浙江卷试题解析与点评(共36张PPT)

合集下载

2022年浙江省高考数学试卷真题+答案解析

2022年浙江省高考数学试卷真题+答案解析

2022年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(4分)设集合{1,2}A =,{2,4,6}B =,则(A B = )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}2.(4分)已知a ,b R ∈,3()(a i b i i i +=+为虚数单位),则( ) A .1a =,3b =-B .1a =-,3b =C .1a =-,3b =-D .1a =,3b =3.(4分)若实数x ,y 满足约束条件20,270,20,x x y x y -⎧⎪+-⎨⎪--⎩则34z x y =+的最大值是( )A .20B .18C .13D .64.(4分)设x R ∈,则“sin 1x =”是“cos 0x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.(4分)某几何体的三视图如图所示(单位:)cm ,则该几何体的体积(单位:3)cm 是( )A .22πB .8πC .223π D .163π 6.(4分)为了得到函数2sin3y x =的图象,只要把函数2sin(3)5y x π=+图象上所有的点( )A .向左平移5π个单位长度 B .向右平移5π个单位长度 C .向左平移15π个单位长度D .向右平移15π个单位长度7.(4分)已知25a =,8log 3b =,则34(a b -= ) A .25B .5C .259D .538.(4分)如图,已知正三棱柱111ABC A B C -,1AC AA =,E ,F 分别是棱BC ,11A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγB .βαγC .βγαD .αγβ9.(4分)已知a ,b R ∈,若对任意x R ∈,|||4||25|0a x b x x -+---,则( ) A .1a ,3bB .1a ,3bC .1a ,3bD .1a ,3b10.(4分)已知数列{}n a 满足11a =,2*11()3n n n a a a n N +=-∈,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分。

