2014浙江省专升本高等数学试卷回忆版

合集下载

2014专升本高等数学真题及答案

2014专升本高等数学真题及答案

河南省2014年普通高校等学校选拔优秀本科毕业生本科阶段学习考试高等数学一.选择题(每小题2分,共60分)1.函数2()sin 9ln(1)f x x x =-+-的定义域是()A.(1,3] B.(1,)+∞ C.()3,+∞ D.[3,1)-2.已知2(2)2f x x x =-,则()f x =()A.2114x + B.2114x - C.214x x - D.114x +3.设()f x 的定义域为R ,则()()()g x f x f x =--.()A.是偶函数 B.是奇函数C.不是奇函数也不是偶函数D.是奇函数也是偶函数4.已知224lim 42x ax x →+=--,则()A.1a =- B.0a = C.1a = D.2a =5.1x =-是函数2212x y x x -=--的()A.跳跃间断点B.可去间断点C.连续点D.第二类间断点6.当x→0时,比1cos x -高阶的无穷小是()A.211x +- B.2ln(1)x +C.sin xD.3arctan x7.已知()ln f x x =,则220()()lim 2h f x h f x h→+-=()A.2ln xx -Bln x x C.-21xD.1x8.曲线sin 2cos y t x t=⎧⎨=⎩(t 为参数)。

在2t=对应点处切线的方程为()A.1x =B.1y =C.1y x =+ D.1y x =-9.函数()(1)(2)(3)(4)f x x x x x x =----,则方程'()0f x =实根的个数为()A.2B.3C.4D.510.设()y y x =是由方程xy xy e =+确定的隐函数。

