析】根据两个向量平行的充要条件写出向量的坐标之间的关系之后得出利用基本不等式求得其最小值得到结果【详解】∵其中且与共线∴即∴当且仅当即时取等号∴的最小值为【点睛】该题考查的是有关向量共线解析:【解析】 【分析】根据两个向量平行的充要条件,写出向量的坐标之间的关系,之后得出2y x x x=+,利用基本不等式求得其最小值,得到结果. 【详解】∵()1,a x =r , (),2b x y =-r ,其中0x >,且a r 与b r共线∴()12y x x ⨯-=⋅,即22y x =+∴222y x x x x x+==+≥,当且仅当2x x =即x =时取等号∴yx的最小值为 【点睛】该题考查的是有关向量共线的条件,涉及到的知识点有向量共线坐标所满足的条件,利用基本不等式求最值,属于简单题目.18.【解析】【分析】【详解】考查等价转化能力和分析问题的能力等比数列的通项有连续四项在集合四项成等比数列公比为=-9 解析:9-【解析】 【分析】 【详解】考查等价转化能力和分析问题的能力,等比数列的通项,{}n a 有连续四项在集合{}54,24,18,36,81--,四项24,36,54,81--成等比数列,公比为32q =-,6q = -9. 19.【解析】【分析】根据指数运算出再利用等差中项的性质得出并得出然后再利用等差数列的性质和指数对数的运算法则求出的值【详解】依题意有且则而因此故答案为【点睛】本题考查等差数列基本性质的计算同时也考查了等 解析:6-【解析】 【分析】根据指数运算出2468102a a a a a ++++=,再利用等差中项的性质得出625a =,并得出56825a a =-=-,然后再利用等差数列的性质和指数、对数的运算法则求出()()()()212310log f a f a f a f a ⋅⋅⋅⋅⎡⎤⎣⎦L 的值.【详解】依题意有246810625a a a a a a ++++==,625a ∴=,且56282255a a =-=-=-. 则()()()110123101105610825556255a a a a a a a a a a +⎛⎫++++==+=+=⨯-+=- ⎪⎝⎭L , 而()()()()1231061231022a a a a f a f a f a f a ++++-⋅⋅⋅⋅==L L ,因此,()()()()62123102log log 26f a f a f a f a -⋅⋅⋅⋅==-⎡⎤⎣⎦L .故答案为6-. 【点睛】本题考查等差数列基本性质的计算,同时也考查了等差数列的定义以及指数、对数的运算,解题时充分利用等差中项的性质,可简化计算,考查计算能力,属于中等题.20.【解析】分析:利用面积公式和余弦定理结合可得详解:由余弦定理:可得:∴∵∴故答案为:点睛:在解三角形时有许多公式到底选用哪个公式要根据已知条件根据待求式子灵活选用象本题出现因此联想余弦定理由于要求角解析:π3. 【解析】分析:利用面积公式in 12s S ab C =和余弦定理结合可得.详解:由()2221sin 42S a b c ab C =+-=. 余弦定理:2222cos a b c ab C +-=,12cos sin 2ab C ab C =,∴tan C = ∵0πC <<, ∴π3C =. 故答案为:π3. 点睛:在解三角形时,有许多公式,到底选用哪个公式,要根据已知条件,根据待求式子灵活选用,象本题出现222a b c +-,因此联想余弦定理2222cos a b c ab C +-=,由于要求C 角,因此面积公式自然而然 选用in 12s S ab C =.许多问题可能比本题要更复杂,目标更隐蔽,需要我们不断探索,不断弃取才能得出正确结论,而这也要求我们首先要熟记公式.三、解答题21.(1) 12n n a -=(2) n S 221n n =+-【解析】 【分析】(1)由题意结合等差数列的性质得到关于公比的方程,解方程求得公比的值,然后结合首项求解数列的通项公式即可.(2)结合(1)的结果首先确定数列{}n b 的通项公式,然后分组求和即可求得数列{}n b 的前n 项和n S . 【详解】(1)设等比数列{}n a 的公比为q ,则2a q =,23a q =,∵2a 是1a 和31a -的等差中项, ∴()21321a a a =+-, 即()2211q q =+-, 解得2q =,∴12n n a -=.(2) 121212n n n b n a n -=-+=-+,则()()11321122n n S n -⎡⎤=+++-++++⎣⎦L L()12112212n n n ⎡⎤+--⎣⎦=+-. 221n n =+-.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.22.(1) 3A π=【解析】 【分析】(1)由余弦定理得2cos cos cos b A a C c A =+,再由正弦定理得2sin cos sin()B A A C ⋅=+,进而得1cos 2A =,即可求解(2)在Rt AED ∆中,求得2AD =,AC =,再ABC ∆中由正弦定理得4B π=,结合三角形的面积公式,即可求解. 【详解】(1)由余弦定理有22cos cos cos bc A ac C c A =+, 化简得2cos cos cos b A a C c A =+,由正弦定理得2sin cos sin cos cos sin sin()B A A C C A A C ⋅=⋅+=+ ∵A B C π++=,∴2sin cos sin B A B ⋅=, ∵0B π<<,∴sin 0B ≠,∴1cos 2A =,又由0A π<<,∴3A π=. (2)在AEC ∆中,D 为边AC 的中点,且DE AC ⊥,在Rt AED ∆中,2DE =,3A π=,所以2AD =,AC =ABC ∆中由正弦定理得sin sin AC BC B A =,得sin B 4B π=,512C π=,所以1sin 2ABC S AC BC C ∆=⋅=【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.23.当生产A 种产品20t ,B 种产品24t 时,企业获得最大利润,且最大利润为428万元. 【解析】 【分析】设该企业生产A 种产品xt ,B 种产品yt ,获得的利润为z 万元,根据题意列出关于x 、y 的约束条件以及线性目标函数,利用平移直线法得出线性目标函数取得最大值的最优解,并将最优解代入线性目标函数即可得出该企业所获利润的最大值. 【详解】设该企业生产A 种产品xt ,B 种产品yt ,获得的利润为z 万元,目标函数为712z x y =+.则变量x 、y 所满足的约束条件为31030094360452000,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩,作出可行域如下图所示:作出一组平行直线712z x y =+,当该直线经过点()20,24M 时,直线712z x y =+在x 轴上的截距最大,此时z 取最大值,即max 7201224428z =⨯+⨯=(万元).答:当生产A 种产品20t ,B 种产品24t 时,企业获得最大利润,且最大利润为428万元. 【点睛】本题考查线性规划的实际应用,考查利用数学知识解决实际问题,解题的关键就是列出变量所满足的约束条件,并利用数形结合思想求解,考查分析问题和解决问题的能力,属于中等题. 24.(1)23A π=; (2)33ABC S V .【分析】(1)由正弦定理、三角函数恒等变换化简已知可得:1sin 62A π⎛⎫+= ⎪⎝⎭,结合范围()0,A π∈,可得7,666A πππ⎛⎫+∈ ⎪⎝⎭,进而可求A 的值. (2)在△ADC 中,由正弦定理可得sin 1CAD ∠=,可得2CAD =π∠,利用三角形内角和定理可求C B ∠∠,,即可求得AB AC ==解. 【详解】(1)∵)()cos cos aB C c b A -=-,sin sin cos sin cos sin cos A B A C C A B A --=,sin sin cos sin cos sin cos A B B A C A A C ++=,可得:)sin cos sin BA AB +=,∵sin 0B >,cos 2sin 16A A A π⎛⎫+=+= ⎪⎝⎭,可得:1sin 62A π⎛⎫+= ⎪⎝⎭, ∵()0,A π∈, ∴7,666A πππ⎛⎫+∈ ⎪⎝⎭, ∴566A ππ+=,可得:23A π=.(2)∵b =D 在BC 边上,23CD ADC π∠=,=,∴在ADC V 中,由正弦定理sin sin AC CD ADC CAD=∠∠2sin CAD =∠,可得:sin 1CAD =∠,∴2CAD =π∠,可得:6C CAD ADC ππ∠=-∠-∠=,∴6B AC ==ππ∠-∠-∠,∴AB AC ==∴11sin 22ABC S AB AC A ⋅⋅==V =.本题主要考查了正弦定理、三角函数恒等变换的应用,三角形内角和定理及三角形的面积公式在解三角形中的应用,考查了计算能力和转化能力,属于中档题.25.(Ⅰ)3π;(Ⅱ)b = 【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得tanB =,则B =π3.(Ⅱ)在△ABC 中,由余弦定理可得b .结合二倍角公式和两角差的正弦公式可得()2sin A B -=详解:(Ⅰ)在△ABC 中,由正弦定理a b sinA sinB=,可得bsinA asinB =, 又由π6bsinA acos B ⎛⎫=- ⎪⎝⎭,得π6asinB acos B ⎛⎫=- ⎪⎝⎭,即π6sinB cos B ⎛⎫=-⎪⎝⎭,可得tanB = 又因为()0πB ∈,,可得B =π3. (Ⅱ)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有22227b a c accosB =+-=,故b由π6bsinA acos B ⎛⎫=-⎪⎝⎭,可得sinA =a <c ,故cosA =.因此22sin A sinAcosA ==,212217cos A cos A =-=.所以,()222sin A B sin AcosB cos AsinB -=-=1127-= 点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.26.(1)3π;(2)2【解析】 【分析】(1)可通过化简()sin2sin 0b A a A C -+=计算出cos A 的值,然后解出A 的值。
期末考试综合试卷5答案

1
解得0 = −1,故存在定点(4 , −1)满足题意.
