数控机床的现状与发展趋势综述

合集下载

机床数控技术的发展现状与趋势

机床数控技术的发展现状与趋势

机床数控技术的发展现状与趋势机床数控技术是一种将数字化信息传输到机床控制系统上,通过程序控制机床进行加工的技术.前若信息技术的迅猛发展和制造业的转型升线,风床数控技术得到J'广泛的应用,成为现代制造业的重要技术手段之一。

在国家“中国制造2025”战略的推动下,机床数控技术正迎来新轮的发展机遇,本文将就机床数控技术的发展现状与趋势迸行深入探讨.1.技术水平逐步提升近年来,随芥数控技术的不断进步,机床数控技术的水平也在不断提高。

从数控设备的加工精度、稳定性、速度等方面来看,都取得r较大的进步.尤其是在高速、高精度、高效加工方面,数控技术已经能鲂满足大部分工件的加工需求,成为工业制造中不可或浓的也要技术。

2.产必结构不断优化随着用户需求的不断提高,机床数控技术的产品结构也在不断进行询整和优化.数控机床的外观设计、操作界面、加工程序等都得到了更加科学合理的设计,提商了用户的使用体的,使得机床数控技术更和贴近实际生产需要.3.应用葩围不断扩大机床数控技术在不同领域的应用也不断扩大,不仅在传统的机械加工领域得到广泛应用,同时也在航空航天、汽车制造、电子信息等岛新技术领域发挥着史:要作用,随着人工智能、大数据等新技术的不断融合,机床数控技术的应用苑国将会更加广泛.-1.产业集聚效应凸显驰着机•床数控技术的不断发展,相应的产业集聚效应也Il益凸显,在我国,已经形成r以机床数控技术为核心的产业链,涵龙/数控设备制造'数控系统开发、自动化生产线集成等领域,形成了完整的产业生态链.这种产业集群的发展不仅促进了机床数控技术的不断进步,同时也推动了整个制造业的开线,二、机床数控技术的发展趋势1.智能化发展趋势明显髓石人工智能、大数据等技术的广泛应用,机床数控技术正朝石智能化方向发展。

未来的数控机床将具备更加智能的自动化功能,能终实现自主识别、自主修友、自主调整等功能.这将大大提高机床的生产效率和稳定性,推动整个制造业的智能化转型。

数控机床的发展历程和趋势

数控机床的发展历程和趋势
采用高精度传感器和算法,实现超精 密加工和纳米级定位。
现代数控机床的应用领域拓展
01
02
03
04
航空航天领域
用于加工飞机和航天器的复杂 零部件,如发动机叶片、机翼
等。
汽车制造领域
用于加工汽车零部件,如发动 机缸体、曲轴等。
模具制造领域
用于加工各种模具零部件,如 注塑模、压铸模等。
医疗器械领域
用于加工各种医疗器械零部件 ,如人工关节、牙科种植体等
高精度直线导轨和滚珠丝 杠
高精度直线导轨和滚珠丝杠的 应用提高了数控机床的定位精 度和重复定位精度,进一步提 升了加工质量。
智能化技术
中期发展阶段开始引入智能化 技术,如自适应控制、模糊控 制等,使数控机床能够根据不 同的加工条件自动调整参数, 提高加工过程的稳定性和效率 。
中期发展的主要应用领域
高速发展阶段
21世纪初,中国数控机床 产业进入高速发展阶段, 技术水平不断提高,产品 种类日益丰富。
中国数控机床的产业现状
产业规模
中国数控机床产业规模不断扩大, 已经成为全球最大的数控机床生 产国之一。
技术水平
中国数控机床的技术水平不断提高, 已经具备了国际竞争力。
产品种类
中国数控机床的产品种类日益丰富, 涵盖了各种加工中心、数控车床、 数控铣床等。
新兴领域应用 数控机床在新兴领域如新能源、 新材料、生物医药等领域的应用 不断拓展,为数控机床的发展提 供了新的机遇。
技术创新驱动 数控机床技术的不断创新和发展, 将推动其在高效、高精度、智能 化等方面取得更大突破。
如何应对数控机床发展的挑战和机遇
加强技术研发和创新
企业应加大技术研发和创新投入,提升 数控机床的技术水平和核心竞争力。