则dy dx=A.11x y x +-- B.21y xy x --C.11y x+- D.12x x xy---11.已知函数()f x 在区间[]0,a (a>0)上连实,(0)f >0且在(0,a)上恒有'()f x >0,设10()aS f x dx =⎰,2(0)S af =,1S 与2S 的关系是()A.1S <2SB.1S =2SC.1S >2S D.不确定12.曲线31y x =+()A.无拐点B 有一个拐点C.有两个拐点D.有三个拐点13.曲线y=12x -的渐近线的方程为()A.0,1x y ==B1,0x y ==C.2,1x y == D.2,0x y ==14.设()F x 是()f x 的一个原函数则()xx e f e dx --⎰=()A.()xF e c -+ B.()xF e c --+C.()x F e c+ D.()xF e c-+15.设()f x 在[],a b 上连续,则由曲线()y f x =与直线x=a,x=b,y=0所围成平面图形的面积为()A ()baf x dx⎰B.()baf x dx⎰C.()b af x dx ⎰D.()()()f b f a b a --16.设()f x 是连实函数,满足()f x =21sin 1x x ++_11(),f x dx -⎰则lim ()x f x →∞=()A.B.-6πC.3πD6π17.设()f x =(1)sin ,xt tdt -⎰则'()f x =()A.sin cos x x x +B.(1)cos x x- C.sin cos x x x- D.(1)sin x x-18.下列广义积分收敛的是()A.2ln xdx x+∞⎰B.11dx x+∞⎰C.2111dx x -⎰D.1cos xdx+∞⎰19.微方程0dx dy y x+=的通解是()A.2225x y += B.34x y c+= C.22x y c+= D.227y x -=20解常微方程''2'xy y y xe -+=的过程中,特解一般应设为()A.2=)xy Ax Bx e+半( B.=xy Axe半 C.=xy Ae半 D.2=()xy x e Ax B +半21.已知a,b,c 为非零向量,且0a b ⋅=,0b c ⨯=则()A.a b ⊥ 且b cB.a b b c⊥ 且 C.a c b c⊥ 且 D.a c b c⊥ 且22、直线L:==3-25x y z与平面π:641010x y z -+-=的位置关系是()A、L 在π上B、L 与π平行但无公共点C、L 与π相交但不垂直D、L 与π垂直23、在空间直角坐标系内,方程222-y =1x 表示的二次曲面是()A、球面B、双曲抛物面C、圆锥面D、双曲柱面24、极限0y 02lim+1-1x xyxy →→=()A、0B、4C、14D、-1425、点(0,0)是函数z xy =的()A、驻点B、极值点C、最大值点D、间断点26、设{}(,)21D x y x y =≤≤,则()+Dxy y dxdy ⎰⎰=()A、0B、-1C、2D、127、设(),f x y 为连续函数,()()122-01,+,x xdx f x y dy dx f x y dy ⎰⎰⎰⎰交换积分次序后得到()A、()212,yy dy f x y dx⎰⎰B、()2,ydy f x y dx⎰⎰C、()12-0,y ydy f x y dx⎰⎰D、()2022,yy dy f x y dx⎰⎰28、L 为从(0,0)经点(0,1)到点(1,1)的折线,则2+Lx dy ydx ⎰=()A、1B、2C、0D、-113.下列级数条件中收敛的是()A、2n=12n-1n +1∞∑B、n nn=11-3∞∑(1)C、22n=1n +n+1n -n+1∞∑D、nn=11-n∞∑(1)30、级数2n=114n -1∞∑的和是()A、1B、2C、12D、14二、填空题(每题2分,共20分)31、设-1=-1x x f x x x ⎛⎫≠⎪⎝⎭(0,1),则()f x =______.32、设连续函数()f x 满足22()()f x x f x dx =-⎰,则2()f x dx ⎰=______.33、已知(){,1ln 1x a x x x f x -<≥=,,若函数()f x 在1x =连续,则a=______.34、设33'(1)12f x x +=+是()01f =-,则()f x =______.35、不定积分cos 2xdx ⎰=______.36、若向量{}{}{}0,1,1;1,0,1;1,1,0a b c ===则()a b c ⨯ =______.37、微分方程"4'40y y y -+=的通解()y x =______.38、设arctan222(,)ln()cos y xf x y ex y xy =+,则'(1,0)x f =______.39、函数()222,,f x y z x y z =++在点(1,1,1)处方向导数的最大值为______.40、函数()112f x x=-的幂级数展开式是______.三、计算题(每题5分,共50分)41、求极限20(1)lim1tan -1x x x e x x→-++42、设n a 为曲线ny x =与1(1,2,3,4...)n y xn +==所围的面积,判定级数1n n na ∞-∑的敛散性43.求不定积分21xdx x -⎰.44.计算定积分402x dx -⎰.45.解方程3xy y x '-=.46.已知函数(,)z f x y =由方程20xyz ez e --+=所确定,求dz .47.已知点(4,1,2),(1,2,2),(2,0,1)A B C --求ΔABC 的面积.48.计算二重积分22lnDx y dxdy +⎰⎰,其中22{(,)14}D x y x y =≤+≤.49.计算曲线积分22(1)(1)y x dx x y dy <++-⎰其中L 是圆221x y +=(逆时针方向).50.试确定幂级数01nn x n ∞=+∑的收敛域并求出和函数.四.应用题(每小题7分,共14分)51.欲围一个面积150平方米的矩形场地,所用材料的造价其正面每平方米6元,其余三面是每平方3元,问场地的长,宽各为多少时,才能使造价最低?52.已知D 是抛物线L:22y x =和直线12x =所围成的平面区域,试求:(1)区域D 的面积(2)区域D 绕Ox 轴旋转所形成空间旋转体体积.五.证明题(6分)53.设2e a b e <<<证明2224ln ln ()b a b a e ->-2014专升本真题答案一.选择题1-10A C B A B D B B C B 11-20C B D B C B D C C D 21-30B D D B A A C A D C 二.填空题31.1x 32.8933.134.21x x --35.1sin 22x c=36.237.2212xx x c ec e+38.239.2340.2n nn x ∞=∑,11(,)22x ∈-41.2030303030320220220(1)1tan 11tan 1(1tan 1)1tan (1)(1tan 1)tan 2tan 6sec 16tan 66lim limlimlimlimlim lim lim x x x x x x x x x x e x x x x x x x x x x x x x x x x x x x x x x x x →→→→→→→→-+-+=+-++++=+-++++=-=-=-===42.解:由题意知112110111(1212(1)(2)n n n n n x x a x x dx n n n n n n +++⎡⎤=-=-=-=⎢⎥++++++⎣⎦⎰)1131123231112(1)(2)(1)(2)1(1)(2)lim 101(1)(2)1(1)(2)n n n n n n n n n n n n nna n n n n nn n n n n n n n a n n n∞∞==∞∞→∞==∞∞∞=====++++++=>++++∑∑∑∑∑∑∑故此级数为正项级数且u 由正项级数比较判别法的极限形式知故与级数的敛散性相同且为收敛级数,故为收敛级数即级数收敛43.22212221122211(1)2111(1)(1)21(1)11212xdx d x x x x d x x c x c--+=---=---=+=-+-+⎰⎰⎰44.42x dx-⎰4422422022(2)2222224x dx x dxx x x x =-+-⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦=+=⎰⎰45.原方程可化为21'y y x x-=为一阶线性齐次微分方程,由公式知,其通解为112ln 2ln 2231(+c)2=2x xx xdx x e dx c e x e dx c x x dx c x x xdx c x x x cx ----⎡⎤⎰⎰⋅+⎢⎥⎣⎦⎡⎤=+⎣⎦⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎣⎦=+⎰⎰⎰⎰y=e 46..'''''''2,,22222xy z xy xy z x y Z xy x zz xy y zz xy xyz z z e F ye F xe F e F zye x F e F z xe y F e z zdz dx dy x yye xe dx dy e e --------+=-=-=-∂=-=∂-∂=-=∂-∂∂=+∂∂=+--解:令F(x,y,z)=e 则故所以47.解:{}AB=3,34-- ,,{}AC=2,11-- ,{}AB*AC=3341,5,3211i j k--=--AB ×AC=22215335++=ABC 的面积等于12AB ×AC =35248.在极坐标下22221221222211222122122212lnln .2ln 22.ln ln 22122ln .224ln 224ln 2434ln 2x r rr r x y dxdy d rdrr dr r l d r dr rdrr l θπππππππππ+==⎡⎤=-⎢⎥⎣⎦⎡⎤=-⎢⎥⎣⎦=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰49.由格林公式知2222222222212013410(1)(1)(1)(1)1(1)(1)()(2242x oy x dx x y dy x y y x dxdy y x y y x dxdy x y dxdyd r rdr r drr l θπππ++-⎧⎫⎡⎤⎡⎤∂-∂+⎪⎪⎣⎦⎣⎦=-+=⎨⎬∂∂⎪⎪⎩⎭⎡⎤=--+⎣⎦=-+=--=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中D:x 用极坐标计算)50.解:幂级数01n n x n ∞=+∑中11n a n =+有公式知112limlim 111n n n na n a n ρ+→∞→∞+===+故收敛半径11R ρ==,收敛区间为(1,1)-1x =-时,幂级数为0(1)1nn n ∞=-+∑收敛;1x =时,幂级数为011n n ∞=+∑发散;故幂级数01nn x n ∞=+∑的收敛域为[1,1)-设幂级数01n n x n ∞=+∑的和函数为()s x ,即0()1nn x s x n ∞==+∑则10()1n n x xs x n +∞==+∑由100111n n n n x x n x +∞∞=='⎛⎫== ⎪+-⎝⎭∑∑则1(1)00011(1)ln 111n x x x n x dx d x n x x +∞-===--=-+--∑⎰⎰故(1)()ln x xs x -=-即(1)1()ln x s x x-=-51.解:设场地的长为x ,宽为y ,高为h 。

