奥氏体不锈钢的晶间腐蚀及热处理
不锈钢晶间腐蚀问题

不锈钢晶间腐蚀问题晶间腐蚀是金属材料在特定的腐蚀介质中沿着材料的晶界发生的一种局部腐蚀。
这种腐蚀是在金属(合金)表面无任何变化的情况下,使晶粒间失去结合力,金属强度完全丧失,导致设备突发性破坏。
许多金属(合金)都具有晶间腐蚀倾向。
其中不锈钢、铝合金及含钼的镍基合金晶间腐蚀较为突出。
如有应力存在,由晶间腐蚀转变为沿晶应力腐蚀破坏。
贫化理论认为,晶间腐蚀是由于晶界析出新相,造成晶界附近某一成分的贫乏化。
如奥氏体不锈钢回火过程中(400-800℃)过饱和碳部分或全部以Cr23C6 形式在晶界析出,造成碳化物附近的碳与铬的浓度急剧下降,在晶界上形成贫铬区,贫铬区作为阳极而遭受腐蚀。
对于低碳和超低碳不锈钢来说,不存在碳化物在晶界析出引起贫铬的条件。
但一些实验表明,低碳,甚至超低碳不锈钢,特别是高铬、钼钢,在650-850℃受热时,在强氧化介质中,或其电位处于过钝化区时,也发生晶间腐蚀。
铁素体不锈钢在900℃以上高温区快冷(淬火或空冷)易产生晶间腐蚀。
即使极低碳、氮含量的超纯铁素体不锈钢也难免产生晶间腐蚀。
但在700-800℃重新加热可消除晶间腐蚀。
由此可见,铁素体不锈钢焊后在焊缝金属和熔合线处易产生晶间腐蚀。
18Cr-9Ni 钢在温度高于750℃时,不产生晶间腐蚀,而在600-700℃区间,晶间腐蚀倾向最严重。
当温度低于600℃时,需长时间才能产生晶间腐蚀倾向,温度低于450℃时基本不产生晶间腐蚀倾向。
检验某种钢材是否有晶间腐蚀倾向,一般采用敏化处理工艺。
钢材加热到晶间腐蚀最敏感的,恒温处理一定时间,这种处理工艺称为敏化处理,产生晶间腐蚀最敏感的温度叫敏化温度。
18-8 不锈钢最敏感温度为650-700℃,产生晶间腐蚀倾向所需要的最短时间为1-2小时。
不锈钢中,除了主要成分Cr、Ni、C 外,还含有Mo、Ti、Nb 等合金元素。
它们晶间腐蚀的作用如下:1.碳:奥氏体不锈钢中碳量越高,晶间腐蚀倾向越严重,导致晶间腐蚀碳的临界浓度为0.02%(质量分数)。
晶间腐蚀及防治

绝大多数金属和合金是多晶体,在它们的表面上也显露出许多晶界。
晶界是原子排列较为疏松、紊乱的区域,容易产生杂质原子富集、晶界吸附、第二相的沉淀析出等现象(见界面);因此存在着显著的化学、物理不均匀性。
在腐蚀介质中金属和合金的晶界的溶解速度和晶粒本身的溶解速度是不同的。
在某些环境中,晶界的溶解速度远大于晶粒本身的溶解速度时,会产生沿晶界进行的选择性局部腐蚀,称为晶间腐蚀(图1及图2)。
受热(如敏化处理)、受力(冷加工形变)而引起晶界组织结构的不均匀变化,对晶间腐蚀也有很大影响(见金属腐蚀)。
晶间腐蚀发生后,金属和合金虽然表面仍保持一定的金属光泽,也看不出被破坏的迹象,但晶粒间的结合力已显著减弱,强度下降,因此设备和构件容易遭到破坏。
晶间腐蚀隐蔽性强,突发性破坏几率大,因此有严重的危害性。
不锈耐酸钢、镍基耐蚀合金、铝合金等金属材料都有可能产生晶间腐蚀;尤其在焊接时,焊缝附近的热影响区更容易发生晶间腐蚀。
20世纪30年代以来,对晶间腐蚀进行了大量研究,所提出的贫化理论,特别是对奥氏体不锈钢的贫铬理论已得到证实,并将贫化理论应用到铝铜合金的贫铜及镍钼合金的贫钼等方面。
前者在晶界上析出了CuAl2,后者在晶界上析出了Mo2C。
晶间腐蚀机理贫铬理论是奥氏体不锈钢晶间腐蚀主要理论。
从相图得知,不锈钢中碳在奥氏体里的固溶度随着温度的升高而增加,500~700℃时,1Cr18Ni9钢中碳在奥氏体里的平均固溶度不超过0.01%。