浙江省高考数学试题解析

浙江省高考数学试题解析

2018浙江省高考数学试卷新教改一、选择题:本大题共10小题,每小题4分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的;A=1.4分2018 浙江已知全集U={1,2,3,4,5},A={1,3},则UA.B.{1,3} C.{2,4,5} D.{1,2,3,4,5}2.4分2018 浙江双曲线﹣y2=1的焦点坐标是A.﹣,0,,0 B.﹣2,0,2,0 C.0,﹣,0,D.0,﹣2,0,23.4分2018 浙江某几何体的三视图如图所示单位:cm,则该几何体的体积单位:cm3是A.2 B.4 C.6 D.84.4分2018 浙江复数i为虚数单位的共轭复数是A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.4分2018 浙江函数y=2|x|sin2x的图象可能是A. B. C.D.6.4分2018 浙江已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.4分2018 浙江设0<p <1,随机变量ξ的分布列是ξ 012P则当p 在0,1内增大时, A .Dξ减小B .Dξ增大C .Dξ先减小后增大D .Dξ先增大后减小8.4分2018 浙江已知四棱锥S ﹣ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点不含端点.设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S ﹣AB ﹣C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.4分2018 浙江已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是 A .﹣1 B .+1C .2D .2﹣10.4分2018 浙江已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,若a 1>1,则 A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分;11.6分2018浙江我国古代数学着作张邱建算经中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x= ,y= .12.6分2018 浙江若x,y 满足约束条件,则z=x+3y 的最小值是 ,最大值是 .13.6分2018 浙江在△ABC 中,角A,B,C 所对的边分别为a,b,c .若a=,b=2,A=60°,则sinB= ,c= . 14.4分2018 浙江二项式+8的展开式的常数项是 .15.6分2018 浙江已知λ∈R,函数fx=,当λ=2时,不等式fx<0的解集是.若函数fx恰有2个零点,则λ的取值范围是.16.4分2018 浙江从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.用数字作答17.4分2018 浙江已知点P0,1,椭圆+y2=mm>1上两点A,B满足=2,则当m= 时,点B横坐标的绝对值最大.三、解答题:本大题共5小题,共74分;解答应写出文字说明、证明过程或演算步骤; 18.14分2018 浙江已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P﹣,﹣.Ⅰ求sinα+π的值;Ⅱ若角β满足sinα+β=,求cosβ的值.19.15分2018 浙江如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.Ⅰ证明:AB1⊥平面A1B1C1;Ⅱ求直线AC1与平面ABB1所成的角的正弦值.20.15分2018 浙江已知等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn }满足b1=1,数列{bn+1﹣bnan}的前n项和为2n2+n.Ⅰ求q的值;Ⅱ求数列{bn}的通项公式.21.15分2018 浙江如图,已知点P是y轴左侧不含y轴一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.Ⅰ设AB中点为M,证明:PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,求△PAB面积的取值范围.22.15分2018 浙江已知函数fx=﹣lnx.Ⅰ若fx在x=x1,x2x1≠x2处导数相等,证明:fx1+fx2>8﹣8ln2;Ⅱ若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.2018年浙江省高考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的;A=1.4分2018 浙江已知全集U={1,2,3,4,5},A={1,3},则UA.B.{1,3} C.{2,4,5} D.{1,2,3,4,5}考点1F:补集及其运算.A是由所有属于集合U但不属于A的元素构成的集合.分析根据补集的定义直接求解:UA是由所有属于集合U但不属于A的元素构成的集合,由已解答解:根据补集的定义,U知,有且仅有2,4,5符合元素的条件.A={2,4,5}U故选:C.点评本题考查了补集的定义以及简单求解,属于简单题.2.4分2018 浙江双曲线﹣y2=1的焦点坐标是A.﹣,0,,0 B.﹣2,0,2,0 C.0,﹣,0,D.0,﹣2,0,2考点KC:双曲线的性质.专题34 :方程思想;4O:定义法;5D :圆锥曲线的定义、性质与方程.分析根据双曲线方程,可得该双曲线的焦点在x轴上,由平方关系算出c==2,即可得到双曲线的焦点坐标.解答解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c==2,∴该双曲线的焦点坐标为±2,0故选:B.点评本题考查双曲线焦点坐标,着重考查了双曲线的标准方程和焦点坐标求法等知识,属于基础题.3.4分2018 浙江某几何体的三视图如图所示单位:cm,则该几何体的体积单位:cm3是A.2 B.4 C.6 D.8考点L:由三视图求面积、体积.专题35 :转化思想;5F :空间位置关系与距离.分析直接利用三视图的复原图求出几何体的体积.解答解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.点评本题考查的知识要点:三视图的应用.4.4分2018 浙江复数i为虚数单位的共轭复数是A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点A5:复数的运算.专题5N :数系的扩充和复数.分析化简已知复数z,由共轭复数的定义可得.解答解:化简可得z===1+i,∴z的共轭复数=1﹣i故选:B.点评本题考查复数的代数形式的运算,涉及共轭复数,属基础题.5.4分2018 浙江函数y=2|x|sin2x的图象可能是A. B. C.D.考点3A:函数的图象与图象的变换.专题35 :转化思想;51 :函数的性质及应用.分析直接利用函数的图象和性质求出结果.解答解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.点评本题考查的知识要点:函数的性质和赋值法的应用.6.4分2018 浙江已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点29:充分条件、必要条件、充要条件.专题38 :对应思想;4O:定义法;5L :简易逻辑.分析根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.解答解:∵mα,nα,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.点评本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.7.4分2018 浙江设0<p<1,随机变量ξ的分布列是ξ012P则当p在0,1内增大时,A.Dξ减小B.Dξ增大C.Dξ先减小后增大D.Dξ先增大后减小考点CH:离散型随机变量的期望与方差.专题33 :函数思想;4O:定义法;5I :概率与统计.分析求出随机变量ξ的分布列与方差,再讨论Dξ的单调情况.解答解:设0<p<1,随机变量ξ的分布列是Eξ=0×+1×+2×=p+;方差是Dξ=×+×+×=﹣p2+p+=﹣+,∴p∈0,时,Dξ单调递增;p∈,1时,Dξ单调递减;∴Dξ先增大后减小.故选:D.点评本题考查了离散型随机变量的数学期望与方差的计算问题,也考查了运算求解能力,是基础题.8.4分2018 浙江已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点不含端点.设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1考点MJ :二面角的平面角及求法;L3:棱锥的结构特征;LM :异面直线及其所成的角;MI :直线与平面所成的角.专题31 :数形结合;44 :数形结合法;5G :空间角.分析作出三个角,表示出三个角的正弦或正切值,根据三角函数的单调性即可得出三个角的大小.解答解:∵由题意可知S 在底面ABCD 的射影为正方形ABCD 的中心. 过E 作EF ∥BC,交CD 于F,过底面ABCD 的中心O 作ON ⊥EF 交EF 于N, 连接SN,取CD 中点M,连接SM,OM,OE,则EN=OM, 则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO . 显然,θ1,θ2,θ3均为锐角. ∵tanθ1==,tanθ3=,SN ≥SO,∴θ1≥θ3, 又sinθ3=,sinθ2=,SE ≥SM,∴θ3≥θ2. 故选:D .点评本题考查了空间角的计算,三角函数的应用,属于中档题.9.4分2018 浙江已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是 A .﹣1 B .+1C .2D .2﹣考点9O :平面向量数量积的性质及其运算.专题11 :计算题;31 :数形结合;4R :转化法;5A :平面向量及应用. 分析把等式﹣4+3=0变形,可得得,即⊥,设,则的终点在以2,0为圆心,以1为半径的圆周上,再由已知得到的终点在不含端点O 的两条射线y=x >0上,画出图形,数形结合得答案. 解答解:由﹣4+3=0,得,∴⊥,如图,不妨设,则的终点在以2,0为圆心,以1为半径的圆周上, 又非零向量与的夹角为,则的终点在不含端点O 的两条射线y=x >0上.不妨以y=为例,则|﹣|的最小值是2,0到直线的距离减1.即.故选:A .点评本题考查平面向量的数量积运算,考查数学转化思想方法与数形结合的解题思想方法,属难题.10.4分2018 浙江已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,若a 1>1,则 A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4考点8I :数列与函数的综合;4H :对数的运算性质;87:等比数列的性质. 专题11 :计算题;32 :分类讨论;34 :方程思想;49 :综合法;51 :函数的性质及应用;54 :等差数列与等比数列.分析利用等比数列的性质以及对数函数的单调性,通过数列的公比的讨论分析判断即可.解答解:a 1,a 2,a 3,a 4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a 1>1,设公比为q,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=lna 1+a 2+a 3,不成立, 即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成立,排除A 、D .当q=﹣1时,a 1+a 2+a 3+a 4=0,lna 1+a 2+a 3>0,等式不成立,所以q ≠﹣1; 当q <﹣1时,a 1+a 2+a 3+a 4<0,lna 1+a 2+a 3>0,a 1+a 2+a 3+a 4=lna 1+a 2+a 3不成立, 当q ∈﹣1,0时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,能够成立, 故选:B .点评本题考查等比数列的性质的应用,函数的值的判断,对数函数的性质,考查发现问题解决问题的能力,难度比较大.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分;11.6分2018浙江我国古代数学着作张邱建算经中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x= 8 ,y= 11 .考点53:函数的零点与方程根的关系.专题11 :计算题;33 :函数思想;49 :综合法;51 :函数的性质及应用.分析直接利用方程组以及z的值,求解即可.解答解:,当z=81时,化为:,解得 x=8,y=11.故答案为:8;11.点评本题考查方程组的解法,是基本知识的考查.12.6分2018 浙江若x,y满足约束条件,则z=x+3y的最小值是﹣2 ,最大值是8 .考点7C:简单线性规划.专题1 :常规题型;11 :计算题;35 :转化思想;49 :综合法;5T :不等式.分析作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=x+3y对应的直线进行平移,观察直线在y轴上的截距变化,然后求解最优解得到结果.解答解:作出x,y满足约束条件表示的平面区域,如图:其中B4,﹣2,A2,2.设z=Fx,y=x+3y,将直线l:z=x+3y进行平移,观察直线在y轴上的截距变化,可得当l经过点B时,目标函数z达到最小值.