[专升本(国家)考试密押题库与答案解析]专升本高等数学(一)真题2014年

[专升本(国家)考试密押题库与答案解析]专升本高等数学(一)真题2014年
因为函数f(x)在x=0处连续,则.
问题:5. 曲线y=x+cosx在点(0,1)处的切线的斜率k=______.
答案:1[解析] 本题考查了导数的几何意义的知识点.
因为y=x+cosx,所以y'=1-sinx,y'(0)=1,即所求的斜率k=1.
问题:6. ______.
答案:[解析] 本题考查了第一类换元积分法的知识点.
C.e-5xdx
D.5e-5xdx
答案:A[解析] 本题考查了一元函数的微分的知识点.
因为y=e-5x,所以dy=-5e-5xdx.
问题:3. 设函数f(x)=xsinx,则______
A.
B.1
C.
D.2π
答案:B[解析] 本题考查了导数的基本公式的知识点.
因为f'(x)=sinx+xcosx,所以.
y"+3y'+2y=0.
特征方程为r2+3r+2=0,
特征根为r1=-2,r2=-1.
所以齐次方程的通解为
Y=C1e-2x+C2e-x.
设y*=Aex为原方程的一个特解,
代入原方程可得
所以原方程的通解为
C.(1,-2,3);2
D.(1,-2,3);4
答案:C[解析] 本题考查了球的球心坐标与半径的知识点.
(x-1)2+[y-(-2)]2+(z-3)2=22,所以,该球的球心坐标与半径分别为(1,-2,3),2.
二、填空题
问题:1. 设,则a=______.
答案:[解析] 本题考查了特殊极限的知识点.
问题:9. 过原点(0,0,0)且垂直于向量(1,1,1)的平面方程为______.

2014年普通高等学校招生全国统一考试(浙江卷)数学(文)试卷及解析

2014年普通高等学校招生全国统一考试(浙江卷)数学(文)试卷及解析
(2)求 面积的最大值.
22.本题主要考查抛物线几何性质、直线与抛物线的 位置关系、三角形面积公式、平面向量等基础知识,同时考查解析几何的基本思想方法和运算求解能力。满分14分。
(1)由题意知,焦点为 ,准线方程为 ,
设 ,由抛物线的定义知, ,得到 ,
代入 求得 或 ,
所以 或 ,由 得 或 ,
(2)设直线 的方程为 , , , ,
(1)因为 ,
①当 时,
若 ,则 , ,故 在 上是减函数;
若 ,则 , ,故 在 上是增函数;
所以, .
②当 ,则 , , ,故 在 上是减函数,
所以 ,
综上所述, .
(2)令 ,
①当 时, ,
若 , 得 ,所以 在 上是增函数,所以 在 上的最大值是 ,且 ,所以 ,
故 .
若 , ,则 ,所以 在 上是减函数,
14.在三张奖劵中有一、二等各一张,另有一张无奖,甲乙两人各抽取一张,两人都中奖的概率为
.
15.设函数 ,若 ,则 .
16.已知实数 、 、 满足 , ,则 的最大值为为_______.
17. 设直线 与双曲线 的两条渐近线分别交于 、 ,若 满足 ,则双曲线的离心率是.
三.解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
(1)连结 ,在直角梯形 中,由 , 得 ,
由 得 ,即 ,
又平面 平面 ,从而 平面 .
(2)在直角梯形 中,由 , 得 ,
又平面 平面 ,所以 平面 .
作 于 的延长线交于 ,连结 ,则 平面 ,
所以 是直线 与平面 所成的角.
在 中,由 , ,得 , ,
在 中, , ,得 ,
在 中,由 , 得 ,

2014年普通高等学校招生全国统一考试数学理试题(浙江卷,解析版)

2014年普通高等学校招生全国统一考试数学理试题(浙江卷,解析版)