奥氏体不锈钢经固溶处理快速冷却后,奥氏体中的碳处于过饱和状态。
当这种钢在敏化温度范围(427~816℃)内受热时,奥氏体中过饱和的碳会迅速地向晶界扩散,在晶界上,碳消耗了晶界周围的铬,与铬形成铬的碳化物,由于铬的扩散速度太慢而得不到及时的补充,结果在晶界周围形成严重的贫铬区(图3)。
1Cr18Ni9奥氏体不锈钢的贫铬区的宽度约为2000┱左右,贫铬区的含铬量低于9.28%,亦即低于钝化所需要的含铬量。
304不锈钢的固溶热处理工艺

304不锈钢的固溶处理热处理工艺之阿布丰王创作摘要研究了分歧热处理工艺对304奥氏体不锈钢组织和性能的影响。
304奥氏体不锈钢试块进行1050℃保温30min固溶处理,分别在水中和在空气中冷却。
结果发现得出组织均为单相奥氏体,水中冷却不锈钢硬度更高,说明水冷后获得更大的内应力。
原资料进行650℃保温60min敏化处理和800℃保温60min敏化处理,对比得出在800℃保温60min时更容易发生晶间腐蚀。
因此,304不锈钢热处理时应防止在敏化温度区间内较高温度停留较长的时间。
奥氏体不锈钢是指在常温下具有奥氏体组织的不锈钢。
钢中含Cr 约18%、含Ni8%—10%、C约0.1%时,具有稳定的奥氏体组织。
奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不成能通过相变使之强化,仅能通过冷加工进行强化。
如加入S,Ca,Se,等元素,则具有良好的易切削性。
此类钢除耐氧化性、酸介质腐蚀外,如果含有Mo、Cu等元素还能耐硫酸、磷酸以及甲酸、醋酸等的腐蚀。
此类钢中的含碳量若低于0.03%或含Ti、N,就可显著提高其耐晶间腐蚀性能。
由于奥氏体不锈钢具有全面的和良好的综合性能,在各行各业中获得了广泛的应用[1—5]。
304奥氏体不锈钢作为一种用途广泛的钢,具有良好的腐蚀性、耐热性、低温强度和机械性能;冲压、弯曲等热加工性好,无热处理硬化现象,无磁性。
用于家庭用品(餐具、橱柜、锅炉、热水器),汽车配件,医疗器具,建材,化学,食品工业,船舶部件。
根据分歧的要求,其经常使用的热处理工艺主要有:固溶处理、稳定化处理和去应力处理等[6,7],由其应用的广泛性,其热处理工艺的研究对生产有很好的指导意义。
1实验方法实验原资料为304奥氏体不锈钢(国内牌号为0Cr18Ni9)化学成分为碳≤0.08%,硅≤1.00%,锰≤2.00%,磷≤0.045%,硫0.03%,镍8.0%—10.5%,铬18%—20%。
原资料通过热轧而成,切割成直径20mm,高20mm的圆柱体试样。
奥氏体不锈钢热处理工艺及其应注意的若干问题

奥氏体不锈钢热处理工艺及其应注意的若干问题作者:孙佳佳来源:《科技资讯》 2011年第35期孙佳佳(山西机电职业技术学院山西长治 046011)摘要:奥氏体不锈钢是不锈钢中应用最广泛、牌号种类最多的钢种,也是较重要的一类不锈钢。
本文首先简要介绍了奥氏体不锈钢的成分特点,然后详细对奥氏体不锈钢热处理工艺及其应注意的若干问题进行研究。
关键词:奥氏体不锈钢热处理工艺中图分类号:TG441.8 文献标识码:A 文章编号:1672-3791(2011)12(b)-0091-01奥氏体不锈钢在不锈钢中一直扮演着最重要的角色,其生产量和使用量约占不锈钢总产量及用量的70%。
由于奥氏体不锈钢具有优良的性能和特点,使其越来越受到重视和应用,特别是在核电设备的制造生产中,更是被应用于制造重要、关键的零部件。
1 奥氏体不锈钢的特点奥氏体不锈钢最基本的合金元素是铬和镍,代表性的牌号是含铬为18%左右、含镍为8%左右的铬-镍奥氏体不锈钢。