22.
第 3 页,共 5 页
第 4 页,共 5 页
第 5 页,共 5 页
+ 2
= (2 2−1 )(2 − 2−1 ) = 4(2 +
2−1 )( ∈ ∗ ),记{ }的前 n 项和为 ,∴ 10 = (1 + 2 ) ⋯ (9 + 10 ) = 4(1 + 2 + ⋯ + 10 ) =
4×
(1+37)×10
2
= 760,∴数列{(−1) ⋅ 2 }的前 10 项和为760.
√3
2√3−√3
1
1
√3
⃗⃗⃗⃗⃗ = (0, , 0)即为平面 PEC
= 3,解得 = 2,∴ ⊥平面 PEF,∴
2
的法向量.设平面 PBD 的法向量为
⃗ = (, , ),
⃗⃗⃗⃗⃗⃗ = 0, 2 = 0,
⃗ ⋅
则{
即{
√3
√3
+ 2 − 2 = 0,
∴当 = 0时,△ 取最小值2 ,∴ 2 = 4,∴ = 2,抛物线 C 的方程为: 2 = 4.
(2)假设存在(0 , 0 ),设(3 , 3 ),(4 , 4 ),由题意,MN 斜率不为零,
17
设 MN 的方程为 = ( − 1) + 4 代入 2 = 4,可得 2 − 4 + 4 − 17 = 0,
第 1 页,共 5 页
1
2
1
1
1
1
1 23 4 + 1 2 ⋅ 3 4 ) = (1 2 3 4) + (1 2 34 ) + (1 2 34 ) = 2 × 3 × 2 × 2 +
尚文家教初二物理期末模拟测试一

尚文家教初二物理期末模拟测试(一)(力求字迹清晰工整,注意解题技巧)一.选择题(本题共20小题,每小题2分,共40分)1.下列有关声现象的说法中,正确的是()A.在街头设置噪声监测仪,属于在传播过程中减弱噪声B.只要物体在振动,我们就一定能听到声音 C.声音在传播过程中音调会降低 D.声波能传递信息,也能传递能量2.声音往铁、空气和水中传播的速度由大到小排列顺序是()A.水、铁、空气B.铁、水、空气C.空气、水、铁D.水、空气、铁3.下列是一定质量的酒精在不同条件下蒸发快慢的情况,最能说明酒精蒸发快慢跟它表面积有关的是()A.温度不同的酒精分别装入相同的容器中,放在同处,蒸发快慢不同B.温夏相同的酒精分别装入相同的容器中,放在不同处,蒸发快慢不同C.温度相同的酒精分别放入口径不同的容器中,放在同处,蒸发快慢不同D.温度相同的酒精分别放入口径不同的容器中,放在不同处,蒸发快慢不同4.下列关于“冰棒现象”的分析,正确的是()A.剥去包装纸,冰棒“冒气”,属于汽化现象B.剥去包装纸,过一会冰棒“流汗”,属于液化现象C.冰棒放入杯中,杯子外边会“出汗”,属于液化现象D.刚从冰箱拿出的冰棒,包装纸上沾有“白粉”,属于凝固现象5.太阳光垂直射到一个很小的“△”形的孔上,那么它能在地面上产生的光斑的形状是()A.“△”形的B.“▽”形的C.“口”形的D.“o”形的6.写字台上有一盏台灯,晚上在灯前学习的时候(小明用右手写字),铺在台面上的玻璃“发出”刺眼的亮光,影响学习,在下面的解决方法中,最简单、效果最好的是()A.把台灯换为吊灯B.把台灯放在正前方C.把台灯移到左臂外侧D.把台灯移到右臂外侧7.小明用爷爷的老花镜的镜片对着太阳时,可在距镜片10cm处得到一个最小最亮的光斑.小明用该镜片看微雕作品上较小的图案时,作品到镜片的距离应满足()A.小于10cm B.等于10cm C.大于10 cm,小于20cm D.大于20cm8.在2008年北京奥运会保安工作中将采用人脸识别系统,如图所示,识别系统的摄像机可以自动将镜头前1m处的人脸拍摄成数码相片,通过信号线传递给计算机识别。
2020-2021上海尚文中学八年级数学上期末模拟试卷(附答案)

2020-2021上海尚文中学八年级数学上期末模拟试卷(附答案)一、选择题1.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的一半长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A .①②③④B .④③①②C .②④③①D .④③②① 2.下列因式分解正确的是( ) A .()2211x x +=+ B .()22211x x x +-=-C .()()22x 22x 1x 1=-+-D .()2212x x x x -+=-+ 3.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+ 4.若b a b -=14,则a b 的值为( ) A .5 B .15C .3D .135.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( )A .6B .11C .12D .186.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-37.下列计算正确的是( ) A 235+=B .a a a +=222 C .(1)x y x xy +=+ D .236()mn mn =8.如果30x y -=,那么代数式()2222x y x y x xy y +⋅--+的值为( ) A .27- B .27 C .72- D .729.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④10.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ 11.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°12.已知a 是任何实数,若M =(2a ﹣3)(3a ﹣1),N =2a (a ﹣32)﹣1,则M 、N 的大小关系是( )A .M ≥NB .M >NC .M <ND .M ,N 的大小由a 的取值范围 二、填空题13.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4= .14.把0.0036这个数用科学记数法表示,应该记作_____.15.若一个多边形的边数为 8,则这个多边形的外角和为__________.16.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC 外,若∠2=20º,则∠1的度数为 _______.17.如图,在△ABC 中,AB = AC,BC = 10,AD 是∠BAC 平分线,则BD = ________.18.因式分解:328x x -=______.19.正六边形的每个内角等于______________°.20.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .三、解答题21.为支援灾区,某校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品共1000件.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B 型学习用品多少件?22.如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交A C 边于E ,两线相交于F 点.(1)若∠BAC=60°,∠C=70°,求∠AFB 的大小;(2)若D 是BC 的中点,∠ABE=30°,求证:△ABC 是等边三角形.23.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.先化简,再求值:222221422x x xx x x x x⎛⎫-+-+÷⎪-+⎝⎭,且x为满足22x-≤<的整数.25.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据直线外一点作已知直线的垂线的方法作BH⊥AC即可.【详解】用尺规作图作△ABC边AC上的高BH,做法如下:④取一点K使K和B在AC的两侧;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;①分别以点D、E为圆心,大于DE的长为半径作弧两弧交于F;②作射线BF,交边AC于点H;故选B.【点睛】考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.2.C解析:C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.3.A解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积. 4.A解析:A【解析】 因为b a b -=14, 所以4b=a-b .,解得a=5b , 所以a b =55b b=. 故选A. 5.C解析:C【解析】试题分析:这个正多边形的边数:360°÷30°=12,故选C .考点:多边形内角与外角.6.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.7.C解析:C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .8.D解析:D【解析】【分析】先把分母因式分解,再约分得到原式=2x y x y+-,然后把x=3y 代入计算即可. 【详解】原式=()22x y x y +-•(x-y )=2x y x y+-, ∵x-3y=0,∴x=3y ,∴原式=63y y y y +-=72. 故选:D .【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.9.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得【详解】解∵2222(2)1(2)1441(2)1x xx x x x x++-=-=+++++1111xx x-=++.又∵x为正整数,∴121xx≤+<1,故表示22(2)1441xx x x+-+++的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.10.D解析:D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.11.C解析:C【解析】【分析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A , 再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等. 12.A解析:A【解析】【分析】将M,N代入到M-N中,去括号合并得到结果为(a﹣1)2≥0,即可解答【详解】∵M=(2a﹣3)(3a﹣1),N=2a(a﹣32)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣32)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选A.