2014年普通高等学校招生全国统一考试〔浙江卷〕数学〔理科〕一.选择题:本大题共10小题,每一小题5分,共50分. 在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,如此=A C U 〔 〕A. ∅B. }2{C. }5{D. }5,2{ 【答案】B 【解析】.},2{},4,,3{},4,3,2{B A C A U u 选=∴==(2)i 是虚数单位,R b a ∈,,如此“1==b a 〞是“i bi a 2)(2=+〞的〔 〕 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A 【解析】..∴.1-,1∴,2),2),1.1-,1.22,0-∴22-)2222222A b a b a i bi a i bi a b a b a b a ab b a i abi b a bi a 选件综上,是充分不必要条不是必要条件,或(是充分条件,(或(=====+=+∴======∴===+=+〔3〕某几何体的三视图〔单位:cm 〕如下列图,如此此几何体的外表积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm【答案】D 【解析】.138.93*3.186*3.363*4*3.935*34*6363*4*3D S S S S S S S S S S S 。

选几何体表面面积左面面积右面面积前后面面积,上底面面积几何体下底面面积右右前后上下左右前后上下=++++=∴=======+===4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像〔 〕A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位【答案】C 【解析】.12π6π(3sin 22π3sin(23cos 2∴)12π(3sin 2)4π3sin(23cos 3sin C x x x y x x x x y 可以得到。

2014年普通高等学校招生全国统一考试(浙江)(一)数学(文科)试卷

2014年普通高等学校招生全国统一考试(浙江)(一)数学(文科)试卷

2014年普通高等学校招生全国统一考试(浙江)(一)数学(文科)试卷本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式: 球的表面积公式 S =4πR 2球的体积公式 V =43πR 3 其中R 表示球的半径 锥体的体积公式V =13Sh 其中S 表示锥体的底面积, h 表示锥体的高柱体的体积公式 V=Sh其中S 表示柱体的底面积, h 表示柱体的高 台体的体积公式()1213V h S S =其中S 1, S 2分别表示台体的上、下底面积, h 表示台体的高如果事件A , B 互斥, 那么 P (A +B )=P (A )+P (B )一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设偶函数满足()24(0),xf x x =-≥则{}()0x f x >=A.{2x x <-或}4x >B.{0x x <或}4x >C.{2x x <-或}2x > D.{0x <或}6x > 2.已知复数z 满足(1)3,z i i i ⋅-=+为虚数单位,则z =C.5D.33.若a ∈R ,则“3a =”是“直线230ax y a ++=与直线23(1)30x a y a a +-+-+=互相平行”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.设,a b 表示两条不同的直线,,αβ表示两个不同的平面A.若α∥,,,a b βαβ⊂⊂则a ∥bB.若α⊥,a β∥β,则a α⊥C.若,,a a b a α⊥⊥∥,β则b ∥βD.若α⊥,,,a b βαβ⊥⊥则a b ⊥ 5.已知某几何体的三视图(单位:cmA.1cm 2B.3cm 2C.cm 2D.+cm 26.矩形ABCD 所在的平面与地面垂直,A 点在地面上,AB =a , BC =b ,AB 与地面成)20(πθθ≤≤角(如图).则点C 到地面 的距离函数()h θ=A.θθsin cos b a +B.θθcos sin b a +C.|cos sin |θθb a -D.|sin cos |θθb a -7.设12,x x 是函数()(1)xf x a a =>定义域内的两个变量,且12x x <.设122x x m +=,则下列不等式恒成立的是 A.12()()()()f m f x f x f m ->- B.12()()()()f m f x f x f m -<- C.12()()()()f m f x f x f m -=- D.212()()()f x f x f m > 8.若函数32()(,,0)f x ax bx cx d a b c =+++>在R 上是单调函数,则'(1)f b的取值范围为 A.(4,)+∞ B.(2)++∞ C.[4,)+∞ D.[2)++∞9.过椭圆22222(0)x y c a b a b+=>>的右焦点(,0)F c 作圆222x y b +=的切线FQ (Q 为切点)交椭圆于点P ,当点Q 恰为FP 的中点时,椭圆的离心率为C.1210.已知函数ln ,0e()2ln ,ex x f x x x ⎧<≤=⎨->⎩,若,,a b c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围为A.2(1e,1e+e )++ B.21(2e,2+e )e+ C.22+e ) D.1+2e)e2014年普通高等学校招生全国统一考试(浙江)(一)正视图俯视图(第5题图)(第6题图)数学(文科)非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2014专升本高等数学真题及答案

2014专升本高等数学真题及答案

河南省2014年普通高校等学校选拔优秀本科毕业生本科阶段学习考试高等数学一.选择题(每小题2分,共60分)1.函数2()sin 9ln(1)f x x x =-+-的定义域是()A.(1,3] B.(1,)+∞ C.()3,+∞ D.[3,1)-2.已知2(2)2f x x x =-,则()f x =()A.2114x + B.2114x - C.214x x - D.114x +3.设()f x 的定义域为R ,则()()()g x f x f x =--.()A.是偶函数 B.是奇函数C.不是奇函数也不是偶函数D.是奇函数也是偶函数4.已知224lim 42x ax x →+=--,则()A.1a =- B.0a = C.1a = D.2a =5.1x =-是函数2212x y x x -=--的()A.跳跃间断点B.可去间断点C.连续点D.第二类间断点6.当x→0时,比1cos x -高阶的无穷小是()A.211x +- B.2ln(1)x +C.sin xD.3arctan x7.已知()ln f x x =,则220()()lim 2h f x h f x h→+-=()A.2ln xx -Bln x x C.-21xD.1x8.曲线sin 2cos y t x t=⎧⎨=⎩(t 为参数)。