∴z=F4,﹣2=﹣2.最小值可得当l经过点A时,目标函数z达到最最大值:z=F2,2=8.最大值故答案为:﹣2;8.点评本题给出二元一次不等式组,求目标函数的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题.13.6分2018 浙江在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB= ,c= 3 .考点HP:正弦定理.专题11 :计算题;35 :转化思想;49 :综合法;58 :解三角形.分析由正弦定理得=,由此能求出sinB,由余弦定理得cos60°=,由此能求出c.解答解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1舍,∴sinB=,c=3.故答案为:,3.点评本题考查三角形中角的正弦值、边长的求法,考查正弦定理、余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14.4分2018 浙江二项式+8的展开式的常数项是7 .考点DA:二项式定理.专题35 :转化思想;4O:定义法;5P :二项式定理.分析写出二项展开式的通项并整理,由x的指数为0求得r值,则答案可求.解答解:由=.令=0,得r=2.∴二项式+8的展开式的常数项是.故答案为:7.点评本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是基础题.15.6分2018 浙江已知λ∈R,函数fx=,当λ=2时,不等式fx<0的解集是{x|1<x<4} .若函数fx恰有2个零点,则λ的取值范围是1,3 .考点57:函数与方程的综合运用;3E:函数单调性的性质与判断;5B:分段函数的应用.专题11 :计算题;31 :数形结合;34 :方程思想;49 :综合法;51 :函数的性质及应用.分析利用分段函数转化求解不等式的解集即可;利用函数的图象,通过函数的零点得到不等式求解即可.解答解:当λ=2时函数fx=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式fx<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数fx恰有2个零点,函数fx=的草图如图:函数fx恰有2个零点,则λ∈1,3.故答案为:{x|1<x<4};1,3.点评本题考查函数与方程的应用,考查数形结合以及函数的零点个数的判断,考查发现问题解决问题的能力.16.4分2018 浙江从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260 个没有重复数字的四位数.用数字作答考点D8:排列、组合的实际应用.专题11 :计算题;35 :转化思想;49 :综合法;5O :排列组合.分析可先从1,3,5,7,9中任取2个数字,然后通过0是否存在,求解即可.解答解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.点评本题考查排列组合及简单的计数问题,先选后排是解决问题的关键,注意“0“是否在4位数中去易错点,是中档题.17.4分2018 浙江已知点P0,1,椭圆+y2=mm>1上两点A,B满足=2,则当m= 5 时,点B横坐标的绝对值最大.考点K4:椭圆的性质.专题34 :方程思想;48 :分析法;5A :平面向量及应用;5D :圆锥曲线的定义、性质与方程.分析设Ax1,y1,Bx2,y2,运用向量共线的坐标表示,以及点满足椭圆方程,求得y1,y2,有x22=m﹣2,运用二次函数的最值求法,可得所求最大值和m的值.解答解:设Ax1,y1,Bx2,y2,由P0,1,=2,可得﹣x1=2x2,1﹣y1=2y2﹣1,即有x1=﹣2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x 22+4y22=4m,②①﹣②得y1﹣2y2y1+2y2=﹣3m,可得y1﹣2y2=﹣m,解得y1=,y2=,则m=x22+2,即有x22=m﹣2==,即有m=5时,x22有最大值16,即点B横坐标的绝对值最大.故答案为:5.点评本题考查椭圆的方程和应用,考查向量共线的坐标表示和方程思想、转化思想,以及二次函数的最值的求法,属于中档题.三、解答题:本大题共5小题,共74分;解答应写出文字说明、证明过程或演算步骤; 18.14分2018 浙江已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P﹣,﹣.Ⅰ求sinα+π的值;Ⅱ若角β满足sinα+β=,求cosβ的值.考点GP:两角和与差的三角函数;G9:任意角的三角函数的定义.专题33 :函数思想;4R:转化法;56 :三角函数的求值.分析Ⅰ由已知条件即可求r,则sinα+π的值可得;Ⅱ由已知条件即可求sinα,cosα,cosα+β,再由cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα代值计算得答案.解答解:Ⅰ∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P﹣,﹣.∴x=﹣,y=,r=|OP|=,∴sinα+π=﹣sinα=;Ⅱ由x=﹣,y=,r=|OP|=1,得,,又由sinα+β=,得=,则cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα=,或cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα=.∴cosβ的值为或.点评本题考查了任意角的三角函数的定义,考查了三角函数的诱导公式的应用,是中档题.19.15分2018 浙江如图,已知多面体ABCA 1B 1C 1,A 1A,B 1B,C 1C 均垂直于平面ABC,∠ABC=120°,A 1A=4,C 1C=l,AB=BC=B 1B=2. Ⅰ证明:AB 1⊥平面A 1B 1C 1;Ⅱ求直线AC 1与平面ABB 1所成的角的正弦值.考点MI :直线与平面所成的角;LW :直线与平面垂直.专题31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角. 分析I 利用勾股定理的逆定理证明AB 1⊥A 1B 1,AB 1⊥B 1C 1,从而可得AB 1⊥平面A 1B 1C 1; II 以AC 的中点为坐标原点建立空间坐标系,求出平面ABB 1的法向量,计算与的夹角即可得出线面角的大小.解答I 证明:∵A 1A ⊥平面ABC,B 1B ⊥平面ABC, ∴AA 1∥BB 1, ∵AA 1=4,BB 1=2,AB=2, ∴A 1B 1==2,又AB 1==2,∴AA 12=AB 12+A 1B 12,∴AB 1⊥A 1B 1, 同理可得:AB 1⊥B 1C 1, 又A 1B 1∩B 1C 1=B 1, ∴AB 1⊥平面A 1B 1C 1.II 解:取AC 中点O,过O 作平面ABC 的垂线OD,交A 1C 1于D, ∵AB=BC,∴OB ⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O 为原点,以OB,OC,OD 所在直线为坐标轴建立空间直角坐标系如图所示: 则A0,﹣,0,B1,0,0,B 11,0,2,C 10,,1, ∴=1,,0,=0,0,2,=0,2,1,设平面ABB 1的法向量为=x,y,z,则,∴,令y=1可得=﹣,1,0,∴cos<>===.设直线AC1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.点评本题考查了线面垂直的判定定理,线面角的计算与空间向量的应用,属于中档题.20.15分2018 浙江已知等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn }满足b1=1,数列{bn+1﹣bnan}的前n项和为2n2+n.Ⅰ求q的值;Ⅱ求数列{bn}的通项公式.考点8M:等差数列与等比数列的综合.专题34 :方程思想;48 :分析法;54 :等差数列与等比数列.分析Ⅰ运用等比数列的通项公式和等差数列中项性质,解方程可得公比q;Ⅱ设cn =bn+1﹣bnan=bn+1﹣bn2n﹣1,运用数列的递推式可得cn=4n﹣1,再由数列的恒等式求得b n =b1+b2﹣b1+b3﹣b2+…+bn﹣bn﹣1,运用错位相减法,可得所求数列的通项公式.解答解:Ⅰ等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2舍去,则q的值为2;Ⅱ设cn =bn+1﹣bnan=bn+1﹣bn2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得cn=2n2+n﹣2n﹣12﹣n﹣1=4n﹣1,上式对n=1也成立,则bn+1﹣bnan=4n﹣1,即有bn+1﹣bn=4n﹣1n﹣1,可得bn =b1+b2﹣b1+b3﹣b2+…+bn﹣bn﹣1=1+30+71+…+4n﹣5n﹣2,b=+3n+72+…+4n﹣5n﹣1,=+4+2+…+n﹣2﹣4n﹣5相减可得bnn﹣1=+4 ﹣4n﹣5n﹣1,化简可得b=15﹣4n+3nn﹣2.点评本题考查等比数列的通项公式和等差数列中项的性质,考查数列的恒等式和错位相减法的运用,考查运算能力,属于中档题.21.15分2018 浙江如图,已知点P是y轴左侧不含y轴一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.Ⅰ设AB中点为M,证明:PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,求△PAB面积的取值范围.考点KN:直线与抛物线的位置关系;KL:直线与椭圆的位置关系.专题34 :方程思想;48 :分析法;5D :圆锥曲线的定义、性质与方程.分析Ⅰ设Pm,n,A,y1,B,y2,运用中点坐标公式可得M的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,由韦达定理即可得到结论;Ⅱ由题意可得m2+=1,﹣1≤m<0,﹣2<n<2,可得△PAB面积为S=|PM||y1﹣y2|,再由配方和换元法,可得面积S关于新元的三次函数,运用单调性可得所求范围.解答解:Ⅰ证明:可设Pm,n,A,y1,B,y2,AB中点为M的坐标为,,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上,可得2=4 ,2=4 ,化简可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,可得y1+y2=2n,y1y2=8m﹣n2,可得n=,则PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,可得m2+=1,﹣1≤m<0,﹣2<n<2,由Ⅰ可得y1+y2=2n,y1y2=8m﹣n2,由PM垂直于y轴,可得△PAB面积为S=|PM||y1﹣y2|=﹣m=4n2﹣16m+2n2﹣m=n2﹣4m,可令t===,可得m=﹣时,t取得最大值;m=﹣1时,t取得最小值2,即2≤t≤,则S=t3在2≤t≤递增,可得S∈6,,△PAB面积的取值范围为6,.点评本题考查抛物线的方程和运用,考查转化思想和运算能力,以及换元法和三次函数的单调性,属于难题.22.15分2018 浙江已知函数fx=﹣lnx.Ⅰ若fx在x=x1,x2x1≠x2处导数相等,证明:fx1+fx2>8﹣8ln2;Ⅱ若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.考点6E:利用导数研究函数的最值.专题14 :证明题;35 :转化思想;49 :综合法;53 :导数的综合应用.分析Ⅰ推导出x>0,f′x=﹣,由fx在x=x1,x2x1≠x2处导数相等,得到+=,由基本不等式得:=≥,从而x1x2>256,由题意得fx1+fx2==﹣lnx1x2,设gx=,则,利用导数性质能证明fx1+fx2>8﹣8ln2.Ⅱ令m=e﹣|a|+k,n=2+1,则fm﹣km﹣a>|a|+k﹣k﹣a≥0,推导出存在x∈m,n,使fx0=kx+a,对于任意的a∈R及k∈0,+∞,直线y=kx+a与曲线y=fx有公共点,由fx=kx+a,得k=,设hx=,则h′x==,利用导数性质能证明a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.解答证明:Ⅰ∵函数fx=﹣lnx,∴x >0,f′x=﹣,∵fx 在x=x 1,x 2x 1≠x 2处导数相等, ∴=﹣,∵x 1≠x 2,∴+=,由基本不等式得:=≥,∵x 1≠x 2,∴x 1x 2>256, 由题意得fx 1+fx 2==﹣lnx 1x 2,设gx=,则,∴列表讨论:x 0,16 16 16,+∞g′x ﹣ 0 + gx↓2﹣4ln2↑∴gx 在256,+∞上单调递增, ∴gx 1x 2>g256=8﹣8ln2, ∴fx 1+fx 2>8﹣8ln2. Ⅱ令m=e ﹣|a|+k ,n=2+1,则fm ﹣km ﹣a >|a|+k ﹣k ﹣a ≥0, fn ﹣kn ﹣a <n﹣﹣k ≤n﹣k <0,∴存在x 0∈m,n,使fx 0=kx 0+a,∴对于任意的a ∈R 及k ∈0,+∞,直线y=kx+a 与曲线y=fx 有公共点, 由fx=kx+a,得k=,设hx=,则h′x==,其中gx=﹣lnx,由1知gx ≥g16,又a ≤3﹣4ln2,∴﹣gx ﹣1+a ≤﹣g16﹣1+a=﹣3+4ln2+a ≤0,∴h′x≤0,即函数hx在0,+∞上单调递减,∴方程fx﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.点评本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.。