铬和镍的元素配比基本上保证了钢的组织是稳定的奥氏体。
奥氏体不锈钢的发展很快,为了适应不同条件的需要,在18-8钢的基础上,改变被的含量或添加其他合金元素,赋予了这类不锈钢更优良的性能。
奥氏体不锈钢的组织结构决定了其力学性能的特点是强度较低而塑性和韧性较高。
在我国不锈钢标准中,给定的奥氏体不锈钢抗拉强度—般为480~520N/mm2;个别的还有400N/mm2。
按标准,奥氏体不锈钢锻材、轧材没给出冲击试验值,实际上,奥氏体不锈钢固溶化热处理后的冲击功可达120J或更高。
奥氏体不锈钢的力学性能不能通过热处理进行调整。
18-8型奥氏体不锈钢对氧化性介质,如大气、稀硝酸或中等浓度的硝酸、浓硫酸是耐腐蚀的,在氢氧化钠和氢氧化钾的溶液中,在相当宽的浓度和温度范围内有较好的耐腐蚀性。
而在还原性介质,如盐酸、亚硫酸中不耐腐蚀,在浓硝酸中也不耐腐蚀。
此外,奥氏体不锈钢加热后在850℃~400℃区间缓慢冷却时,铬的碳化物会从晶界析出,使晶界处产生局部贫铬区,从而产生晶间腐蚀。
奥氏体不锈钢焊接接头晶间腐蚀评定和控制

18-8 奥氏体不锈钢焊接接头晶间腐蚀的评定及控制18-8 奥氏体不锈钢已得到极广泛的应用,但钢在氧化和弱氧化介质中会产生晶间腐蚀,晶间腐蚀是由表面沿晶界深入到内部,它使材料的强度急剧下降,稍受外力即沿晶界断裂,而表面却仍然光亮完好,所以晶间腐蚀是一种具有极大的危险性的腐蚀破坏。
因此,要求采用不锈钢制作的设备,母材和焊接接头都应有足够的抗晶间腐蚀性能。
为保证产品质量,经施焊的构件设备必须进行焊接接头晶间腐蚀倾向性检查。
1 奥氏体不锈钢焊接接头晶间腐蚀试验1. 1 焊接接头晶间腐蚀试验方法通常采用加速方法来测定不锈钢对晶间腐蚀的敏感性,其原理是选择适当的侵蚀剂和条件对晶间进行加速的选择性腐蚀。
采用GB/ T 4334. 5- 2000“不锈钢硫酸-硫酸铜腐蚀试验方法”进行焊接接头晶间腐蚀试验。
1. 1. 1 试样制备试验用材料为1Cr18Ni9 Ti 不锈钢,其化学成分( 质量分数) 为≤0. 12 %C , ≤1. 0 % Si ,≤2. 0 % Mn , ≤0. 030 % S , ≤0. 035 % P ,17. 0 %~19.0 % Cr ,8. 0 %~11. 0 % Ni ,0. 8 % Ti 。
在与产品筒体延长部位同时施焊的焊接工艺检查试板上取2 个试样,试样尺寸80 mm ×20 mm ×(3~4) mm ,焊接接头位于试样中部,试样切取原则上用锯切,若用剪切则应通过切削去除剪切变形部分,试样上焊缝加强高应加工至与母材齐平。
1. 1. 2 试样的敏化处理对焊后要经350 ℃以上热压力加工的焊接件在焊后进行敏化处理。
敏化处理工艺为650 ℃保温2 h空冷。
敏化后试样表面所产生的氧化皮用砂纸打磨干净,试样表面粗糙度Ra ≤0. 8μm。
1. 1. 3 腐蚀试验侵蚀介质为硫酸2硫酸铜溶液。
将100 g 分析纯硫酸(CuSO4 ·5H2O) 溶解于700 mL 蒸馏水或去离子水中, 再加入100 mL 优级纯硫酸,用蒸馏水或去离子水稀释至1 000 mL ,配制成硫酸2硫酸铜溶液。
奥氏体不锈钢晶间腐蚀试验

奥氏体不锈钢晶间腐蚀试验方法一、试验方法:奥氏体不锈钢10%草酸浸蚀试验方法试样在10%的草酸溶液中电解浸蚀后,在显微镜下观察浸蚀表面的金相组织。
二、试样1、取样及制备:1)焊接试样从与产品钢材相同而且焊接工艺也相同的试块上取样,试样应包括母材、热影响区以及焊接金属的表面;2)取样方法:原则上用锯切,如用剪切方法时应通过切削或研磨的方法除去剪切影响部分;3)试样被检查的表面应抛光,以便进行腐蚀和显微组织检验;2、试样的敏化处理1)敏化前和试验前试样用适当的溶剂或洗涤剂(非氯化物)除油并干燥;2)焊接试样直接以焊后状态进行试验。