在2t=对应点处切线的方程为()A.1x =B.1y =C.1y x =+ D.1y x =-9.函数()(1)(2)(3)(4)f x x x x x x =----,则方程'()0f x =实根的个数为()A.2B.3C.4D.510.设()y y x =是由方程xy xy e =+确定的隐函数。

则dy dx=A.11x y x +-- B.21y xy x --C.11y x+- D.12x x xy---11.已知函数()f x 在区间[]0,a (a>0)上连实,(0)f >0且在(0,a)上恒有'()f x >0,设10()aS f x dx =⎰,2(0)S af =,1S 与2S 的关系是()A.1S <2SB.1S =2SC.1S >2S D.不确定12.曲线31y x =+()A.无拐点B 有一个拐点C.有两个拐点D.有三个拐点13.曲线y=12x -的渐近线的方程为()A.0,1x y ==B1,0x y ==C.2,1x y == D.2,0x y ==14.设()F x 是()f x 的一个原函数则()xx e f e dx --⎰=()A.()xF e c -+ B.()xF e c --+C.()x F e c+ D.()xF e c-+15.设()f x 在[],a b 上连续,则由曲线()y f x =与直线x=a,x=b,y=0所围成平面图形的面积为()A ()baf x dx⎰B.()baf x dx⎰C.()b af x dx ⎰D.()()()f b f a b a --16.设()f x 是连实函数,满足()f x =21sin 1x x ++_11(),f x dx -⎰则lim ()x f x →∞=()A.B.-6πC.3πD6π17.设()f x =(1)sin ,xt tdt -⎰则'()f x =()A.sin cos x x x +B.(1)cos x x- C.sin cos x x x- D.(1)sin x x-18.下列广义积分收敛的是()A.2ln xdx x+∞⎰B.11dx x+∞⎰C.2111dx x -⎰D.1cos xdx+∞⎰19.微方程0dx dy y x+=的通解是()A.2225x y += B.34x y c+= C.22x y c+= D.227y x -=20解常微方程''2'xy y y xe -+=的过程中,特解一般应设为()A.2=)xy Ax Bx e+半( B.=xy Axe半 C.=xy Ae半 D.2=()xy x e Ax B +半21.已知a,b,c 为非零向量,且0a b ⋅=,0b c ⨯=则()A.a b ⊥ 且b cB.a b b c⊥ 且 C.a c b c⊥ 且 D.a c b c⊥ 且22、直线L:==3-25x y z与平面π:641010x y z -+-=的位置关系是()A、L 在π上B、L 与π平行但无公共点C、L 与π相交但不垂直D、L 与π垂直23、在空间直角坐标系内,方程222-y =1x 表示的二次曲面是()A、球面B、双曲抛物面C、圆锥面D、双曲柱面24、极限0y 02lim+1-1x xyxy →→=()A、0B、4C、14D、-1425、点(0,0)是函数z xy =的()A、驻点B、极值点C、最大值点D、间断点26、设{}(,)21D x y x y =≤≤,则()+Dxy y dxdy ⎰⎰=()A、0B、-1C、2D、127、设(),f x y 为连续函数,()()122-01,+,x xdx f x y dy dx f x y dy ⎰⎰⎰⎰交换积分次序后得到()A、()212,yy dy f x y dx⎰⎰B、()2,ydy f x y dx⎰⎰C、()12-0,y ydy f x y dx⎰⎰D、()2022,yy dy f x y dx⎰⎰28、L 为从(0,0)经点(0,1)到点(1,1)的折线,则2+Lx dy ydx ⎰=()A、1B、2C、0D、-113.下列级数条件中收敛的是()A、2n=12n-1n +1∞∑B、n nn=11-3∞∑(1)C、22n=1n +n+1n -n+1∞∑D、nn=11-n∞∑(1)30、级数2n=114n -1∞∑的和是()A、1B、2C、12D、14二、填空题(每题2分,共20分)31、设-1=-1x x f x x x ⎛⎫≠⎪⎝⎭(0,1),则()f x =______.32、设连续函数()f x 满足22()()f x x f x dx =-⎰,则2()f x dx ⎰=______.33、已知(){,1ln 1x a x x x f x -<≥=,,若函数()f x 在1x =连续,则a=______.34、设33'(1)12f x x +=+是()01f =-,则()f x =______.35、不定积分cos 2xdx ⎰=______.36、若向量{}{}{}0,1,1;1,0,1;1,1,0a b c ===则()a b c ⨯ =______.37、微分方程"4'40y y y -+=的通解()y x =______.38、设arctan222(,)ln()cos y xf x y ex y xy =+,则'(1,0)x f =______.39、函数()222,,f x y z x y z =++在点(1,1,1)处方向导数的最大值为______.40、函数()112f x x=-的幂级数展开式是______.三、计算题(每题5分,共50分)41、求极限20(1)lim1tan -1x x x e x x→-++42、设n a 为曲线ny x =与1(1,2,3,4...)n y xn +==所围的面积,判定级数1n n na ∞-∑的敛散性43.求不定积分21xdx x -⎰.44.计算定积分402x dx -⎰.45.解方程3xy y x '-=.46.已知函数(,)z f x y =由方程20xyz ez e --+=所确定,求dz .47.已知点(4,1,2),(1,2,2),(2,0,1)A B C --求ΔABC 的面积.48.计算二重积分22lnDx y dxdy +⎰⎰,其中22{(,)14}D x y x y =≤+≤.49.