【点睛】此题考查整式的混合运算,解题关键是在于把M,N代入到M-N中计算化简得到完全平方式为非负数,从而得到结论.二、填空题13.280°【解析】试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数再根据多边形的外角和定理即可求解解:如图∵∠EAB+∠5=180°∠EAB=100°∴∠5=80°∵∠1+∠2+∠3+∠解析:280°【解析】试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.解:如图,∵∠EAB+∠5=180°,∠EAB=100°,∴∠5=80°.∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3+∠4=360﹣80°=280°故答案为280°.考点:多边形内角与外角.14.6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解析:6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】15.360°【解析】【分析】根据任意多边形的外角和为360°回答即可【详解】解:由任意多边形的外角和为360°可知这个多边形的外角和为360°故答案为:360°【点睛】本题主要考查的是多边形的外角和掌握解析:360°.【解析】【分析】根据任意多边形的外角和为360°回答即可.【详解】解:由任意多边形的外角和为360°可知,这个多边形的外角和为360°.故答案为:360°.【点睛】本题主要考查的是多边形的外角和,掌握多边形的外角和定理是解题的关键.16.100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°再利用三角形的内角和定理以及外角性质得∠3+解析:100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°-80°=100°.故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.17.5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BCBD=CD=BC=5【详解】解:∵AB=ACAD是∠BAC平分线∴AD⊥BCBD=CD=BC=5故答案为:5【点睛】本题考查了等腰三角形的性解析:5【解析】【分析】由等腰三角形三线合一的性质得出AD⊥BC,BD=CD=12BC=5.【详解】解:∵AB=AC,AD是∠BAC平分线,∴AD⊥BC,BD=CD=12BC=5.故答案为:5.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解决问题的关键.18.【解析】【分析】提取公因式2x后再利用平方差公式因式分解即可【详解】故答案为:【点睛】本题考查了因式分解熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键解析:()()222x x x +-【解析】【分析】提取公因式2x 后再利用平方差公式因式分解即可.【详解】()()()322824?222x x x x x x x -=-=+-.故答案为:()()222x x x +-.【点睛】本题考查了因式分解,熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键. 19.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°∴正六边形的每个内角为:=120°考点:多边形的内角与外角解析:120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°, ∴正六边形的每个内角为:=120°.考点:多边形的内角与外角. 20.85°【解析】试题分析:令A→南的方向为线段AEB→北的方向为线段BD 根据题意可知AEDB 是正南正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°考点:1方向角2三角解析:85°.【解析】试题分析:令A→南的方向为线段AE ,B→北的方向为线段BD ,根据题意可知,AE ,DB 是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.三、解答题21.(1)A 型学习用品20元,B 型学习用品30元;(2)800.【解析】(1)设A 种学习用品的单价是x 元,根据题意,得,解得x =20.经检验,x =20是原方程的解.所以x +10=30.答:A、B两种学习用品的单价分别是20元和30元.(2)设购买B型学习用品m件,根据题意,得30m+20(1000-m)≤28000,解得m≤800.所以,最多购买B型学习用品800件.22.(1)115°;(2)证明见解析【解析】【分析】(1)根据∠ABF=∠FBD+∠BDF,想办法求出∠FBD,∠BDF即可;(2)只要证明AB=AC,∠ABC=60°即可;【详解】(1)∵∠BAC=60°,∠C=70°,∴∠ABC=180°﹣60°﹣70°=50°,∵BE平分∠ABC,∴∠FBD=12∠ABC=25°,∵AD⊥BC,∴∠BDF=90°,∴∠AFB=∠FBD+∠BDF=115°.(2)证明:∵∠ABE=30°,BE平分∠ABC,∴∠ABC=60°,∵BD=DC,AD⊥BC,∴AB=AC,∴△ABC是等边三角形.【点睛】本题考查等边三角形的判定、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(1)35元/盒;(2)20%.【解析】【分析】【详解】试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:3500240011x x=-,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m ,2014年的销售数量为3500÷35=100(盒). 根据题意得:(60﹣35)×100(1+a )2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.24.232x -,52- 【解析】【分析】 先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【详解】 解:原式2(1)(2)(2)2(1)(2)x x x x x x x x ⎡⎤-+-=+÷⎢⎥-+⎣⎦122x x x x x--⎛⎫=+÷ ⎪⎝⎭ 232x x x -=⋅ 232x -=, 0x ≠Q 且1x ≠,2x ≠-∴在22x -<…范围内符合分式的整数有1x =-, 则原式23522--==-. 【点睛】 本题考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.25.A 型机器人每小时搬大米70袋,则B 型机器人每小时搬运50袋.【解析】【分析】工作效率:设A 型机器人每小时搬大米x 袋,则B 型机器人每小时搬运(x ﹣20)袋;工作量:A 型机器人搬运700袋大米,B 型机器人搬运500袋大米;工作时间就可以表示为:A 型机器人所用时间=700x ,B 型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A 型机器人每小时搬大米x 袋,则B 型机器人每小时搬运(x ﹣20)袋, 依题意得:700x =500x-20,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.考点:分式方程的应用.。
2024-2025学年高一数学上学期期末模拟卷02(测试范围:人教A版2019必修第一册)(考试版)

2024-2025学年高一数学上学期末模拟卷02(人教A版2019)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教A版2019必修第一册。
5.难度系数:0.6。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
. ...如图,弹簧挂着的小球做上下运动,秒时相对于平衡位置的高度h 确定,其中0A >,0w >,小球从最低点出发,经过2秒后,第一次回到最低点,则下列说法中正确的是( )秒时小球偏离于平衡位置的距离之比为2时,若小球有且只有三次到达最高点,则[0t Î时刻小球偏离于平衡位置的距离相同,则二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
14.已知函数()12423x x f x m m +=-×+-,若()f x 的图象上存在不同的两个点关于原点对称,则实数m 的取值范围为__________.四、解答题:本题共5小题,共77分。
解答应写出文字说明、证明过程或演算步骤。
15.(13分)已知集合{}210,A x ax x a =Î--=ÎRR ∣.(1)若2a =,写出集合A 的所有子集;(2)若集合A 中仅含有一个元素,求实数a 的值.16.(15分)。
数学模拟测试卷五

2021年高考数学模拟测试卷第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{0,1}=<≤,则M NM=,{|01}N x x⋃=()A.[0,1]B.(0,1]C.[0,1)D.(,1]-∞【答案】A【解析】【分析】利用并集的定义求解即可.【详解】∵集合{0,1}⋃=≤≤,即M NM N x xM=,集合{|01}=<≤,∴{|01}N x x⋃=[0,1]。
故选:A【点睛】本题考查了并集的定义与计算问题,属于基础题.2.命题:p x∀∈R,220->的否定为().x xA.x∀∈R,220-<x xx x-≤B.x∀∈R,220C.x∃∈R,220x x-≤->D.x∃∈R,220x x【答案】D【解析】命题p的否定,将“x∀∈R”变成“x∃∈R”,将“220-≤”.x xx x->" 变成“220故选D.点睛:(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“,()x M p x ∀∈”是真命题,需要对集合M 中的每个元素x ,证明()p x 成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使0()p x 不成立即可。