浙江省七年级数学上学期期末试卷(含解析)浙教版

浙江省七年级数学上学期期末试卷(含解析)浙教版

浙江省七年级数学上学期期末试卷(含解析)浙教版七年级上学期期末数学试卷一、仔细选一选(本大题有10小题,每小题3分,共30分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分。

)1.-2016的倒数是()A。

-2016 B。

2016 C。

0答案:B2.9的平方根为()A。

3 B。

-3 C。

±3 D。

0答案:C3.如图,数轴上的点A、B、C、D、E分别对应的数是1、2、3、4、5,那么表示A。

线段AB上 B。

线段BC上 C。

线段CD上 D。

线段DE上答案:B4.下列选项是无理数的为()A。

-√8 B。

8 C。

3.xxxxxxx D。

-π答案:A、C、D5.2cm接近于()A。

珠穆朗玛峰的高度 B。

三层楼的高度 C。

XXX的身高D。

一张纸的厚度答案:D6.若x=2是关于x的方程2x+3m-1=0的解,则m的值为()A。

-1 B。

1 C。

0 D。

2答案:A7.XXX买书需用48元钱,付款时恰好用了1元和5元的纸币共12张。

设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A。

x+5(12-x)=48 B。

x+5(x-12)=48 C。

x+12(x-5)=48 D。

5x+(12-x)=48答案:A8.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A。

1条 B。

2条 C。

3条 D。

4条答案:C9.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A。

60° B。

120° C。

60°或90° D。

60°或120°答案:B10.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测+1的个位数字是()A。