计算曲线积分22(1)(1)y x dx x y dy <++-⎰其中L 是圆221x y +=(逆时针方向).50.试确定幂级数01nn x n ∞=+∑的收敛域并求出和函数.四.应用题(每小题7分,共14分)51.欲围一个面积150平方米的矩形场地,所用材料的造价其正面每平方米6元,其余三面是每平方3元,问场地的长,宽各为多少时,才能使造价最低?52.已知D 是抛物线L:22y x =和直线12x =所围成的平面区域,试求:(1)区域D 的面积(2)区域D 绕Ox 轴旋转所形成空间旋转体体积.五.证明题(6分)53.设2e a b e <<<证明2224ln ln ()b a b a e ->-2014专升本真题答案一.选择题1-10A C B A B D B B C B 11-20C B D B C B D C C D 21-30B D D B A A C A D C 二.填空题31.1x 32.8933.134.21x x --35.1sin 22x c=36.237.2212xx x c ec e+38.239.2340.2n nn x ∞=∑,11(,)22x ∈-41.2030303030320220220(1)1tan 11tan 1(1tan 1)1tan (1)(1tan 1)tan 2tan 6sec 16tan 66lim limlimlimlimlim lim lim x x x x x x x x x x e x x x x x x x x x x x x x x x x x x x x x x x x →→→→→→→→-+-+=+-++++=+-++++=-=-=-===42.解:由题意知112110111(1212(1)(2)n n n n n x x a x x dx n n n n n n +++⎡⎤=-=-=-=⎢⎥++++++⎣⎦⎰)1131123231112(1)(2)(1)(2)1(1)(2)lim 101(1)(2)1(1)(2)n n n n n n n n n n n n nna n n n n nn n n n n n n n a n n n∞∞==∞∞→∞==∞∞∞=====++++++=>++++∑∑∑∑∑∑∑故此级数为正项级数且u 由正项级数比较判别法的极限形式知故与级数的敛散性相同且为收敛级数,故为收敛级数即级数收敛43.22212221122211(1)2111(1)(1)21(1)11212xdx d x x x x d x x c x c--+=---=---=+=-+-+⎰⎰⎰44.42x dx-⎰4422422022(2)2222224x dx x dxx x x x =-+-⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦=+=⎰⎰45.原方程可化为21'y y x x-=为一阶线性齐次微分方程,由公式知,其通解为112ln 2ln 2231(+c)2=2x xx xdx x e dx c e x e dx c x x dx c x x xdx c x x x cx ----⎡⎤⎰⎰⋅+⎢⎥⎣⎦⎡⎤=+⎣⎦⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎣⎦=+⎰⎰⎰⎰y=e 46..'''''''2,,22222xy z xy xy z x y Z xy x zz xy y zz xy xyz z z e F ye F xe F e F zye x F e F z xe y F e z zdz dx dy x yye xe dx dy e e --------+=-=-=-∂=-=∂-∂=-=∂-∂∂=+∂∂=+--解:令F(x,y,z)=e 则故所以47.解:{}AB=3,34-- ,,{}AC=2,11-- ,{}AB*AC=3341,5,3211i j k--=--AB ×AC=22215335++=ABC 的面积等于12AB ×AC =35248.在极坐标下22221221222211222122122212lnln .2ln 22.ln ln 22122ln .224ln 224ln 2434ln 2x r rr r x y dxdy d rdrr dr r l d r dr rdrr l θπππππππππ+==⎡⎤=-⎢⎥⎣⎦⎡⎤=-⎢⎥⎣⎦=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰49.由格林公式知2222222222212013410(1)(1)(1)(1)1(1)(1)()(2242x oy x dx x y dy x y y x dxdy y x y y x dxdy x y dxdyd r rdr r drr l θπππ++-⎧⎫⎡⎤⎡⎤∂-∂+⎪⎪⎣⎦⎣⎦=-+=⎨⎬∂∂⎪⎪⎩⎭⎡⎤=--+⎣⎦=-+=--=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中D:x 用极坐标计算)50.解:幂级数01n n x n ∞=+∑中11n a n =+有公式知112limlim 111n n n na n a n ρ+→∞→∞+===+故收敛半径11R ρ==,收敛区间为(1,1)-1x =-时,幂级数为0(1)1nn n ∞=-+∑收敛;1x =时,幂级数为011n n ∞=+∑发散;故幂级数01nn x n ∞=+∑的收敛域为[1,1)-设幂级数01n n x n ∞=+∑的和函数为()s x ,即0()1nn x s x n ∞==+∑则10()1n n x xs x n +∞==+∑由100111n n n n x x n x +∞∞=='⎛⎫== ⎪+-⎝⎭∑∑则1(1)00011(1)ln 111n x x x n x dx d x n x x +∞-===--=-+--∑⎰⎰故(1)()ln x xs x -=-即(1)1()ln x s x x-=-51.解:设场地的长为x ,宽为y ,高为h 。

2014年浙江省高考理科数学真题试题及答案解析(完整版)