要判断存在性命题是真命题,只要在限定集合内至少能找到一个0x x =,使0()p x 成立即可,否则就是假命题.3.若复数34sin cos 55z iθθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则tan()θ-π的值为( )A .34±B .43C .34-D .43-【答案】C 【解析】 【分析】根据所给的虚数是一个纯虚数,得到虚数的实部等于0,而虚部不等于0,得到角的正弦和余弦值,根据同角三角函数之间的关系,得到结果. 【详解】若复数34sin (cos )55z i θθ=-+-是纯虚数, 则3sin 05θ-=且4cos 05θ-≠, 所以3sin 5θ=,4cos 5θ=-,所以3tan 4θ=-,故tan()θ-π=3tan 4θ=-. 故选C . 【点睛】本题主要考查了复数的基本概念,属于基础题.纯虚数是一个易错概念,不能只关注实部为零的要求,而忽略了虚部不能为零的限制,属于易错题. 4.已知变量x ,x 满足{2x −x ≤0x −2x +3≥0x ≥0,则x =log 4(2x +x +4)的最大值为( )A .2B .32C .23D .1【答案】B 【解析】试题分析:根据题中所给的约束条件,画出相应的可行域,可以求得2x +x +4在点(1,2)处取得最大值8,所以x 的最大值为log 48=32,故选B .考点:线性规划.5.设0a >,0b >,是lg 4a 与lg 2b 的等差中项,则21a b +的最小值为( )A .B .3C .4D .9【答案】D 【解析】∵lg4a与lg2b的等差中项,∴lg 4lg 2a b=+, 即2lg 2lg 42lg 2ab a b +=⋅=,∴21a b +=.所以212122()(2)559b aa b a b a b a b+=++=++≥+ 当且仅当22b a a b =即13a b ==时取等号, ∴21a b +的最小值为9.6.《中国好歌曲》的五位评委给一位歌手给出的评分分别是:118x =,219x=,320x =,421x=,522x=,现将这五个数据依次输入如图程序框进行计算,则输出的S 值及其统计意义分别是( )A .2S =,即5个数据的方差为2B .2S =,即5个数据的标准差为2C .10S =,即5个数据的方差为10D .10S =,即5个数据的标准差为10 【答案】A 【解析】 【分析】算法的功能是求()()()22212202020i S x x x =-+-+⋯+-的值,根据条件确定跳出循环的i 值,计算输出S 的值. 【详解】由程序框图知:算法的功能是求()()()22212202020i S x x x =-+-+⋯+-的值,∵跳出循环的i 值为5, ∴输出S = ()()()2221[1820192020205⨯-+-+- ()()2221202220]+-+-= ()14101425⨯++++=.故选A.【点睛】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键,属于基础题.7.十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论",即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?"贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A为圆O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB大于圆O的内接等边三角形边长的概率.则由“随机端点"求法所求得的概率为()A.15B.14C.13D.12【答案】C【解析】【分析】由题意画出图形,求出满足条件的B的位置,再由测度比是弧长比得答案.【详解】解:设“弦AB的长超过圆内接正三角形边长"为事件M,以点A为一顶点,在圆中作一圆内接正三角形ACD,则要满足题意点B只能落在劣弧CD上,又圆内接正三角形ACD恰好将圆周3等分,故1()3P M故选:C.【点睛】本题考查几何概型的意义,关键是要找出满足条件弦AB 的长度超过圆内接正三角形边长的图形测度,再代入几何概型计算公式求解,是基础题.8.椭圆221169x y +=的两个焦点为1F ,2F ,过2F 的直线交椭圆于A 、B 两点,若6AB =,则11AF BF +的值为()A .10B .8C .16D .12【答案】A 【解析】 【分析】由椭圆的定义可得:12122AF AFBF BF a +=+=,即可得出.【详解】由椭圆的定义可得:121228AF AFBF BF a +=+==,()()1122221616610AF BF a AF a BF AB ∴+=-+-=-=-=,故选A . 【点睛】本题考查了椭圆的定义及其标准方程,考查了推理能力与计算能力,属于中档题.9.如图是一个几何体的三视图,根据图中的数据(单位:cm ),可知此几何体的体积是( )A .324cmB .364cm 3C .3(6+ D .3(24+【答案】B 【解析】由三视图可知,该几何体是如下图所示的四棱锥,故体积为16444433⨯⨯⨯=3cm 。
高二上学期期末考试(理科)数学试卷-附带答案

高二上学期期末考试(理科)数学试卷-附带答案一.选择题(共12小题,满分60分,每小题5分) 1.(5分)不等式2x−1x+2≥3的解集为( ) A .{x |﹣2<x ≤12}B .{x |x >﹣2}C .{x |﹣7≤x <﹣2}D .{x |﹣7≤x ≤﹣2}2.(5分)已知p :∀x ∈R ,(x +1)2<(x +2)2;q :∃x ∈R ,x =1﹣x 2,则( ) A .p 假q 假B .p 假q 真C .p 真q 真D .p 真q 假3.(5分)若实数a ,b 满足ab =1(a ,b >0),则a +2b 的最小值为( ) A .4B .3C .2√2D .24.(5分)已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直,则实数m 的值为( ) A .﹣3B .−13C .13D .15.(5分)已知F 1,F 2是椭圆C :x 24+y 23=1的左、右焦点,点P 在椭圆C 上.当∠F 1PF 2最大时,求S △PF 1F 2=( ) A .12B .√33C .√3D .2√336.(5分)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 且B =2A ,则c b−a的取值范围是( )A .(0,3)B .(1,2)C .(2,3)D .(1,3)7.(5分)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A .4B .92C .5D .68.(5分)已知直线l :y =kx +m (m <0)过双曲线C :x 2a 2−y 22=1的左焦点F 1(﹣2,0),且与C 的渐近线平行,则l 的倾斜角为( ) A .π4B .π3C .2π3D .3π49.(5分)“a +1>b ﹣2”是a >b ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(5分)已知函数f (x )=ax 2﹣3ax +a 2﹣3(a <0),且不等式f (x )<4对任意x ∈[﹣3,3]恒成立,则实数a 的取值范围为( ) A .(−√7,√7)B .(﹣4,0)C .(−√7,0)D .(−74,0)11.(5分)古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上、下底面均为半圆形的柱体.若AA 1⊥面ABCD ,AA 1=3,AB =4,CD =2,E 为弧A 1B 1的中点,则直线CE 与平面DEB 1所成角的正弦值为( )A .√39921B .√27321C .2√4221D .√422112.(5分)关于x 的方程2|x +a |=e x 有三个不同的实数解,则实数a 的取值范围是( ) A .(﹣∞,1] B .[1,+∞) C .(﹣∞,l ﹣ln 2]D .(1﹣ln 2,+∞)二.填空题(共4小题,满分20分,每小题5分)13.(5分)若不等式ax 2+bx ﹣2>0的解集为(﹣4,1),则a +b 等于 .14.(5分)如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点P ,若OC →=m OA →+2mOB →,AP →=λAB →则λ= .15.(5分)公差不为0的等差数列{a n }的前n 项和为S n ,若a 2,a 5,a 14成等比数列S 5=a 32,则a 10= .16.(5分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与不过坐标原点O 的直线l :y =kx +m 相交于A 、B 两点,线段AB 的中点为M ,若AB 、OM 的斜率之积为−34,则椭圆C 的离心率为 . 三.解答题(共6小题,满分70分)17.(10分)已知x ,y 满足的约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0(1)求z 1=9x ﹣4y 的最大值与最小值; (2)求z 2=x+2y+4x+2的取值范围. 18.(12分)已知函数f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx . (1)求f(π6)的值;(2)在锐角△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若f(A2)=1,a =2,求b +c 的取值范围.19.(12分)已知双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2. (Ⅰ)求双曲线的标准方程;(Ⅱ)若抛物线y 2=2px (p >0)的焦点F 与该双曲线的一个焦点相同,点M 为抛物线上一点,且|MF |=3,求点M 的坐标.20.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB ,E ,F ,M 分别是PB ,CD ,PD 的中点. (1)证明:EF ∥平面P AD ;(2)求平面AMF 与平面EMF 的夹角的余弦值.21.(12分)已知A 、B 是椭圆x 24+y 2=1上两点,且OA →⋅OB →=0.