0 B。

2 C。

4 D。

8答案:C二、认真填一填(本题有6小题,每小题4分,共24分。

2022年浙江省杭州市中考数学试卷(含详细解析)

2022年浙江省杭州市中考数学试卷(含详细解析)

2022年浙江省杭州市中考数学试卷(含详细解析)一、选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题日要求的。

1.(3.00分)|﹣3|=()A.3B.﹣3C.D.﹣2.(3.00分)数据1800000用科学记数法表示为()A.1.86B.1.8某106C.18某105D.18某1063.(3.00分)下列计算正确的是()A.=2B.=±2C.=2D.=±24.(3.00分)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数5.(3.00分)若线段AM,AN分别是△ABC的BC边上的高线和中线,则()A.AM>ANB.AM≥ANC.AM<AND.AM≤AN6.(3.00分)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了某道题,答错了y道题,则()A.某﹣y=20B.某+y=20C.5某﹣2y=60D.5某+2y=607.(3.00分)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.8.(3.00分)如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()第1页(共24页)A.(θ1+θ4)﹣(θ2+θ3)=30°C.(θ1+θ2)﹣(θ3+θ4)=70°B.(θ2+θ4)﹣(θ1+θ3)=40°D.(θ1+θ2)+(θ3+θ4)=180°9.(3.00分)四位同学在研究函数y=某2+b某+c(b,c是常数)时,甲发现当某=1时,函数有最小值;乙发现﹣1是方程某2+b某+c=0的一个根;丙发现函数的最小值为3;丁发现当某=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁10.(3.00分)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2C.若2AD<AB,则3S1>2S2B.若2AD>AB,则3S1<2S2D.若2AD<AB,则3S1<2S2二、填空题:本大题有6个小题,每小题4分,共24分。

2018年全国高考物理浙江卷试题点评PPT 演示文稿

2018年全国高考物理浙江卷试题点评PPT 演示文稿
绵阳东辰国际学校:胡明会
2018年全国高考物理浙江卷试题点评
一、单选题
点评:本题重点考查天体运动中绕星的加速度、线速度、角速度、 周期与半径的关系,用一条龙公式解决,属容易题,选答案A
点评:本题重点考查远距离输电过程中为了减少输电线上的能 量损失必须采用高压输电,属容易题,选答案C
点评:本题重点考查匀变速曲线运动知识,小球离开弹射管时既有水平 分速度,又有竖直分速度,两球竖直分运动完全相同,故同时落地,由于小 球离开弹射管到落地的时间不同,故落地点不同,属易错题,选答案B
考查带电粒在磁 场中的运动、受 力分析方法、圆 周运动、直线运 动、磁偏转、运 用数学知识求极 值等知识点,属 较难题
点评:本题重点考查竖直上抛运动动能随时间的变化关系以及二次函数 的图象,且EK大于或等于零,开口向上的抛物线,属容易题,选答案A
点评:本题重点考查平行板电容器充电后始终与电源相连电压不变,运动 和力的关系等.增大右端两板间的距离,油滴所在处的场强减小,电场力小 于重力,油滴向右下方运动,属中等题,选答案D
点评:本题重点考查描述圆周运动的物理量路程、加速度、角速度及转 弯半经,属容易题,选答案A、D
点评:本题重点考查受力分析、弹簧弹力、摩擦力、牛顿第二定律、功 等知识点,属中等易错题,选答案A、D
点评:本题重点考查电容器充、放电知识、创新题,充电时,充电电流逐渐减 小到零,R增大,电容器贮存一定量的电荷时间就越长,而闪光灯闪光一次是 由电容器放电一次引起的,属易错中档题,选答案B、C、D
测定电源电动势有多种方法这是I-R法
本题属容易题
本题考查利用重锤 下落系统的机械能 守恒来求重力加速 度g.同时考查减小 偶然误差、系统误 差的方法,本实验 没有必要满足 M1>>M2这一 线运动、安培 力、受力分析 方法、牛顿第 二定律、电流、 电荷等知识点

2021年6月浙江卷(试卷点评)-2021年高考英语真题深度解读

2021年6月浙江卷(试卷点评)-2021年高考英语真题深度解读

2021年高考英语真题深度解读(浙江卷)语篇选材紧扣时代主题。

例如,阅读B篇介绍了电影制作人大卫通过制作纪录片向年轻人推销大自然这个品牌,鼓励孩子们走进大自然,从而减少使用电子产品的时间。

该语篇能引领学生正确认识当前多样化的电子产品的正确使用方法,以及认识自然的重要性,这凸显了正确认识科技、合理利用科技、以及人与自然和谐共处的重要性。

话题选择突出文化比较。

例如阅读理解七选五介绍主人公开发社交网站,让世界各地的人们能够在网上交换明信片的故事;语法填空则是关于美国总统亚布拉罕林肯故居的。

这两篇文章既可以让考生认识国际交流的新的方式与媒介,又可以让考生了解国外的文化以及相关遗产的保护等,能引领考生使用国际视野去认识这些文化的特征。

考查方式聚焦关键能力。

例如,阅读理解第23小题要求考试使用英语谚语或俗语来概括文章主题;第27小题则需要考生充分区分文章的主题与叙事之间的关系才能确定文章的标题;第30小题虽然考查的是理解段落大意,但是学生需要通过分析最后一段中人物的话语的目的的基础上才能得出题目的答案。

这些考查方式既凸显了对学生的语言能力的考查,又同时兼顾了对学生的思维能力的考查。

一、阅读理解近四次高考试题对比分析1.聚焦生活实际,突出语篇可读性。

本次高考阅读理解选材越来越接近学生的生活实际,既能考查学生的语言能力、思维品质等,又能增加学生的知识并进而坚定生活的自信。

例如,A篇为人物传记类文章,展现了主人公奋斗的历程;B篇则又进一步显示了保持人的健康的重要性;C篇则介绍了人与狗之间的交流研究的新发现。

这些话题都是当前社会生活中的热门话题,而且都是学生们非常关注与关心的话题。

通过试题解答,学生同时也可以获得必备的知识。

2.题目设置多样,突出考查思维力。

例如,本次阅读理解试题中的第23、26、27、30小题,即需要考生充分运用语篇知识解读作者的用意,同时也需要通过分析、综合、比较的方式,得出正确的表达方式。

1.增加英语阅读量是关键。

2022年浙江省杭州市中考数学试卷(解析版)

2022年浙江省杭州市中考数学试卷(解析版)