2014年浙江省高考理科数学真题试题及答案解析(完整版)

2014年普通高等学校招生全国统一考试(浙江卷)数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤ B.min{||,||}min{||,||}a b a b a b +-≥ C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则 A.321I I I << B. 312I I I << C. 231I I I << D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-b y a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人 为了准确瞄准目标点,需计算由点观察点的仰角的大小. 若则的最大值三、解答题:本大题共5小题,共72分。

浙江省2014年高职考 数学试卷 完整版

浙江省2014年高职考 数学试卷 完整版

2014年浙江省高等职业技术教育招生考试数 学 试 卷姓名__________ 准考证号码__________注意事项1、所有试题均需在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷和草稿纸上作答无效。

2、答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上。

3、选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

非选择题目用黑色字迹的签字笔或钢笔将答案写在答题纸上。

4、在答题纸上作图,可先用2B 铅笔,确定后必须用黑色字迹的签字或钢笔摸黑。

一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分.1.已知集合{,,,}M a b c d =,则含有元素a 的所有真子集个数有A.5个B.6个C.7个D.8个2.已知函数(1)21x f x +=-,则(2)f =A.-1B.1C.2D.33.“0a b +=”是“0a b ⋅=”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件4.下列不等式(组)的解集为{|0}x x <的是A.3323x x-<-B.20231x x -<⎧⎨->⎩C.220x x ->D.|1|2x -<5.下列函数在区间(0,)+∞上为减函数的是A.31y x =-B.2()log f x x =C.1()()2xg x =D.()sin A x x =6.若α是第二象限角,则7απ-是A.第一象限角B.第二象限角C.第三象限角D.第四象限角7.已知向量(2,1)a =-,(0,3)b =,则=|2|a b -A.(2,7)-C.78.在等比数列{}n a 中,若23a =,427a =,则5aA. -81B.81C.81或-81D.3或-3 9.抛掷一枚骰子,落地后面朝上的点数为偶数的概率等于A.0.5B.0.6C.0.7D.0.810.已知角β终边上一点(4,3)P -,则cos βA.35-B.45C.34-D.54 11.cos78cos18sin18sin102︒⋅︒+︒︒=A.2-B.2C.12-D.1212.已知两点(2,5)M -,(4,1)N -,则直线MN 的斜率kA.1B. 1-C .12D. 12-13.倾斜角为2π,x 轴上截距为3-的直线方程为 A.3x =-B. 3x =-C.3x y +=-D. 3x y -=-14.直线:230l x y +-=与圆22:240C x y x y ++-=的位置关系是A.1和2πB.相切C. 相离D. 相交且过圆心15.函数2sin cos2y x x =+的最小值和最小正周期分别为A.相交且不过圆心B.0和2πC. 1和πD. 0和π16.双曲线22149x y -=的离心率e =A.23 B. 32C. 2D.317.将抛物线24y x =-绕顶点按逆时针方向旋转角π,所得抛物线方程为A.24y x =B. 24y x =-C. 24x y =D. 24x y =-18.在空间中,下列结论正确的是A.空间三点确定一个平面B.过直线外一点有且仅有一条直线与已知直线垂直C.如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D.三个平面最多可将空间分成八块二、填空题(本大题共8小题,每小题3分,共24分)19.若04x <<,则当且仅当x =___________时,(4)x x -的最大值为420.从8位女生和5位男生中,选3位女生和2位男生参加学校舞蹈队,共有 种不同选法 21.计算4log 8=___________22.等差数列{}n a 中,已知172,35a S ==,则等差数列{}n a 的公差d =___________ 23.函数2()253f x x x =-++图象的顶点坐标是___________24.已知圆柱底面半径2r =,高3h =,则其轴截面的面积为___________ 25.直线210x y +-=与两坐标轴所围成的三角形面积S =___________ 26.在闭区间[0,2]π上,满足等式sin cos1x =,则x ___________三、解答题(共8小题,满分60分,每小题要写清楚必要的文字步骤)27.(6分)在ABC 中,已知4,5,b c A ==为钝角,且4sin 5A =,求a28.(6分)求过点(0,5)P ,且与直线:320l x y -+=平行的直线方程 29.(7分)化简55(1)(1)x x -++ 30.(8分)已知32tan ,tan 75αβ==,且,αβ为锐角,求αβ+ 31.(8分)已知圆22:4640C x y x y +-++=和直线:50l x y -+=,求直线l 上到圆C的距离最小的点的坐标,并求最小距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

衢州职业技术学院专升本高等数学历年真题
- 1 -
2014浙江省专升本高等数学试卷回忆版
一、选择题4’*5=20’
1.当0xx时,函数)(xf极限存在,)(xg极限不存在,则( D )

A.当0xx时,)()(xgxf必定有极限存在
B.当0xx时,)()(xgxf必定极限不存在 (反例:0)(0xA)
C.当0xx时,若)()(xgxf极限存在,极限必定为零 (反例:0型)
D.当0xx时,)()(xgxf极限可能存在,也可能不存在
2. 曲线xxy33上切线方程平行于x轴的点是( C )
A. )0,0( B.)2,1( C.)2,1( D.)3,1(
3.函数xxxxxf32)2()(不可导点个数是( D )
A.3 B.1 C.0 D.2 (讨论1,0,1x处可导性,1x处可导)