对焊后还要经过350℃以上热加工的焊接件,试样在焊后还应进行敏化处理。
试样的敏化处理在研磨前进行,敏化处理制度为650℃,保温1小时,空冷。
三、试验方法1、试验溶液:将100克符合GB/T9854的优先级纯草酸溶解于900ml蒸馏水或去离子水中,配置成10%草酸溶液;2、实验仪器和设备:阴极为奥氏体不锈钢制成的钢杯或表面积足够大的钢片,阳极为试样,如用钢片作阴极时要采用适当形状的夹具,使试样保持于试验溶液中,浸蚀电路如图1所示。
1——不锈钢容器2——试样3——直流电源4——变阻器5——电流表6——开关图1 电解浸蚀装置图3、试验条件和步骤:1)把浸蚀试样作阴极,以不锈钢杯或不锈钢片作为阴极,倒入10%草酸溶液,接通电流。
阳极电流密度为1A/cm2,浸蚀时间为90s,浸蚀溶液温度为20℃~50℃。
2)试样浸蚀后,用流水洗净,干燥。
在金相显微镜下观察试样的全部浸蚀表面,放大倍数为200倍~500倍,根据表1、表2和图2~图8判定组织的类别。
3)每次试验使用新的溶液。
4、浸蚀组织的分类1)显示晶界形态浸蚀组织的分类见表1;2)显示凹坑形态浸蚀组织的分类见表2;3)一类阶梯组织和二类混合组织是可接受的组织,其余为不可接受组织。
5、试验报告:试验报告应包括以下内容:1)试验的名称及试验面积尺寸;2)电流密度;3)浸蚀时间和温度;4)浸蚀后的金相照片;5)判定结果。
奥氏体不锈钢压力容器晶间腐蚀原因及预防措施

设备运维奥氏体不锈钢压力容器晶间腐蚀原因及预防措施黄慧(柳州市特种设备检验所,广西柳州545006)摘要:奥氏体不锈钢压力容器由于出现晶间腐蚀情况,会使整个结构出现早期失效情况,不仅会对钢材的正常使用造成影响,还会导致出现生产事故,增加企业的经济损失,还会提升人力物力成本。
所以需要深入探索奥氏体不锈钢压力容器晶间腐蚀的产生原因,并且按照不同原因提出针对性地预防处理措施,全面发挥出奥氏体不锈钢的性能,促进社会的发展。
关键词:奥氏体不锈钢;压力容器;晶间腐蚀;原因随着工业生产的快速发展,在现代石油行业,制药行业以及化工行业等均已广泛应用不锈钢制品,该类物品在国民经济发展中具有重要作用。
然而由于企业在使用不锈钢时没有正确认识该种材料,因此时常发生生产事故问题[1]。
由于奥氏体不锈钢压力容器所产生的晶间腐蚀会对该压力容器的运行安全性和稳定性造成极大影响,因此本文主要是探讨分析奥氏体不锈钢压力容器晶间腐蚀原因,希望能够找寻到降低晶间腐蚀破坏影响的措施,从前期设计以及认知等方面入手,希望能够预防和处理奥氏体不锈钢压力容器晶间腐蚀问题,并且为相关人员起到参考性价值。
1奥氏体不锈钢的基本分析一般情况下,不锈钢是指暴露在空气中能够抵抗腐蚀的钢材料,按照钢材组织结构可以分为奥氏体不锈钢,奥氏体-铁素体不锈钢,铁素体不锈钢以及马氏体不锈钢;按照化学成分可以将不锈钢分为铬镍不锈钢和铬不锈钢。
其中应用最为普遍的是奥氏体不锈钢。
纯铁在常温条件下的存在形式为α-Fe,该存在形式晶格为体心立方结构,单位晶胞原子数为2,致密度为0.68。
纯铁在高温环境下晶体结构为γ-Fe,晶格为面心立方结构,单位晶胞原子数为4,致密度为0.74。
晶格以此为单位进行扩展,邻近晶格共用同一个原子,这样能够扩大为立体结构。
若材料由单晶格扩展形成,就属单晶,比如电子行业所使用的单晶硅[2]。
若材料是由多种晶格所共同发展,则属于多晶体,奥氏体不锈钢的晶间是两个独立晶格所相交的位置。