2022年浙江省杭州市中考数学试卷一.选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.﹣8℃B.﹣4℃C.4℃D.8℃2.(3分)(2022•杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为()A.14.126×108B.1.4126×109C.1.4126×108D.0.14126×10103.(3分)(2022•杭州)如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°4.(3分)(2022•杭州)已知a,b,c,d是实数,若a>b,c=d,则()A.a+c>b+d B.a+b>c+d C.a+c>b﹣d D.a+b>c﹣d 5.(3分)(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则()A.线段CD是△ABC的AC边上的高线B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线D.线段AD是△ABC的AC边上的高线6.(3分)(2022•杭州)照相机成像应用了一个重要原理,用公式=+(v≠f)表示,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则u=()A.B.C.D.7.(3分)(2022•杭州)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y 元.已知10张A票的总价与19张B票的总价相差320元,则()A.||=320B.||=320C.|10x﹣19y|=320D.|19x﹣10y|=3208.(3分)(2022•杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是()A.M1B.M2C.M3D.M49.(3分)(2022•杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是()A.命题①B.命题②C.命题③D.命题④10.(3分)(2022•杭州)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为()A.cosθ(1+cosθ)B.cosθ(1+sinθ)C.sinθ(1+sinθ)D.sinθ(1+cosθ)二.填空题:本大题有6个小题,每小题4分,共24分.11.(4分)(2022•杭州)计算:=;(﹣2)2=.12.(4分)(2022•杭州)有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于.13.(4分)(2022•杭州)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是.14.(4分)(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=m.15.(4分)(2022•杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x=(用百分数表示).16.(4分)(2022•杭州)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B=度;的值等于.三.解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)(2022•杭州)计算:(﹣6)×(﹣■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算(﹣6)×(﹣)﹣23.(2)如果计算结果等于6,求被污染的数字.18.(8分)(2022•杭州)某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取,他们的各项成绩(单项满分100分)如下表所示:候选人文化水平艺术水平组织能力甲80分87分82分乙80分96分76分(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?19.(8分)(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,=.(1)若AB=8,求线段AD的长.(2)若△ADE的面积为1,求平行四边形BFED的面积.20.(10分)(2022•杭州)设函数y1=,函数y2=k2x+b(k1,k2,b是常数,k1≠0,k2≠0).(1)若函数y1和函数y2的图象交于点A(1,m),点B(3,1),①求函数y1,y2的表达式;②当2<x<3时,比较y1与y2的大小(直接写出结果).(2)若点C(2,n)在函数y1的图象上,点C先向下平移2个单位,再向左平移4个单位,得点D,点D恰好落在函数y1的图象上,求n的值.21.(10分)(2022•杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.22.(12分)(2022•杭州)设二次函数y=2x2+bx+c(b,c是常数)的图象与x轴交于A,B 两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.23.(12分)(2022•杭州)在正方形ABCD中,点M是边AB的中点,点E在线段AM上(不与点A重合),点F在边BC上,且AE=2BF,连接EF,以EF为边在正方形ABCD内作正方形EFGH.(1)如图1,若AB=4,当点E与点M重合时,求正方形EFGH的面积.(2)如图2,已知直线HG分别与边AD,BC交于点I,J,射线EH与射线AD交于点K.①求证:EK=2EH;②设∠AEK=α,△FGJ和四边形AEHI的面积分别为S1,S2.求证:=4sin2α﹣1.2022年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.﹣8℃B.﹣4℃C.4℃D.8℃【分析】由最高温差减去最低温度求出该地这天的温差即可.【解答】解:根据题意得:2﹣(﹣6)=2+6=8(℃),则该地这天的温差为8℃.故选:D.【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.2.(3分)(2022•杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为()A.14.126×108B.1.4126×109C.1.4126×108D.0.14126×1010【分析】根据科学记数法的规则,进行书写即可.【解答】解:1412600000=1.4126×109,故选:B.【点评】本题考查了科学记数法—表示较大的数,掌握科学记数法的规则是解决问题的关键.3.(3分)(2022•杭州)如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°【分析】由∠AEC为△CED的外角,利用外角性质求出∠D的度数,再利用两直线平行内错角相等即可求出∠A的度数.【解答】解:∵∠AEC为△CED的外角,且∠C=20°,∠AEC=50°,∴∠AEC=∠C+∠D,即50°=20°+∠D,∴∠D=30°,∵AB∥CD,∴∠A=∠D=30°.故选:C.【点评】此题考查了平行线的性质,以及外角性质,熟练掌握平行线的性质是解本题的关键.4.(3分)(2022•杭州)已知a,b,c,d是实数,若a>b,c=d,则()A.a+c>b+d B.a+b>c+d C.a+c>b﹣d D.a+b>c﹣d【分析】根据不等式的性质判断A选项;根据特殊值法判断B,C,D选项.【解答】解:A选项,∵a>b,c=d,∴a+c>b+d,故该选项符合题意;B选项,当a=2,b=1,c=d=3时,a+b<c+d,故该选项不符合题意;C选项,当a=2,b=1,c=d=﹣3时,a+b<c+d,故该选项不符合题意;D选项,当a=﹣1,b=﹣2,c=d=3时,a+b<c+d,故该选项不符合题意;故选:A.【点评】本题考查了实数大小比较,掌握不等式的两边同时加上或减去同一个整式(或相等的整式),不等号的方向不变是解题的关键.5.(3分)(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则()A.线段CD是△ABC的AC边上的高线B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线D.线段AD是△ABC的AC边上的高线【分析】根据三角形的高的概念判断即可.【解答】解:A、线段CD是△ABC的AB边上的高线,故本选项说法错误,不符合题意;B、线段CD是△ABC的AB边上的高线,本选项说法正确,符合题意;C、线段AD不是△ABC的边上高线,故本选项说法错误,不符合题意;D、线段AD不是△ABC的边上高线,故本选项说法错误,不符合题意;故选:B.【点评】本题考查的是三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.6.(3分)(2022•杭州)照相机成像应用了一个重要原理,用公式=+(v≠f)表示,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则u=()A.B.C.D.【分析】利用分式的基本性质,把等式=+(v≠f)恒等变形,用含f、v的代数式表示u.【解答】解:=+(v≠f),=+,,,u=.故选:C.【点评】考查分式的加、减法运算,关键是异分母通分,掌握通分法则.7.(3分)(2022•杭州)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y 元.已知10张A票的总价与19张B票的总价相差320元,则()A.||=320B.||=320C.|10x﹣19y|=320D.|19x﹣10y|=320【分析】直接利用10张A票的总价与19张B票的总价相差320元,得出等式求出答案.【解答】解:由题意可得:|10x﹣19y|=320.故选:C.【点评】此题主要考查了列代数式,正确表示出两种门票的费用是解题关键.8.(3分)(2022•杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是()A.M1B.M2C.M3D.M4【分析】根据含30°角的直角三角形的性质可得B(2,2+2),利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y=x+2中可解答.【解答】解:∵点A(4,2),点P(0,2),∴P A⊥y轴,P A=4,由旋转得:∠APB=60°,AP=PB=4,如图,过点B作BC⊥y轴于C,∴∠BPC=30°,∴BC=2,PC=2,∴B(2,2+2),设直线PB的解析式为:y=kx+b,则,∴,∴直线PB的解析式为:y=x+2,当y=0时,x+2=0,x=﹣,∴点M1(﹣,0)不在直线PB上,当x=﹣时,y=﹣3+2=1,∴M2(﹣,﹣1)在直线PB上,当x=1时,y=+2,∴M3(1,4)不在直线PB上,当x=2时,y=2+2,∴M4(2,)不在直线PB上.故选:B.【点评】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键.9.(3分)(2022•杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是()A.命题①B.命题②C.命题③D.命题④【分析】假设命题①②成立,则可知③也成立,则命题④不成立,命题④就是假命题.【解答】对于y=x2+ax+b,二次项系数为1>0,∴抛物线开口向上,假设命题①②成立,则命题③该函数的图象与x轴的交点位于y轴的两侧成立,则命题④该函数的图象的对称轴为直线x=1不成立,对称轴应该为x=2.故这四个命题中只有一个命题是假命题,则这个假命题是④.故选:D.【点评】本题主要考查二次函数的图象与性质以及对称轴公式的求法.10.(3分)(2022•杭州)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为()A.cosθ(1+cosθ)B.cosθ(1+sinθ)C.sinθ(1+sinθ)D.sinθ(1+cosθ)【分析】要使△ABC的面积S=BC•h的最大,则h要最大,当高经过圆心时最大.【解答】解:当△ABC的高AD经过圆的圆心时,此时△ABC的面积最大,如图所示,∵AD⊥BC,∴BC=2BD,∠BOD=∠BAC=θ,在Rt△BOD中,sinθ=,cosθ=∴BD=sinθ,OD=cosθ,∴BC=2BD=2sinθ,AD=AO+OD=1+cosθ,∴AD•BC=•2sinθ(1+cosθ)=2sinθ(1+cosθ).故选:D.【点评】本题主要考查锐角三角函数的应用与三角形面积的求法.二.填空题:本大题有6个小题,每小题4分,共24分.11.(4分)(2022•杭州)计算:=2;(﹣2)2=4.【分析】根据二次根式的性质、有理数的乘方法则计算即可.【解答】解:=2,(﹣2)2=4,故答案为:2,4.【点评】本题考查的是二次根式的化简、有理数的乘方,掌握二次根式的性质是解题的关键.12.(4分)(2022•杭州)有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于.【分析】根据题目中的数据,可以计算出从中随机抽取一张,编号是偶数的概率.【解答】解:从编号分别是1,2,3,4,5的卡片中,随机抽取一张有5种可能性,其中编号是偶数的可能性有2种可能性,∴从中随机抽取一张,编号是偶数的概率等于,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.13.(4分)(2022•杭州)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是.【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【解答】解:∵一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∴联立y=3x﹣1与y=kx的方程组的解为:,故答案为:.【点评】本题考查了一次函数与二元一次方程组,熟练掌握一次函数的交点坐标与二元一次方程组的解的关系是解题的关键.14.(4分)(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【分析】根据平行投影得AC∥DE,可得∠ACB=∠DFE,证明Rt△ABC∽△Rt△DEF,然后利用相似三角形的性质即可求解.【解答】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.∴AC∥DE,∴∠ACB=∠DFE,∵AB⊥BC,DE⊥EF,∴∠ABC=∠DEF=90°,∴Rt△ABC∽△Rt△DEF,∴,即,解得AB=9.88,∴旗杆的高度为9.88m.故答案为:9.88.【点评】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt△ABC∽△Rt△DEF 是解题的关键.15.(4分)(2022•杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x=30%(用百分数表示).【分析】设新注册用户数的年平均增长率为x(x>0),利用2019年的新注册用户数为100万×(1+平均增长率)2=2021年的新注册用户数为169万,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:新注册用户数的年平均增长率为x(x>0),依题意得:100(1+x)2=169,解得:x1=0.3=30%,x2=﹣2.3(不合题意,舍去).∴新注册用户数的年平均增长率为30%.故答案为:30%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.(4分)(2022•杭州)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B=36度;的值等于.【分析】由等腰三角形的性质得出∠DAE=∠DEA,证出∠BEC=∠BCE,由折叠的性质得出∠ECO=∠BCO,设∠ECO=∠OCB=∠B=x,证出∠BCE=∠ECO+∠BCO=2x,∠CEB=2x,由三角形内角和定理可得出答案;证明△CEO∽△BEC,由相似三角形的性质得出,设EO=x,EC=OC=OB=a,得出a2=x(x+a),求出OE=a,证明△BCE∽△DAE,由相似三角形的性质得出,则可得出答案.【解答】解:∵AD=DE,∴∠DAE=∠DEA,∵∠DEA=∠BEC,∠DAE=∠BCE,∴∠BEC=∠BCE,∵将该圆形纸片沿直线CO对折,∴∠ECO=∠BCO,又∵OB=OC,∴∠OCB=∠B,设∠ECO=∠OCB=∠B=x,∴∠BCE=∠ECO+∠BCO=2x,∴∠CEB=2x,∵∠BEC+∠BCE+∠B=180°,∴x+2x+2x=180°,∴x=36°,∴∠B=36°;∵∠ECO=∠B,∠CEO=∠CEB,∴△CEO∽△BEC,∴,∴CE2=EO•BE,设EO=x,EC=OC=OB=a,∴a2=x(x+a),解得,x=a(负值舍去),∴OE=a,∴AE=OA﹣OE=a﹣a=a,∵∠AED=∠BEC,∠DAE=∠BCE,∴△BCE∽△DAE,∴,∴=.故答案为:36,.【点评】本题是圆的综合题,考查了圆周角定理,折叠的性质,等腰三角形的判定与性质,三角形内角和定理,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.三.解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)(2022•杭州)计算:(﹣6)×(﹣■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算(﹣6)×(﹣)﹣23.(2)如果计算结果等于6,求被污染的数字.【分析】(1)将被污染的数字代入原式,根据有理数的混合运算即可得出答案;(2)设被污染的数字为x,根据计算结果等于6列出方程,解方程即可得出答案.【解答】解:(1)(﹣6)×(﹣)﹣23=(﹣6)×﹣8=﹣1﹣8=﹣9;(2)设被污染的数字为x,根据题意得:(﹣6)×(﹣x)﹣23=6,解得:x=3,答:被污染的数字是3.【点评】本题考查了有理数的混合运算,一元一次方程的应用,体现了方程思想,设被污染的数字为x,根据计算结果等于6列出方程是解题的关键.18.(8分)(2022•杭州)某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取,他们的各项成绩(单项满分100分)如下表所示:候选人文化水平艺术水平组织能力甲80分87分82分乙80分96分76分(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?【分析】(1)根据算术平均数的定义列式计算可得;(2)根据加权平均数的定义列式计算可得.【解答】解:(1)甲的平均成绩为=83(分);乙的平均成绩为=84(分),因为乙的平均成绩高于甲的平均成绩,所以乙被录用;(2)根据题意,甲的平均成绩为80×20%+87×20%+82×60%=82.6(分),乙的平均成绩为80×20%+896×20%+76×60%=80.8(分),因为甲的平均成绩高于乙的平均成绩,所以甲被录用.【点评】本题主要考查平均数,解题的关键是熟练掌握算术平均数和加权平均数的计算公式.19.(8分)(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,=.(1)若AB=8,求线段AD的长.(2)若△ADE的面积为1,求平行四边形BFED的面积.【分析】(1)证明△ADE∽△ABC,根据相似三角形面积的比等于相似比的平方,可解答;(2)根据相似三角形面积的比等于相似比的平方可得△ABC的面积是16,同理可得△EFC的面积=9,根据面积差可得答案.【解答】解:(1)∵四边形BFED是平行四边形,∴DE∥BF,∴DE∥BC,∴△ADE∽△ABC,∴==,∵AB=8,∴AD=2;(2)∵△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为1,∴△ABC的面积是16,∵四边形BFED是平行四边形,∴EF∥AB,∴△EFC∽△ABC,∴=()2=,∴△EFC的面积=9,∴平行四边形BFED的面积=16﹣9﹣1=6.【点评】本题主要平行四边形的性质,相似三角形的性质和判定,掌握相似三角形面积的比等于相似比的平方是解题关键.20.(10分)(2022•杭州)设函数y1=,函数y2=k2x+b(k1,k2,b是常数,k1≠0,k2≠0).(1)若函数y1和函数y2的图象交于点A(1,m),点B(3,1),①求函数y1,y2的表达式;②当2<x<3时,比较y1与y2的大小(直接写出结果).(2)若点C(2,n)在函数y1的图象上,点C先向下平移2个单位,再向左平移4个单位,得点D,点D恰好落在函数y1的图象上,求n的值.【分析】(1)①利用待定系数法求函数解析式;②利用函数图像分析比较;(2)根据平移确定点D的坐标,然后利用函数图像上点的坐标特征代入求解.【解答】解:(1)把点B(3,1)代入y1=,3=,解得:k1=3,∴函数y1的表达式为y1=,把点A(1,m)代入y1=,解得m=3,把点A(1,3),点B(3,1)代入y2=k2x+b,,解得,∴函数y2的表达式为y2=﹣x+4;(2)如图,当2<x<3时,y1<y2;(3)由平移,可得点D坐标为(﹣2,n﹣2),∴﹣2(n﹣2)=2n,解得:n=1,∴n的值为1.【点评】本题考查反比例函数与一次函数,理解反比例函数和一次函数的图像性质,掌握待定系数法求函数解析式,利用数形结合思想解题是关键.21.(10分)(2022•杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.【分析】(1)根据直角三角形的性质可得MC=MA=MB,根据外角的性质可得∠MEC =∠A+∠ACE,∠EMC=∠B+∠MCB,根据等角对等边即可得证;(2)根据CE=CM先求出CE的长,再解直角三角形即可求出FC的长.【解答】(1)证明:∵∠ACB=90°,点M为边AB的中点,∴MC=MA=MB,∴∠MCA=∠A,∠MCB=∠B,∵∠A=50°,∴∠MCA=50°,∠MCB=∠B=40°,∴∠EMC=∠MCB+∠B=80°,∵∠ACE=30°,∴∠MEC=∠A+∠ACE=50°,∴∠MEC=∠EMC,∴CE=CM;(2)解:∵AB=4,∴CE=CM=AB=2,∵EF⊥AC,∠ACE=30°,∴FC=CE•cos30°=.【点评】本题考查了直角三角形的性质,涉及三角形外角的性质,解直角三角形等,熟练掌握并灵活运用直角三角形的性质是解题的关键.22.(12分)(2022•杭州)设二次函数y=2x2+bx+c(b,c是常数)的图象与x轴交于A,B 两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【分析】(1)根据A、B两点的坐标特征,可设函数y1的表达式为y1=2(x﹣x1)(x﹣x2),其中x1,x2是抛物线与x轴交点的横坐标;(2)把函数y1=2(x﹣h)2﹣2,化成一般式,求出对应的b、c的值,再根据b+c式子的特点求出其最小值;(3)把y1,y2代入y=y1﹣y2求出y关于x的函数表达式,再根据其图象过点(x0,0),把(x0,0)代入其表达式,形成关于x0的一元二次方程,解方程即可.【解答】解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为x=﹣=.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=.【点评】本题考查了二次函数表达式的三种形式,即一般式:y=ax2+bx+c,顶点式:y =a(x﹣h)2+k,交点式:y=a(x﹣x1)(x﹣x2).23.(12分)(2022•杭州)在正方形ABCD中,点M是边AB的中点,点E在线段AM上(不与点A重合),点F在边BC上,且AE=2BF,连接EF,以EF为边在正方形ABCD内作正方形EFGH.(1)如图1,若AB=4,当点E与点M重合时,求正方形EFGH的面积.(2)如图2,已知直线HG分别与边AD,BC交于点I,J,射线EH与射线AD交于点K.①求证:EK=2EH;②设∠AEK=α,△FGJ和四边形AEHI的面积分别为S1,S2.求证:=4sin2α﹣1.【分析】(1)由点M是边AB的中点,若AB=4,当点E与点M重合,得出AE=BE=2,由AE=2BF,得出BF=1,由勾股定理得出EF2=5,即可求出正方形EFGH的面积;(2)①由“一线三直角”证明△AKE∽△BEF,得出,由AE=2BF,得出,进而证明EK=2EH;②先证明△KHI≌△FGJ,得出S△KHI=S△FGJ=S1,再证明△KAE∽△KHI,得出==,由正弦的定义得出sinα=,进而得出sin2α=,得出=4sin2α,即可证明=4sin2α﹣1.【解答】(1)解:如图1,∵点M是边AB的中点,若AB=4,当点E与点M重合,∴AE=BE=2,∵AE=2BF,∴BF=1,在Rt△EBF中,EF2=EB2+BF2=22+12=5,∴正方形EFGH的面积=EF2=5;(2)如图2,①证明:∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠K+∠AEK=90°,∵四边形EFGH是正方形,∴∠KEF=90°,EH=EF,∴∠AEK+∠BEF=90°,∴∠AFE=∠BEF,∴△AKE∽△BEF,∴,∵AE=2BF,∴,∴EK=2EF,∴EK=2EH;②证明:∵四边形ABCD是正方形,∴AD∥BC,∴∠KIH=∠GJF,∵四边形EFGH是正方形,∴∠IHK=∠EHG=∠HGF=∠FGJ=90°,EH=FG,∵KE=2EH,∴EH=KH,∴KH=FG,在△KHI和△FGJ中,,∴△KHI≌△FGJ(AAS),∴S△KHI=S△FGJ=S1,∵∠K=∠K,∠A=∠IHK=90°,∴△KAE∽△KHI,∴==,∵sinα=,∴sin2α=,∴=4sin2α,∴=4sin2α﹣1.【点评】本题考查了正方形的性质,勾股定理,相似三角形的判定与性质,掌握正方形的性质,勾股定理,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数的定义是解决问题的关键.。