4. )1)(sin(sinux-t)sin()(00xduudxddtxtdxdxfxx令( A )
A.xsin B.xsin C.xcos1 D.0
5.微分方程)1(1'2xxxyy的通解为( B )

A.Cx1arctan B. )(arctan1Cxx C.Cxxarctan1 D.Cxxarctan1
二、填空题4’*10=40’

6.设函数001)(xxxxxf,则)]([xff001112xxxxxx。

7.设)(xf在),(上连续,3)2(f,则)2sin(3sinlim0xxfxxx 9 。
8.曲线)0)(1ln(xxexy的渐近线为exy1。
衢州职业技术学院专升本高等数学历年真题

- 2 -
9. 曲线)0(112xxy的拐点为)43,33(。
10. xxy11ln,则0'xy1。
11.点)1,0(A到曲线xxy2的最短距离为22。(A在法线上,求得切点)23,21(P)
12. 已知1)(cba,则ccbba)]()[(= 1 。
13. 微分方程0)1()1(xdxyydyx的通解为cyxyy1ln1ln。
14.已知0'"byayy的通解为xxecec221,则1'"byayy满足
1)0(',2)0(yy

的解为212542xxee。
15.将函数xxf2sin)(展开成x的幂级数为

)!2(2)1()!2()1(212122cos1)(21120nxn
xxxfnnnnnn

三、计算题4*7’+4*8’=60’

16.
22222022220222022sincossin2sinlim2221sincossin2lim2)ln()ln(sinlimxxxxxexexexexexexxxexxexxxxxxxxxx

x

x

101021211sincos2limsinlim21)1(2)sincos2(sinlim000
xxxxxxxxxxxxx

17. 求111)(xxexf的间断点,并判别类型

解:当 0x时,)(xf分母为0无定义,)(xf间断,且
10011lim)(limxxxxexf
,0x为)(xf的第二类无穷间断点;

当 1x时,1xx分母为0无定义,)(xf间断,且
衢州职业技术学院专升本高等数学历年真题

- 3 -
011lim)(lim,1lim1111xxxxxexf
x

x

111lim)(lim,,0lim,1lim111111xxxxxxxxexfe
x

x

1x
为)(xf的第一类跳跃间断点;

18.设)(xyy满足参数方程ttyttx2)1ln(,求22dxyd.

ttttdtdxdtdydx
dy13211112/


3222
2
)12)(1(11112)()(tttttdtdxdxdydtddxdydxddxyd



19.已知xxxf22tan2cos)(sin',求)(xf
解:令ux2sin,则uuuuuuf112121)('
cuuduuuuf1ln)112()(
2
cxxxf1ln)(
2
20. 求不定积分dxxx2sin1.
cxxdxxdxdxxxcot2csc2sin12
sin

1
2

22

21.根据的取值,讨论022nnnn.
解:令)22(422nnnnnnun
当21时,121且21222nnnun,而由P级数的收敛性得知:级数


0211n
n


衢州职业技术学院专升本高等数学历年真题
- 4 -
发散,所以由比较审敛法可知,原级数发散;
当21时,121且21424nnnun,而由P级数的收敛性得知:级数



0211n
n

收敛,所以由比较审敛法可知,原级数收敛;

22.求过点)1,1,1(A且与直线2312zyzx垂直的平面方程.

解:由题意可取法向量)1,3,2(310201)3,1,0()2,0,1(kjin
故平面点法式方程为:,0)1(1)1(3)1(2zyx即0632zyx
23.求曲线xy与2xy所围成的平面图形面积.

解:作图,面积为61)3121()(1032102xxdxxxS
四、综合题3*10’=30’
1.设函数1lim)(2212nnnxbxaxxxf是连续函数,试求ba,的值.
解:当 1x时,0lim2nnx,则bxaxxf2)(
当 1x时,0lim2nnx,则xxbxaxxxfnnnn11lim)(221221
当 1x时, 21)(baxf,当 1x时, 21)(baxf

所以111121211)(2xxxxbabaxbxaxxf,要使)(xf连续,应有:
21)1(11lim)(lim)(lim)(lim11211bafx
xfbabxaxxfxxxx


衢州职业技术学院专升本高等数学历年真题
- 5 -
21)1(11lim)(lim)(lim)(lim11211bafx
xfbabxaxxfxxxx



所以ba,满足11baba,解得1,0ba

2.设1)(lim0xxfx,且0)("xf,证明xxf)(.
证明:令xxfxF)()(,由于)("xf存在,显然)(xF和)('xF都是连续函数,且
0)(")(",1)(')('xfxFxfxF

所以)('xF单调递增,又由1)('lim)(lim00xfxxfxx知,0)0(',1)0(',0)0(Fff
所以:当0x时,0)0(')('FxF,)(xF单调递减;当0x时,0)0(')('FxF,
)(xF单调递增。所以xxfxF)()(
在0x处取得最小值,即有

00)0()0()()(fFxxfxF,所以xxf)(

3.已知612ln2xtedt,求x

解:312312ln2)(12)1(u)ln(1t,11xxeetxtuuduuduueedt即令
6)1arctan3
(2arctan231xeeu
x

得到:2ln21141arctanxeeexxx

相关文档
最新文档