奥氏体不锈钢焊接中的晶间腐蚀敏感性试验简述

Gongyi yu Jishu♦工艺与技术奥氏体不锈钢焊接中的晶间腐蚀敏感性试验简述贾飞_(懸美德沖国3有観公:爾,上海201.809)摘要:奥氏体不锈钢捧接中的晶间腐魏是:一个无滚两滅的间《,国内外也对乎IB何确定晶_腐蚀的敏感性出台了相关的标准=现 从虜内晶间腐蚀敏感性试验标准入篆.播要刻举f國内外的晶向腐蚀驗感性试藥雜对此做出T简要分析。
关键词奧氏体不锈钢;晶间腐蚀r焊掾r敏薄性n.试轂0引言奥氏体不锈钢具体良好的耐_温和耐腐蚀性以及较好的焊翻生,便于机加工,圃此广泛用乎化工设备及其他行业。
晶 间腐蚀暴奥氏体不锈钢常见的一种电化学腐蚀,较之其他腐蚀藤式,诸如点蚀縫:隙腐蚀和应力腐蚀晶间腐蚀:尤其蓉'S 扭现在焊接过蠢中,:虜焊縫又是设备中最知静弱的环节,因 此,在_产生爾中:要对晶间腐蚀给予足够的重视4产&焊缝晶间腐蚀的不镑钢构件在外形上役有祍何变化,餘焊缝区域外,其余母材均未被腐蚀,仍保持着明亮的金属,光泽^因此,晶间腐蚀不易通过常规手段进行检查,往往发生破坏时,已经为时 晚矣,難#f t极大。
晶间腐蚀能被坏晶粒间的结合力,造成备项机械性能大范围下降,形成晶羿失效的结构,即#晶粒:的机械性能完好爾互相聪系的晶界却=脆截不堪奧氏体不锈钢之所以不镑是因为有大于12%的铬元素形成的钝化层。
但是在加热状态下,晶内碳元素的扩散速度大于 铬元素的扩散速度,晶界载会富檗太暈M嵌元素,由于撰:元素 与铬元素的亲和力较强,会与处于義弄处的铬元素:形成m2a(m表示铬和铁元素),从而第耗掉晶猙:;|暈:的铬元素,使 晶界贫铬(:小子12%)而形成腐蚀。
另外,西格玛灌在勗界的析出同祥会造成类似的贫锡区,也会导致晶间腐蚀的发生,这是超低碳奥氏你不锈钢发隹晶间腐蚀:的原厲捧接过靈中,加热过麓会加速勗界附近元素的迁移,使屬本没有勗眞腐蚀性能的母材也在焊缝附近产生贫铬区,因此,在焊接工艺评定中,晶间腐蚀敏感性试验長十分必要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥氏体不锈钢的晶间腐蚀及热处理
1. 奥氏体不锈钢晶间腐蚀原因及防止措施
奥氏体不锈钢在450~850℃保温或缓慢冷却时,会出现晶问腐蚀。合碳量越高,晶间蚀倾
向性越大。此外,在焊接件的热影响区也会出现晶间腐蚀。这是由于 在晶界上析出富Cr
的Cr23C6。使其周围基体产生贫铬区,从而形成腐蚀原电池而造成的。这种晶间腐蚀现象
在铁素体不锈钢中也是存在的。
工程上常采用以下几种方法防止晶间腐蚀:
(1)降低钢中的碳量,使钢中合碳量低于平衡状态下在奥氏体内的饱和溶解度,即从根本
上解决了铬的碳化物(Cr23C6)在晶界上 析出的问题。通常钢中含碳量降至0.03%以下即
可满足抗晶间腐蚀性能的要求。
(2)加入Ti、Nb等能形成稳定碳化物(TiC或NbC)的元素,避免在晶界上析出Cr23C6,
即可防上奥氏体不锈钢的晶间腐蚀。
(3)通过调整钢中奥氏体形成元素与铁素体形成元素的比例,使其具有奥氏体+铁素体双
相组织,其中铁素体占5%一12%。这种双相组织不易产生晶间腐蚀。
(4)采用适当热处理工艺,可以防止晶间腐蚀,获得最佳的耐蚀性。
2.奥氏体不锈钢的应力腐蚀
应力(主要是拉应力)与腐蚀的综合作用所引起的开裂称为应力腐蚀开裂,简称SCC(Stress
Crack Corrosion)。奥氏体不锈钢容易在含氯离子的腐蚀介质中产生应力腐蚀。当含Ni量达
到8%一10%时,奥氏体不锈钢应力腐蚀倾向性最大,继续增加 含Ni量至45%~50%应