2018年高考真题—语文(浙江卷)含解析

2018年高考真题—语文(浙江卷)含解析

2018年高考真题—语文(浙江卷)含解析在第55届博洛尼亚国际儿童书展上,中国插画展现场的观众络绎不绝,显示出各界对中国插画现状与发展的关切。

插画就是出版物中的插图:一本书如果以插画为主,以文字为辅,就被称为绘本,顾名思义就是画出来的书。

一本优秀的绘本可以让不认字的孩子“读”出其中蕴涵的深意。

在各色画笔下,蝴蝶、花朵、叶子、大树等跃然纸上,孩子可以对色彩、实物进行认知研究。

在学校里阅读的绘本,父母在家里也可以和孩子一起阅读。

如此一来,孩子在幼儿园抑或在家里,都拥有一个语言互通的环境。

“绘本在儿童早期教育中的作用已被越来越多的人认识,但绘本的发展还需加快步伐。

”书展上多家出版社的负责人都持类似观点。

当然,关于绘本创作者,需要关注的,不仅有儿童心灵成长的需求,还有成年读者的精神世界。

答案】A解析】文段中的加点词,运用不正确的一项是“络绎不绝”。

该词的正确用法是“络绎不断”,表示人或事物不间断地接续前来。

文章已经修正,以下是修改后的文章:出版社除了利用直播、短视频等形式传播本身的品牌作为吸引受众的内容进行推广,还可以在社交平台上做线上活动。

这是图书营销中的必选项之一。

互联网思维的运用可以优化治理,比如“最多跑一次”改革。

政务数据的互联互通和办事流程的全面再造,使得办事程序能够删繁就简。

观众跟随着这档浸润理想情怀的节目,回顾科学技术的研发过程,感知科学家的创造力,把握时代的脉搏,激发前进的动力。

这档节目受到各界一致好评。

该研究团队揭示了用化学方法制备干细胞的科学原理。

他们开发了简单、高效制备干细胞的新技术,为优化制备途径提供了新的科学视角和解决方案。

我是一个人类,因为我能思考。

”这是XXX的名言。

人类因为有思维,才能创造出文明和科技,改变了世界。

思维的本质是推理,是对已知和未知事物之间的关系进行推断和判断,从而得出结论。

然而,人类的思维也有局限性,比如受到文化、教育、经验等因素的影响,容易产生偏见和错误的推断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10°
第36题

P
20
00

荷 荷兰的风车,最早从德国引进。开始时,风车仅用于磨粉之类。到了十六、七世纪,风车 海 安特卫普 丹 海 比 利 时 51° 英 麦 北 对荷兰的经济有着特别重大的意义。当时,荷兰在世界的商业中,占首要地位的各种原料 典 兰 水域 国界 城市 图 ,从各路水道运往风车加工,其中包括:北欧各国和波罗的海沿岸各国的木材,德国的大 浅滩 运河 油气田 国 例 油气管道 河流 德 荷 麻子和亚麻子,印度和东南亚的肉桂和胡椒。在荷兰的大港 --等深线 鹿特丹和阿姆斯特丹的近郊 52° 兰 第36题图2 ,有很多风车的磨坊、锯木厂和造纸厂。 国
106.5° 断层
7.对图中四地地质构造成因、地貌外力作用方式叙述正确的是 A.①地断裂抬升、黄河干流流水侵蚀 B.②地断裂下沉、黄河干流沙砾洪积 C.③地断裂下沉、黄河干流泥沙冲积 D.④地断裂抬升、黄河干流泥沙堆积
第8题
③ 冲积平原 城市 黄河 38.5° 砂岩 ④ 沙丘覆盖 的平原
下图为我国某地沿北纬38.5°所作的地质构造、地貌剖面图,图中一般地势越高地 下水埋藏越深,读图完成7-8题。
① ② 侵蚀 洪积倾 山地 斜山地 海3000 拔 1000 m 38.5° 花岗岩
106° 老沉积物 洪积物
新沉积物
106.5° 断层
8.图中城市历史上曾是某王朝的都城,该王朝一般会选择在土层 深厚、地下水位较深的地方修建皇家陵墓。图中较为理想的地方是 A.① B.② C.③ D.④
第9题
300