(O 为坐标原点)(1)求证:1|OA|2+1|OB|2为定值,并求△AOB 面积的最大值与最小值;(2)过O 作OH ⊥AB 于H ,求点H 的轨迹方程.22.(12分)已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x ﹣y +2=0上.求数列{a n }、{b n }的通项公式.参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分) 1.【解答】解:由2x−1x+2≥3得,2x−1x+2−3≥0即x+7x+2≤0解得,﹣7≤x <﹣2. 故选:C .2.【解答】解:对于命题p :∀x ∈R ,(x +1)2<(x +2)2,当x =﹣2时,不等式(x +1)2<(x +2)2不成立所以命题p 为假命题对于命题q :∃x ∈R ,x =1﹣x 2,方程x 2+x ﹣1=0的判别式Δ=1+4=5>0,故方程有解,即∃x ∈R ,x =1﹣x 2,故命题q 为真命题. 所以p 假q 真. 故选:B .3.【解答】解:因为ab =1(a ,b >0),所以a +2b ≥2√2ab =2√2 当且仅当a =2b 且ab =1即b =√22,a =√2时取等号 所以a +2b 的最小值为2√2. 故选:C .4.【解答】解:已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直 故a →⋅b →=m +1+2m =0,故m =−13. 故选:B .5.【解答】解:由椭圆的性质可知当点P 位于椭圆的上下顶点时,∠F 1PF 2最大由椭圆C :x 24+y 23=1,可得|OP |=√3,|F 1F 2|=2c =2√4−3=2所以S △PF 1F 2=12|OP |•|F 1F 2|=12×√3×2=√3. 故选:C .6.【解答】解:由正弦定理可知c b−a=sinC sinB−sinA=sin(B+A)sinB−sinA=sin3A sin2A−sinA=2sin3A 2cos 3A 22cos 3A 2sinA 2=sin3A2sinA 2=sin A 2cosA+2cos 2A 2sinA 2sinA2=2cos A +1∵A +B +C =180°,B =2A∴3A +C =180°,A =60°−C 3<60° ∴0<A <60° ∴12<cos A <1则2<2cos A +1<3. 故c b−a的取值范围是:(2,3).故选:C .7.【解答】解:∵F (1,0),根据题意设y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2) 联立{y =k(x −1)y 2=4x ,可得k 2x 2﹣(2k +4)x +k 2=0∴{x 1+x 2=2k+4k2x 1x 2=1,又|AF |=2|BF |∴1+x 1=2(1+x 2) ∴x 1=1+2x 2,又x 1x 2=1 ∴x 2=12,x 1=2∴|AB |=p +x 1+x 2=2+2+12=92故选:B .8.【解答】解:设l 的倾斜角为α,α∈[0,π). 由题意可得k =−ba ,(﹣2)2=a 2+2,b 2=2,a ,b >0 解得a =√2=b∴k =tan α=﹣1,α∈[0,π). ∴α=3π4 故选:D .9.【解答】解:由a +1>b ﹣2,可得a >b ﹣3由a >b ﹣3不能够推出a >b ,故“a +1>b ﹣2”是“a >b ”的不充分条件 由a >b ,可推出a >b ﹣3成立,故“a +1”>b ﹣2”是a >b ”的必要条件 综上“a +1>b ﹣2”是“a >b ”的必要不充分条件 故选:B .10.【解答】解:由不等式f (x )<4对任意x ∈[﹣3,3]恒成立 即ax 2﹣3ax +a 2﹣7<0对任意x ∈[﹣3,3]恒成立 ∵a <0,对称轴x =32∈[﹣3,3] ∴只需x =32<0即可可得a ×94−32×3a +a 2−7<0. 即(4a +7)(a ﹣4)<0 解得−74<a <4 ∴−74<a <0. 故选:D .11.【解答】解:因为AA 1⊥平面ABCD ,AB ⊂平面ABCD ,则AA 1⊥AB由题意可以点A 为原点,AB 所在直线为y 轴,AA 1所在直线为z 轴,平面ABCD 内垂直于AB 的直线为x 轴建立空间直角坐标系,如图所示则A (0,0,0),B (0,4,0),C (0,3,0),D (0,1,0),A 1(0,0,3) B 1(0,4,3),C 1(0,3,3),D 1(0,1,3) 又因为E 为A 1B 1的中点,则E (2,2,3)则B 1E →=(2,−2,0),B 1D →=(0,﹣3,﹣3),CE →=(2,−1,3) 设平面DEB 1的法向量n →=(x ,y ,z ),则{B 1E →⋅n →=2x −2y =0B 1D →⋅n →=−3y −3z =0令x =1,则y =1,z =﹣1,则n →=(1,1,−1) 设直线CE 与平面DE B 1所成角为θ 则sinθ=|cos <CE →,n →>|=|CE →⋅n →||CE →||n →|=2√14×√3=√4221. 故选:D .12.【解答】解:由已知有方程2|x+a|=e x有三个不同的实数解可转化为y=|x+a|的图象与y=12ex的图象有三个交点设直线y=x+a的图象与y=12e x相切于点(x0,y0)因为y′=12e x所以{ y 0=x 0+a y 0=12e x 012e x=1解得:{x 0=ln2y 0=1a =1−ln2 要使y =|x +a |的图象与y =12e x 的图象有三个交点 则需a >1﹣ln 2即实数a 的取值范围是(1﹣ln 2,+∞) 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.【解答】解:∵不等式ax 2+bx ﹣2>0的解集为(﹣4,1) ∴﹣4和1是ax 2+bx ﹣2=0的两个根 即{−4+1=−ba −4×1=−2a解得{a =12b =32; ∴a +b =12+32=2. 故答案为:2.14.【解答】解:根据条件知,OP →与OC →共线; ∵AP →=λAB →;∴OP →−OA →=λ(OB →−OA →); ∴OP →=(1−λ)OA →+λOB →; 又OC →=m OA →+2mOB →; ∴λ=2(1﹣λ); ∴λ=23. 故答案为:23.15.【解答】解:设数列的公差为d ,(d ≠0) ∵S 5=a 32,得:5a 3=a 32 ∴a 3=0或a 3=5;∵a 2,a 5,a 14成等比数列 ∴a 52=a 2•a 14∴(a 3+2d )2=(a 3﹣d )(a 3+11d )若a 3=0,则可得4d 2=﹣11d 2即d =0不符合题意 若a 3=5,则可得(5+2d )2=(5﹣d )(5+11d ) 解可得d =0(舍)或d =2 ∴a 10=a 3+7d =5+7×2=19 故答案为:19.16.【解答】解:设A (x 1,y 1),B (x 2,y 2).线段AB 的中点M (x 0,y 0). ∵x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1 相减可得:(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0把x 1+x 2=2x 0,y 1+y 2=2y 0,y 1−y 2x 1−x 2=k 代入可得:2x 0a 2+2y 0k b 2=0又y 0x 0•k =−34,∴1a 2−34b 2=0,解得b 2a 2=34. ∴e =√1−b 2a2=12.故答案为:12.三.解答题(共6小题,满分70分)17.【解答】解:(1)由z 1=9x ﹣4y ,得y =94x −14z 1 作出约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0对应的可行域(阴影部分)平移直线y =94x −14z 1,由平移可知当直线y =94x −14z 1经过点C 时,直线y =94x −14z 1的截距最小,此时z 取得最大值 由{x +y −3=05x +2y −18=0,解得C (4,﹣1). 将C (4,﹣1)的坐标代入z 1=9x ﹣4y ,得z =40 z 1=9x ﹣4y 的最大值为:40. 由{x +y −3=02x −y =0解得B (1,2)将B (1,2)的坐标代入z 1=9x ﹣4y ,得z =1 即目标函数z =9x ﹣4y 的最小值为1. (2)z 2=x+2y+4x+2=1+2•y+1x+2,所求z 2的取值范围. 就是P (﹣2,﹣1)与可行域内的点连线的斜率的2倍加1的范围 K PC =0.由{5x +2y −18=02x −y =0解得A (2,4),K P A =4+12+2=54 ∴z 2的范围是:[1,72].18.【解答】解:(1)f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx =sin(π4+x)cos(π4+x)+√3sinxcosx =12sin(π2+2x)+√32sin2x=12cos2x +√32sin2x=sin(2x +π6) 所以f(π6)=sin(2×π6+π6) =sin π2 =1;(2)f(A2)=sin(A +π6)=1 在锐角三角形中0<A <π2所以π6<A +π6<2π3故A +π6=π2,可得A =π3 因为a =2,由正弦定理bsinB=c sinC=a sinA=√32=4√33所以b +c =4√33(sinB +sinC) =4√33[sinB +sin(2π3−B)] =4√33(sinB +√32cosB +12sinB) =4√33(32sinB +√32cosB) =4sin(B +π6) 又B +C =2π3,及B ,C ∈(0,π2) 所以B ∈(π6,π2) 所以B +π6∈(π3,2π3) 则b +c =4sin(B +π6)∈(2√3,4].19.【解答】解:(Ⅰ)由题意设所求双曲线方程为x 2a 2−y 2b 2=1又双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2 则a =1,c =2 即b 2=c 2﹣a 2=3即双曲线方程为x 2−y 23=1;(Ⅱ)由(Ⅰ)可知F (2,0) 则p =4即抛物线的方程为y 2=8x 设点M 的坐标为(x 0,y 0) 又|MF |=3 则x 0+2=3则x 0=1,y 0=±2√2即点M 的坐标为(1,2√2)或(1,﹣2√2).20.