力腐蚀倾向逐渐减小,直至消失。 防止奥氏体不锈钢应力腐蚀的最主要途径是加入Si
2%~4%并从冶炼上将N含量控制在0.04%以下。此外还应尽量减少P、Sb、Bi、As等杂
质的含量 。另外可选用A-F双用钢,它在Cl-和OH-介质中对应力腐蚀不敏感。当初始的
微细裂纹遇到铁素体相后不再继续扩展,体素体含量应在6%左右。
3.奥氏作不锈钢的形变强化
单相的奥氏体不锈钢具有良好的冷变形性能,可以冷拔成很细的钢丝,冷轧成很薄的钢带或
钢管。经过大量变形后,钢的强度大力提高 ,尤其是在零下温区轧制时效果更为显著。抗
拉强度可达 2 000 MPa以上。这是因为除了冷作硬化效果外,还叠加了形变诱发M转变。
奥氏作不锈钢经形变强化后可用来制造不锈弹簧、钟表发条、航空结构中的钢丝绳等。形变
后若需焊接,则只能采用点焊工艺、形变使应力腐蚀倾向性增加 。并因部分γ->M转变而
产生铁磁性,在使用时(如仪表零件中)应予以考虑。再结晶温度随形变量而改变,当形变
量为60%时,其再结晶温度降为 650℃冷变形奥氏体不锈钢再结晶退火温度为850~
1050℃,850℃则需保温3h,1050℃时 透烧即可,然后水冷。
4.奥氏作不锈钢的热处理
奥氏体不锈钢常用的热处理工艺有:固溶处理、稳定化处理和去应力处理等。
(1) 固溶处理。
将钢加热到1050~1150℃后水淬,主要目的是使碳化物溶于奥氏体中,并将此状态保留到
室温 ,这样钢的耐蚀性会有很大改善。如上所述,为了防止晶问腐蚀,通常采用固溶化处
理,使Cr23C6溶于奥氏体中,然后快速冷却。对于薄壁件可采用空冷 ,一般情况采用水
冷。
(2) 稳定化处理。
一般是在固溶处理后进行,常用于含Ti、Nb的18-8钢,固处理后,将钢加热到850~880℃
保温后空冷 ,此时Cr的碳化物完全溶解,然而钛的碳化物不完全溶解,且在冷却过程中充
分析出,使碳不可能再形成格的碳化物,因而有效地消除了晶间腐蚀。
(3) 去应力处理。
去应力处理是消除钢在冷加工或焊接后的残余应力的热处理工艺。一般加热到300~350℃
回火。对于不 含稳定化元素Ti、Nb的钢,加热温度不超过450t,以免析出铬的碳化物而
引起晶间腐蚀。对于超低碳和含Ti、Nb不锈钢的冷加工件和焊接件,需在 500~950℃,加
热 ,然后缓冷,消除应力(消除焊接应力取上限温度),可以减轻晶间腐蚀倾向并提高钢的
应力腐蚀抗力。
四、奥氏体-铁素体双相不锈钢
在奥氏体不锈钢的基础上,适当增加Cr含量并减少Ni含量,并与回溶化处理相配合,可获
得具有奥氏体和铁素体的双相组织( 含40~60%δ-铁素体)的不锈钢,典型钢号有
0Cr21Ni5Ti、1Cr21Ni5Ti、0Cr21Ni6Mo2Ti等。双相不锈钢与里氏体不锈钢 相比有较好的
焊接性,焊 后不需热处理,而且其晶间腐蚀、应力腐蚀倾向性也较小。但由于含Cr量高,
易形成σ相,使用时应加以注意。
马氏体不锈钢没有晶间腐蚀通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可
硬化的不锈钢。典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。淬火后硬度较高,不同回
火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。根据化学成分
的差异,马氏体不锈钢可分为 马氏体铬钢和马氏体铬镍钢两类。根据组织和强化机理的不
同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体
时效不锈钢 等。