西斯海尔水道
莱 茵 河
200
安特卫普 丹第36题图1 材料二 比 利 时 随着荷兰人民围海造陆工程的大规模开展,风车在这项艰巨的工程中发挥了巨大的作用。 51° 麦 北 荷兰是世界著名的“低地之国”、“风车 根据当地的湿润多雨、风向多变的气候特点,他们对风车进行了改革。首先是给风车配上 之国”,围海造田的面积约占国土面积的 水域 国界 活动的顶篷。此外,为了能四面迎风,他们又把风车的顶篷安装在滚轮上。这种风车,被 城市 图 七分之一。2009年荷兰实施一项“退耕 浅滩 运河 称为荷兰式风车(如左图)。 油气田 还海”工程,位于其南部西斯海尔德水道 等深线 例 油气管道 河流 德 荷 两岸的部分堤坝北推,原来围海造田得来 荷兰风车,最大的有好几层楼高,风翼长达 20米。有的风车,由整块大柞木做成。十八世 的300公顷土地被海水淹没。 兰 第36题图2 纪末,荷兰全国的风车约有一万二千架,每台拥有6000匹马力。这些风车用来碾谷物、粗 盐、烟叶、榨油,压滚毛呢、毛毡、造纸,以及排除沼泽地的积水。正是这些风车不停地 国 (3)简析图2区域围海造田有利的自然条件。( 6分) 吸水、排水,保障了全国三分之二的土地免受沉沦和人为鱼鳖的威胁。
第 2题
• 南水北调东线工程是把长江的水调往北方的调水工程,调水线路主要为大 运河。读南水北调东线工程调水线路图,完成第1、2题。
2、南水北调东线工程对长江可能带来的影 响,叙述正确的是 A、可提高社会对长江水质的关注 B、可促使长江的泥沙向海洋输送 C、可降低甲地咸水入侵发生的问题 D、可改变长江口外海洋潮汐的规律
第37题
(1)写出丽江古城旅游业发展主 要的不利区位因素及古建筑保护面 临的主要问题。(6分)
28°
24° 甸
材料二 云南瑞丽试验区是沿边国家重点开发开 放试验区,支柱产业主要包括红木加工 、农矿产品物流、摩托车组装等。贵州 贵安新区是国家内陆开放型经济示范区 ,支柱产业主要包括电子信息制造、航 空制造、大数据处理等。
mm
11.地球上某点,每天该点经过昏线的地方时不断前移, 则该点所在地 与时间段匹配正确的是: A.澳大利亚悉尼,5月 B.美国华盛顿,1月 C.南非 好望角,9月 D.印度孟买,4月
B
综合题
两大题(共56分)
材料一 下图为世界某区域略图。
0° 10° 挪
第36题
瑞 4° 北 威 海 典
西斯海尔水道
国 52° 兰



国 第36题图1
(2)若图1中P处发生原油泄漏,其扩散的方向是 受影响国家直接危害的产业部门是 。(6分)
,原因是受
影响。对
(2)向北(或东北);北大西洋暖流(或洋流);海洋渔业(或海洋捕捞)

材料一 10° 下图为世界某区域略图。

瑞 00 荷兰座落在地球的盛行西风带,一年四季盛吹西风。同时它濒临大西洋,又是典型的海洋 5° 30 瑞 4° 挪 5° 4° 挪 0 0 0 10 性气候国家,海陆风长年不息。这就给缺乏水力、动力资源的荷兰,提供了利用风力的优 52° 鹿特丹 P 北 莱 茵 河 52° 威 厚补偿。 60° 荷 鹿特丹 海
材料三 图中准静止锋是我国自然地理的重要分界。下表为图中安顺和昆明的气候统计数据。
材料一 下图为云贵两省部分区域及相邻地区略图。
第7题
③ 冲积平原 城市 黄河 38.5° 砂岩 ④ 沙丘覆盖 的平原
下图为我国某地沿北纬38.5°所作的地质构造、地貌剖面图,图中一般地势越高地 下水埋藏越深,读图完成7-8题。
① ② 侵蚀 洪积倾 山地 斜山地 海3000 拔 1000 m 38.5° 花岗岩
106° 老沉积物 洪积物
新沉积物
材料一 下图为世界某区域略图。
0° 10° 挪
第36题
瑞 4° 北 威 海 典
西斯海尔水道
30
00 10 00
20
00
5° 鹿特丹 莱 茵 河 荷 兰 52°
P
60°
200



丹 麦 图
安特卫普 比 利 国界 城市 浅滩 油气田 200m 等深线 油气管道 第36题图2
时 水域 运河 河流
51°
mm
第10题
300
水分盈亏量是降水量减去蒸发量的差值,反映气候的干湿状况。当水分盈亏量>0 时,表示水分有盈余,气候湿润;当水分盈亏量<0时,表示水分有亏缺,气 候干燥。下图为我国两地年内平均水分盈亏和湿度曲线图。读图,完成第9、 10题。
200 水 平 20 分 均 100 盈 温 10 亏 度 0 ( ( 0 1 2 3 4 5 6 7 8 9 10 11 12 -100 ℃ -10 ) -200 ) -20 月份 平均温度℃ 30 300 30
水分盈亏量是降水量减去蒸发量的差值,反映气候的干湿状况。当水分盈亏量>0 时,表示水分有盈余,气候湿润;当水分盈亏量<0时,表示水分有亏缺,气 候干燥。下图为我国两地年内平均水分盈亏和湿度曲线图。读图,完成第9、 10题。
200 水 平 20 分 均 100 盈 温 10 亏 度 0 ( ( 0 1 2 3 4 5 6 7 8 9 10 11 12 -100 ℃ -10 ) -200 ) -20 月份 平均温度℃ 30 300 30
区域人口对资源压力指数是全国资源人均占有量与区域该资源人均 占有量之比,此比值可作为判断区域人口规模适宜程度的指标之一。 读表,完成第5、6题
第6题
6.四省比较关于产业发展条件叙述正确的是 A.青海大力发展高科技产业条件最佳 B.河南发展耗水较多的产业条件最佳 C.浙江发展用耕地多的产业条件最佳 D.黑龙江发展商品农业耕地条件最佳
①地(北纬29.7°)
平 20 均 温 10 度 ( 0 1 2 3 4 5 6 7 8 9 10 11 12 ℃ -10 ) -20 月份 水分盈亏mm ②地(北纬39.0°)
水 200 分 100 盈 亏 0 ( -100 -200 )
mm
9.某农作物喜温好湿,能够正常生长和安全结实的温度要求是≥20℃,最短生 长期为4个月。评价该农作物在两地的生长条件,正确的是 A.①地温度条件适宜,水分条件不足 B.②地温度条件适宜,水分条件不足 C.①地水分条件适宜,温度条件不足 D.②地水分条件适宜,温度条件不足
30
00 10 00
20
00
5° 鹿特丹 莱 茵 河 荷 兰 52°
P
60°
200



丹 麦 图
安特卫普 比 利 国界 城市 浅滩 油气田 200m 等深线 油气管道 第36题图2
时 水域 运河 河流
51°
国 52° 兰



国 第36题图1
(1)北海是世界上重要的油气产地。简述北海油气田开采的有利和不利条件。(10分) 1)有利条件:油气资源储量丰富;位于大陆架浅海,便于开采; 接近能源消费市场;运输便利(任答三点) 不利条件:位于西风带,终年风浪大;多阴雨天气,不利于海上油气开采作业; 开采成本高(任答两点)
第3题
• 中亚位于“丝绸之路经济带”的中部,中亚国家与我国之间已形成由铁路、公 路、航空和管道等多种交通运输方式构成的综合运输体系。读我国与中亚部分 地区略图,完成第3、4题。 3、我国与中亚国家之间大力发展铁路运 输,体现其优势的是 ①适宜长距离大宗货物运输 ②修建总成本低 ③运输快捷,灵活方便 ④受气象灾害影响相对较小 A、①③ B、②③ C、①④ D、②④
①地(北纬29.7°)
平 20 均 温 10 度 ( 0 1 2 3 4 5 6 7 8 9 10 11 12 ℃ -10 ) -20 月份 水分盈亏亏 0 ( -100 -200 )
mm
10.①、②两地的气候类型分别是 A.亚热带季风气候、温带季风气候 B.温带大陆性气候、高原和高山气候 C.温带季风气候、亚热带季风气候 D.高原和高山气候、温带大陆性气候
第4题
• 中亚位于“丝绸之路经济带”的中部,中亚国家与我国之间已形成由铁路、公 路、航空和管道等多种交通运输方式构成的综合运输体系。读我国与中亚部分 地区略图,完成第3、4题。 4、某贸易代表团7月从吐鲁番出发沿铁路 前往中亚考察,有关沿线的自然环境描述 正确的是 A、自咸海至阿拉木图呈现草原向荒漠的 变化 B、在乌鲁木齐看到坡上有植被、顶部有 积雪的山峰 C、锡尔河自上而下到河口水量不断增加 D、从阿拉木图往北走看到山地针叶林分 布的海拔高度不断上升
相关文档
最新文档