【解答】(1)证明:取P A 的中点N ,连接EN ,DN ,如图所示: 因为E 是PB 的中点,所以EN ∥AB ,且EN =12AB又因为四边形ABCD 为正方形,F 是CD 的中点,所以EN ∥DF ,且EN =DF 所以四边形ENDF 为平行四边形,所以EF ∥DN因为EF ⊄平面P AD ,DN ⊂平面P AD ,所以EF ∥平面P AD ;(2)解:以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 、y 、z 轴 建立空间直角坐标系,如图所示:设AB =2,则E (1,0,1),F (1,2,0),P (0,0,2),D (0,2,0),M (0,1,1); 所以EM →=(−1,1,0) MF →=(1,1,−1),AF →=(1,2,0) 设平面AMF 的法向量为m →=(x ,y ,z ),则由m →⊥AF →,m →⊥MF →可得{x +2y =0x +y −z =0,令y =1,得m →=(−2,1,−1)设平面EMF 的法向量为n →=(a ,b ,c ),则由n →⊥MF →,n →⊥EM →可得{a +b −c =0−a +b =0,令b =1,得n →=(1,1,2)则cos <m →,n →>=m →⋅n →|m →||n →|=√4+1+1×√1+1+4=−12因为两平面的夹角范围是[0,π2]所以平面AMF 与平面EMF 夹角的余弦值为12.21.【解答】证明:(1)设A (r 1cos θ,r 1sin θ),B (r 2cos (90°+θ),r 2sin (90°+θ)),即B (﹣r 2sin θ,r 2cos θ) 则r 12cos 2θ4+r 12sin 2θ=1,r 22sin 2θ4+r 22cos 2θ=1,即1r 12=cos 2θ4+sin 2θ,1r 22=sin 2θ4+cos 2θ故1|OA|2+1|OB|2=1r 12+1r 22=54△AOB 面积为S =12r 1r 2=2√4sin θ+17sin θcos θ+4cos θ∵4sin 4θ+17sin 2θcos 2θ+4cos 2θ=(2sin 2θ+2cos 2θ)+9sin 2θcos 2θ=4+94sin 22θ ∴当sin2θ=0时,S 取得最大值1,当sin2θ=±1时,S 取值最小值45故△AOB 面积的最大值为1,最小值为45;(2)解:∵|OH ||AB |=|OA ||OB | ∴1|OH|2=|AB|2|OA|2|OB|2=r 12+r 22r 12+r 22=1r 12+1r 22=54∴|OH|2=45故点H 的轨迹方程为x 2+y 2=45.22.【解答】解:∵a n 是s n 与2的等差中项,∴2a n =S n +2,即S n =2a n ﹣2. ∴当n =1时,a 1=2a 1﹣2,解得a 1=2.当n ≥2时,a n =S n ﹣S n ﹣1=(2a n ﹣2)﹣(2a n ﹣1﹣2) 化为a n =2a n ﹣1∴数列{a n }是等比数列,首项为2,公比为2,a n =2n . ∵点P (b n ,b n +1)在直线x ﹣y +2=0上. ∴b n ﹣b n +1+2=0,即b n +1﹣b n =2∴数列{b n }是等差数列,首项为1,公差为2.∴b n=1+2(n﹣1)=2n﹣1.。
2020-2021高中必修五数学上期末第一次模拟试卷(附答案)(5)

2020-2021高中必修五数学上期末第一次模拟试卷(附答案)(5)一、选择题1.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( )A .2B .-4C .2或-4D .42.若直线()100,0ax by a b ++=>>把圆()()224116x y +++=分成面积相等的两部分,则122a b+的最小值为( ) A .10B .8C .5D .43.在ABC ∆中,2AC =,BC =135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( )A B C D 4.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712 B .714 C .74D .785.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( )A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞6.若a 、b 、c >0且a (a +b +c )+bc =4-,则2a +b +c 的最小值为( )A .1B .1C .+2D .27.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项的和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A .24B .48C .60D .848.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .159.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .410.设数列{}n a 的前n 项和为n S ,若2,n S ,3n a 成等差数列,则5S 的值是( ) A .243- B .242- C .162- D .24311.在中,,,,则A .B .C .D .12.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 二、填空题13.已知数列{}n a ,11a =,1(1)1n n na n a +=++,若对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立,则实数t 的取值范围为________ 14.已知0,0x y >>,1221x y +=+,则2x y +的最小值为 . 15.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是__________. 16.已知递增等比数列{}n a 的前n 项和为n S ,且满足:11a =,45234a a a a +=+,则144S S a +=______. 17.数列{}n a 满足10a =,且()1*11211n nn N a a +-=∈--,则通项公式n a =_______.18.已知△ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,且bcosC ﹣ccosB 14=a 2,tanB =3tanC ,则a =_____.19.在数列{}n a 中,11a =,且{}n a 是公比为13的等比数列.设13521T n n a a a a L -=++++,则lim n n T →∞=__________.(*n ∈N ) 20.若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______. 三、解答题21.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin 3sin sin A C B A C +-.(1)求角B ;(2)点D 在线段BC 上,满足DA DC =,且11a =,cos()5A C -=,求线段DC 的长.22.已知S n 为等差数列{a n }的前n 项和,a 1>0,a 8﹣a 4﹣a 3=1,a 4是a 1和a 13的等比中项. (1)求数列{a n }的通项公式; (2)证明:对一切正整数n .有1211134n S S S +++<L L . 23.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.24.已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =. (1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.25.在等比数列{}n a 中,11a =,且2a 是1a 与31a -的等差中项. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足(1)1(1)n n n n a b n n ++=+(*n N ∈),求数列{}n b 的前n 项和n S .26.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 3cos c B b C a B +=.(1)求cos B 的值;(2)若2CA CB -=u u u v u u u v,ABC ∆的面积为b .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.2.B解析:B 【解析】 【分析】由于直线将圆平分,故直线过圆的圆心,将圆心坐标代入直线方程,利用“1”的代换的方法以及基本不等式,求得所求和的最小值. 【详解】圆的圆心为()4,1--,由于直线将圆平分,故直线过圆心,即410a b --+=,即41a b +=,故()121284448222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当82b aa b =,即11,82a b ==时,取得最小值为8.故选B. 【点睛】本小题主要考查直线和圆的位置关系,考查利用“1”的代换和基本不等式求解和式的最小值问题.直线能将圆平分成面积相等的两个部分,则这条直线是经过圆心的.要注意的是,圆的标准方程是()()222x a y b r -+-=,圆心是(),a b ,所以本题的圆心是()4,1--,而不是()4,1.3.A解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到22222AC BC AB AC BC +-=-⨯⨯将2AC =,BC =,代入等式得到AB=再由等面积法得到1122225CD CD ⨯=⨯⨯⇒=故答案为A.【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.4.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.5.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.6.D解析:D 【解析】由a (a +b +c )+bc =4-,得(a +c )·(a +b )=4-23. ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c ≥2423-=2(3-1)=23-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误7.C解析:C 【解析】试题分析:∵11011101100000a a a d a a ⋅∴>,<,<,>,<, ∴18110111810181060T a a a a S S S =+⋯+--⋯-=--=(),选C . 考点:1.等差数列的求和;2.数列的性质.8.A解析:A 【解析】试题分析:331313log 1log log log 1n n n n a a a a +++=∴-=Q 即13log 1n n a a +=13n naa +∴= ∴数列{}n a 是公比为3的等比数列335579246()393a a a q a a a ∴++=++=⨯=15793log ()5a a a ∴++=-.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.9.B解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.10.B解析:B 【解析】 【分析】 【详解】因为2,,3n n S a 成等差数列,所以223n n S a =+,当1n =时,111223,2S a a =+∴=-;当2n ≥时,1113333112222n n n n n n n a S S a a a a ---=-=+--=-,即11322n n a a -=,即()132nn a n a -=≥,∴数列{}n a 是首项12a =-,公比3q =的等比数列,()()55151213242113a q S q---∴===---,故选B.11.D解析:D 【解析】 【分析】根据三角形内角和定理可知,再由正弦定理即可求出AB .【详解】 由内角和定理知,所以,即,故选D. 【点睛】本题主要考查了正弦定理,属于中档题.12.C解析:C 【解析】 【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】Q A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<,1322a ∴-<<故选:C 【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键二、填空题13.【解析】【分析】由题意可得运用累加法和裂项相消求和可得再由不等式恒成立问题可得恒成立转化为最值问题可得实数的取值范围【详解】解:由题意数列中即则有则有又对于任意的不等式恒成立即对于任意的恒成立恒成立 解析:(,1]-∞-【解析】 【分析】 由题意可得11111(1)1n n a a n n n n n n +-==-+++,运用累加法和裂项相消求和可得11n an ++,再由不等式恒成立问题可得232t a ≤-⋅恒成立,转化为最值问题可得实数t 的取值范围.【详解】解:由题意数列{}n a 中,1(1)1n n na n a +=++, 即1(1)1n n na n a +-+= 则有11111(1)1n n a a n n n n n n +-==-+++ 则有11111111n n nn n n a a a a a a n n n n n n ++--⎛⎫⎛⎫⎛=-+-+- ⎪ ⎪ ++--⎝⎭⎝⎭⎝2211122n a a a a n -⎫⎛⎫+⋯+-+ ⎪⎪-⎝⎭⎭(11111111121n n n n n n ⎛⎫⎛⎫⎛⎫=-+-+-+⋯+ ⎪ ⎪ ⎪+---⎝⎭⎝⎭⎝⎭11)12221n -+=-<+ 又对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立, 即232t a ≤-⋅对于任意的[2,2]a ∈-恒成立,21t a ∴⋅≤,[2,2]a ∈-恒成立,∴2211t t ⋅≤⇒≤-, 故答案为:(,1]-∞- 【点睛】本题考查了数列递推公式,涉及数列的求和,注意运用裂项相消求和和不等式恒成立问题的解法,关键是将1(1)1n n na n a +=++变形为11111n n a a n n n n +-=-++. 14.3【解析】试题分析:根据条件解得那么当且仅当时取得等号所以的最小值为3故填:3考点:基本不等式解析:3 【解析】试题分析:根据条件,解得,那么,当且仅当时取得等号,所以的最小值为3,故填:3. 考点:基本不等式15.【解析】由三角形中三边关系及余弦定理可得应满足解得∴实数的取值范围是答案:点睛:根据三角形的形状判断边满足的条件时需要综合考虑边的限制条件在本题中要注意锐角三角形这一条件的运用必须要考虑到三个内角的 解析:2210a <<【解析】由三角形中三边关系及余弦定理可得a 应满足22222222224130130310a a a a <<⎧⎪+->⎪⎨+->⎪⎪+->⎩,解得a << ∴实数a的取值范围是.答案: 点睛:根据三角形的形状判断边满足的条件时,需要综合考虑边的限制条件,在本题中要注意锐角三角形这一条件的运用,必须要考虑到三个内角的余弦值都要大于零,并由此得到不等式,进一步得到边所要满足的范围.16.2【解析】【分析】利用已知条件求出公比再求出后可得结论【详解】设等比数列公比为则又数列是递增的∴∴故答案为:2【点睛】本题考查等比数列的通项公式和前项和公式属于基础题解析:2 【解析】 【分析】利用已知条件求出公比q ,再求出144,,S S a 后可得结论. 【详解】设等比数列{}n a 公比为q ,则2454232(1)4(1)a a a q q a a a q ++===++,又数列{}n a 是递增的,∴2q =,∴44121512S -==-,111S a ==,3428a ==,14411528S S a ++==. 故答案为:2. 【点睛】本题考查等比数列的通项公式和前n 项和公式,属于基础题.17.【解析】【分析】构造数列得到数列是首项为1公差为2的等差数列得到【详解】设则数列是首项为1公差为2的等差数列故答案为【点睛】本题考查了数列的通项公式的求法构造数列是解题的关键意在考查学生对于数列通项 解析:2221n n -- 【解析】 【分析】 构造数列11n nb a =-,得到数列n b 是首项为1公差为2的等差数列21n b n =-,得到2221n n a n -=-.设11n n b a =-,则12n n b b +-=,11111b a ==- 数列n b 是首项为1公差为2的等差数列1222121121n n n b n n a n n a -=⇒=--⇒--= 故答案为2221n n -- 【点睛】本题考查了数列的通项公式的求法,构造数列11n nb a =-是解题的关键,意在考查学生对于数列通项公式的记忆,理解和应用.18.2【解析】【分析】根据题意由tanB =3tanC 可得3变形可得sinBcosC =3sinCc osB 结合正弦定理可得sinBcosC ﹣sinCcosBsinA×a 变形可得:sinBcosC ﹣sinCc解析:2 【解析】 【分析】根据题意,由tan B =3tan C 可得sinB cosB =3sinCcosC⨯,变形可得sin B cos C =3sin C cos B ,结合正弦定理可得sin B cos C ﹣sin C cos B 14=sin A ×a ,变形可得:sin B cos C ﹣sin C cos B 14=sin (B +C )×a ,由和角公式分析可得sin B cos C ﹣sin C cos B 14=⨯a ×(sin B cos C +sin C cos B ),将sin B cos C =3sin C cos B 代入分析可得答案. 【详解】根据题意,△ABC 中,tanB =3tanC ,即sinB cosB =3sinCcosC⨯,变形可得sinBcosC =3sinCcosB , 又由bcosC ﹣ccosB 14=a 2,由正弦定理可得:sinBcosC ﹣sinCcosB 14=sinA ×a , 变形可得:sinBcosC ﹣sinCcosB 14=sin (B +C )×a , 即sinBcosC ﹣sinCcosB 14=⨯a ×(sinBcosC +sinCcosB ), 又由sinBcosC =3sinCcosB ,则2sinCcosB =sinCcosB ×a , 由题意可知:2B π≠,即sinCcosB≠0,变形可得:a =2; 故答案为:2.本题考查三角函数的恒等变形,涉及正弦定理的应用,考查计算能力,属于基础题.19.【解析】【分析】构造新数列计算前n 项和计算极限即可【详解】构造新数列该数列首项为1公比为则而故【点睛】本道题考查了极限计算方法和等比数列前n 项和属于中等难度的题目解析:9lim 8n n T →∞=【解析】 【分析】构造新数列{}21n a -,计算前n 项和,计算极限,即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F1 F2 F3
尚文家教初三理科第一学期期末模拟测试(五) 一.机械与功 1.有三个相同的杠杆,杆上每小格为0.1m,在杆上相同的位置挂有重力都为G的物体.三个杠杆分别在F1、F2、F3的作用下处于水平平衡状态,如图所示,这三个力中最大的是( )
A.F1 B.F2 C.F3 D.无法判断 2.在如图所示的四种情境中,人对物体做功的是 ( )A.提着水桶在水平路上行走 B.举着杠铃不动 C.搬石头没搬动 D.推着小车向前运动 3.两名运动员,甲运动员比乙运动员高,如果他们举起相同质量的杠铃所用的时间相等,如图所示,则 ()A.甲做功较多,功率较大B.甲做功较多,功率较小 C.甲做功较多,甲、乙功率相等D.甲、乙做功相等,乙的功率较大 4. 如图所示,一根轻质木杆,A端细线下所挂50N的重物静止在水平地面上。当在B点加竖直向下的力F=30N作用时,木杆恰能在水平位置处于平衡状态,此时细线竖直。已知OA=15cm,OB=5cm,则重物对水平地面的压力为( ) A. 80N B. 60N C. 40N D. 20N
5.坐在跷跷板上的两个小孩恰好在水平位置平衡,此时 ( )A.两小孩重力一定相等B.两小孩到支点的距离一定相等 C.两小孩质量一定相等 D.小孩的重力和他们各自到支点距离的乘积相等 6.某人用50 N的力把冰面上一个重为10 N 的冰块沿冰面踢出去,冰块在冰面上滑行40 m后停下来.对于冰块在滑行过程中的做功情况,下列说法中正确的是( ) A.人对冰块做了2 000 J的功 B.冰块自身的重力对冰块做了400 J的功 C.人和冰块自身的重力都没有对冰块做功 D.人和冰块自身的重力共对冰块做了1600 J的功 7.一根直棒(自重不计)作为杠杆使用,已知动力作用点和支点在直棒的两端.阻力作用点在直棒的中点,则该杠杆 ( )A.一定是省力的 B.一定是省距离的 C.可能是省力的 D.既省力又省距离 8.如图所示,作用在杠杆一端且始终与杠杆垂直的力F将杠杆缓慢地由位置A拉至水平位置B,力F的大小在这个过程中的变化情况是 ( ) A.变大 B.变小 C.不变 D.先变大后变小 9.如图所示,密度均匀的直尺AB放在水平桌面上,尺子伸出桌面的部分OB是尺长的三分之一,当在B端挂5 N的重物P时,直尺A端刚刚开始翘起,则此直尺的重力为( ) A.2.5 N B.5 N C.10 N D.无法确定 二.机械能 1.下列物体中不具有动能的是 [ ] A.流动的河水B.被拦河坝挡住的水 C.正在下降的飞机 D.在平直的公路上停着的汽车 2.建三峡水电站,先修建较长较高的拦水坝,这是因为 [ ]A.增大上游水的动能,可转化为较大的势能发电 B.增大上游水的势能,可转化为较大的动能发电 C.利用功的原理 D.以上说法都有错误 3.关于功和能,下列各种说法中正确的是 [ ]A.高度大的物体势能一定大 B.速度大的物体动能一定大 C.物体具有做功的本领,就说它具有能 D.物体运动时的机械能一定比它静止时大 4.跳伞运动员在空中匀速降落时机械能将 [ ]A.逐渐减少 B.逐渐增大 C.保持不变 D.无法说明机械能的变化情况 5.下列过程中,属于动能转化为势能的是 [ ]A.将一块石子向上抛出B.张开的弓把箭射出 C.自行车从高坡上滑下 D.无答案 6.关于功和能的叙述,其中正确的是 [ ]A.能量就是物体做功的本领,所以能量就是功 B.一个物体具有的能量越多,这个物体具有的功越多 C.弹簧一定具有弹性势能 D.具有能的物体不一定在做功 7.把一杯酒精倒掉一半,则剩下的酒精( )A. 比热不变,燃烧值变为原来的一半 B.比热和燃烧值均不变 C. 比热变为原来的一半,燃烧值不变 D.比热和燃烧值均变为原来的一半 8..甲、乙两个冰块的质量相同,温度均为0℃。甲冰块位于地面静止,乙冰块停止在10米高处,这两个冰块( )。 A. 机械能一样大 B.乙的机械能大 C.内能一样大 D. 乙的内能大 9..下列说法中正确的是( )A. 某一物体温度降低的多,放出热量就多 B.温度高的物体比温度低的物体含有热量多 C. 温度总是从物体热的部分传递至冷的部分 D.深秋秧苗过夜要灌满水,是因为水的温度高
甲 乙 10.关于热量、内能和温度,下列说法中,正确的有( ) A. 物体吸收热量,温度一定升高 B. 物体内能增加,一定吸收热量 C. 物体温度升高,内能一定增加 D. 质量相同的两个物体,温度升高得多的物体吸收的热量不一定多 三.欧姆定律
1.如图所示电路,电源电压6V保持不变,定值电阻的阻值为10Ω,滑动变阻器的最大阻值为20Ω,当开关闭合,滑片由b端向a端移动的过程中,以下说法正确的是[ ]A.当滑片移到a端时,电流表示数为0.2 A B.当滑片移到中点时,电压表示数为2V C.电压表示数与电流表示数的比值不变 D.电压表的示数减小 2.在图中所示的电路中,电源电压不变闭合开关后,滑动变阻器的滑片P向右端滑动时[ ]A.电流表示数减小,电压表示数减小 B.电流表示数不变,电压表示数不变 C.电流表示数增大,电压表示数减小 D.电流表示数减小,电压表示数增大
3.如图,闭合开关S后,使滑动变阻器R的滑片P向左滑动,则[ ]A.电流表的示数变大,电压表的示数变大,灯变暗 B.电流表的示数变小,电压表的示数变大,灯变亮 C.电流表示数变大,电压表的示数变小,灯变暗 D.电流表示数变大,电压表的示数变小,灯变亮 4.如图所示,将开关S闭合后,向左移动滑动变阻器滑片P.灯的亮度变化情况正确的是[ ] A.灯L1变亮 B.灯L2变亮 C.灯L3变亮 D.以上说法都不对
5.如图表示了通过某导体的电流与其两端电压的关系,由图中信息可知[ ]A.导体的电阻为6Ω B.导体的电阻为1.5Ω C.导体的电阻随导体两端电压的增大而增大 D.导体两端电压为O时,导体的电阻也为0 6.标有“2V 1W”字样的小灯泡和标有“20Ω 1 A”字样的滑动变阻器,连接在如图所示的电路中,其中电源电压为6V,电流表的量程为“0~0.6 A”,电压表的量程为“0~3V”.闭合开关,移动滑动变阻器滑片,电流表、电压表示数的范围是[ ]
A. 0.25~0.6 A 1~2.4 V B. 0.3~0.5 A 1~1.5 V C. 0.25~0.5 A 1.5~2.4 V D. V 0.25~0.5 A 1~2.4
7.如图的电路中,R为定值电阻.闭合开关后,当滑片P在某两点之间滑动时,电流表示数变化范围是0.5~1.5 A.电压表示数变化范围是6~3 V,则[ ]A.变阻器连人电路的电阻变化范围为12~2 Ω B.电源电压为7.5V C.实验中R两端的电压变化范围为2~4.5 V D.R的阻值为3Ω 8.如图所示电路,电源电压恒定不变.当S1闭合S2断开时,电压表的示数为3 V;当S1断开S2闭合时,电压表的示数为9V,则R1:
R2为[ ]A. 1:3 B. 3:1 C. 1:2 D. 2:1
三.电功 1. .如图所示电路,电源电压不变,当开关S2闭合、S1断开时,电流表示数为0.3A,电压表示数为9V;若将两表互换位置,并同时闭合S1和S2时,电流表示数为0.5A。则下列说法中错误的是[ ]A.电压表示数仍为9V ; B.R1的阻值为18Ω; C.R2的阻值为45Ω ; D.R2消耗的功率为6.75W. 2..灯Ll标有“8V 16W”的字样,灯L2标有“12V 36W”的字样.两灯串联后接在电压为U的电路中,要保证两灯不损坏,电压U的最大值应是[ ]A.8V ; B.12V ; C.16V; D.20V. 3.下列家用电器中,正常工作一小时耗电最接近1kW·h的是[ ]: A.电子表; B.手电筒 ; C.电视机; D.空调机. 4..如图所示电路,阻值为6Ω的电阻与一个“6V 3W”的小灯泡串联后接到9V的电路中,小灯泡恰能正常发光;如果在此电路中将“6V 3W”的小灯泡换成“6V 4.5W”的小灯泡,那么该小灯泡的实际功率:(设电源电压不变)[ ] A、等于4.5W; B、小于4.5W; C、大于4.5W; D、等于3W. 5.两个定值电阻R1和R2,阻值分别为10 Ω和20 Ω,允许通过的电流分别为1 A和 0.5 A,将它们串联在电路中,下列说法中正确的是[ ]A.加在它们两端的电压最大值为20 V; B.通过电路的电流最大值为1 A; C.通过电路的电流最大值为0.5 A; D.他们的总功率最大值是15 W. 6.如果加在定值电阻两端的电压从6V减小到3V,通过的电流相应地变化了0.3A,那么该定值电阻消耗的电功率减小了[ ]:A.0.9W ; B.1.8W; C.2.7W; D.4.5W. 四.电学综合 1.一个灯泡的铭牌上标着“PZ220──100”,在室温下用伏安法测得它的灯丝电阻为R1,后在正常工作时再用伏安法测得它的灯丝电阻为R2=48.4欧,发现R2比R1大10倍以上,这是由于( )A. 前一次测得的阻值必定是错的 B.后一次测得的阻值是错的 C.对大多数导体来说,温度越高,电阻越大,灯丝属于这种导体 D.不论什么导体,都是温度越高电阻越大 2.把一个1.5欧的电阻与一个用电器串联后接到电压是7伏的电源上,要想使用电器消耗的功率是8瓦,则这个电源供给用电器的电流可能是( ) A. 2安 B. 3.5安 C. 2.67安 D. 2.31安 3..一盏电灯接到220V的电源上使用时,功率为100W,如果将这个电源连上长导线,再接这盏灯使用,它的功率为81W,求导线上消耗的电功率( )A.19W ; B.9W; C.15W; D.4.5W. 4.将灯L接到电压为U的电路上时,灯的电功率为25瓦,若将灯L与一个电阻R串联后仍接在原电路上时,灯L消耗的电功率为16瓦,设灯丝电阻不变,则此电阻消耗的电功率是( ) A. 2瓦 B. 4瓦 C. 8瓦 D. 9瓦 5.甲灯标明10V,乙灯标明4W。甲、乙两灯电阻分别为R甲:R乙。且R甲>R乙,并保持不变。将它们以某种方式接到电压为U的电源上时,两灯均正常发光,将它们以另一种方式连接到电压为U′的电源上时,乙灯正常发光,甲灯的实际功率是额定功率的16/25,则U′与U的比值为( )A. 4:9 B. 9:4 C. 4:5 D. 5:4 6..一根电热丝的电阻值为R,将它接在电压为U的电路中时,在时间t内产生的热量为Q。使用一段时间后,比电热线被剪掉了一小段,剩下一段的电阻值为3/4R。现将剩下的这段电热丝接入电路,则( )A.若仍将它接在电压为U的电路中,在时间t内产生的热量为3/4Q B.若仍将它接在电压为U的电路中,产生的热量为Q,所需时间为3/4t C.若将它接入电压为3/4U的电路中,在时间t内产生的热量为3/4Q D.若将它接入另一电路,在时间t内产生的热量仍为Q,这个电路的电压为3/4U 五.基本概念 1.下列反应中,不属于氧化反应的是( )A.C + O2CO2 B.CH4 + 2O2 CO2+ 2H2O C. CaO + H2O == Ca(OH)2 D.CuO + H2 Cu + H2O 2.用扇子一扇,燃着的蜡烛立即熄灭,原因是( ) A.供给的氧气减少 B.供给的空气增加 C.使蜡烛的着火点降低 D.将温度降低至蜡烛的着火点以下 3..以下生活、学习经验,不能说明分子间有空隙的是( )A.打气筒能将气体压缩 B。酒精和水混合后,总体积变小 C.物体有热胀冷缩的现象 D。海绵能吸水 4..集气瓶中装有某气体,经检验只含有氧元素。则下列说法正确的是( )A.该气体一定是氧气(O2),属于单质 B.该气体一定是臭氧(O3)属于纯净物 C.该气体一定是氧气和臭氧的混合物 D.该气体一定不属于化合物 5.某种元素的原子变成离子,则该元素的原子( )A.一定得到了电子 B.一定失去了电子 C.一定变成了另一种元素的离子 D.可能得到电子,也可能失去电子 6.科学家发现半胱氨酸能增强艾滋病毒感染者的免疫力。已知半胱氨酸的分子化学式为C3 H7 NSO2。下列说法错误的是( ) A.一个半胱氨酸分子由1 4个原子构成 B. 半胱氨酸的相对分子质量为121 C. 半胱氨酸由5种元素组成 D. C、H、N、S、O元素的质量比为3:7:1:1:2 7.下列关于双氧水(H2O2)组成的叙述正确的是( )A.它是由H2和O2组成的 B.它是由两个氢原子和两个氧原子组成的 C.它是由氢、氧两种元素组成的 D.它是由水和氧原子组成的 8.月球土壤含有大量氦3原子,它可能成为未来核能的重要原料。我国“嫦娥工程”探月计划的一个重要目标是开发月球新能源——氦3。氦3原子核内有2个质子和1个中子。氦3原子结构示意图是( )