机床数控技术的现状及发展趋势

机床数控技术的现状及发展趋势

机床数控技术的现状及发展趋势1. 引言1.1 机床数控技术的重要性机床数控技术的重要性在现代工业生产中扮演着至关重要的角色。

随着科技的不断进步和工业制造的发展,传统的手工操作已经无法满足复杂、精密的生产需求。

而数控技术的出现,则为实现高效、精准的生产提供了强大的支持。

机床数控技术可以实现生产过程的自动化,大大提高了生产效率。

通过预先编程设定工艺参数,机床可以自动进行加工操作,避免了人工操作中可能出现的偏差和错误,从而确保产品的质量和稳定性。

机床数控技术可以实现生产过程的数字化和信息化管理。

通过数据采集和分析,可以及时了解设备运行状态和产品加工情况,从而进行精细化管理和优化调整,提高生产过程的可控性和可预测性。

机床数控技术还可以实现生产过程的高度灵活性。

通过灵活的程序设计和参数调整,可以快速切换生产任务,适应不同产品的加工需求,提高生产线的适应性和变换性。

机床数控技术的重要性在于它不仅提高了生产效率和产品质量,还推动了工业生产的现代化和智能化发展。

随着技术的不断创新和应用,相信机床数控技术将在工业制造领域继续发挥重要作用。

1.2 机床数控技术的定义机床数控技术是指通过计算机控制系统,实现机床自动化操作的一种先进技术。

它将传统机床替代性能提高到了一个新的高度,极大地提高了机床的精度、效率和稳定性。

机床数控技术采用了数字控制系统,通过预先编程的指令指挥机床进行各种加工工序,实现复杂加工任务的高精度完成。

机床数控技术的核心是数控系统,其包括硬件和软件两部分。

硬件主要由电子设备、传感器和执行机构组成,用于接收和执行指令;软件则是指控制系统的程序,用于实现加工过程的编程和控制。

机床数控技术的出现彻底改变了传统加工方式,极大地提高了生产效率和产品质量。

它也为工业生产带来了更大的灵活性和创新性,能够满足不同行业对加工精度和效率的不同需求。

机床数控技术是一个能够推动工业生产进步的重要技术,它的发展将不断推动传统制造业向智能化、自动化方向迈进。

数控机床的现状与发展

数控机床的现状与发展

数控机床现状及发展趋势分析数控机床的概念数控机床就是在数字控制下,能在尺寸精度和几何精度两方面完成金属毛坯零件加工成所需要形状的工作母机的总称。

数控机床通常由控制系统、伺服系统、检测系统、机械传动系统及其他辅助系统组成.国产数控机床的发展现状一、国产数控机床与国际先进水平差距逐渐缩小数控机床是当代机械制造业的主流装备,国产数控机床的发展经历{HotTag}了30年跌宕起伏,已经由成长期进入了成熟期,可提供市场1,500种数控机床,覆盖超重型机床、高精度机床、特种加工机床、锻压设备、前沿高技术机床等领域,产品种类可与日、德、意、美等国并驾齐驱。

特别是在五轴联动数控机床、数控超重型机床、立式卧式加工中心、数控车床、数控齿轮加工机床领域部分技术已经达到世界先进水平。

其中,五轴(坐标)联动数控机床是数控机床技术的制高点标志之一.它集计算机控制、高性能伺服驱动和精密加工技术于一体,应用于复杂曲面的高效、精密、自动化加工,是发电、船舶、航天航空、模具、高精密仪器等民用工业和军工部门迫切需要的关键加工设备。

五轴联动数控机床的应用,其加工效率相当于2台三轴机床,甚至可以完全省去某些大型自动化生产线的投资,大大节约了占地空间和工作在不同制造单元之间的周转运输时间及费用。

国产五轴联动数控机床品种日趋增多,国际强手对中国限制的五轴联动加工中心、五轴数控铣床、五轴龙门铣床、五轴落地铣镗床等均在国内研制成功,改变了国际强手对数控机床产业的垄断局面。

二、国产数控机床存在的问题由于中国技术水平和工业基础还比较落后,数控机床的性能、水平和可*性与工业发达国家相比,差距还是很大,尤其是数控系统的控制可*性还较差,数控产业尚未真正形成。

因此加速进行数控系统的工程化、商品化攻关,尽快建成与完善数控机床和数控产业成为当前的主要任务。

目前主要问题有:三、核心技术严重缺乏统计数据表明,数控机床的核心技术-数控系统,由显示器、控制器伺服、伺服电机和各种开关、传感器构成,中国90%需要国外进口。

数控车床技术发展现状及趋势

数控车床技术发展现状及趋势

数控车床技术发展现状及趋势一、本文概述数控车床,作为现代制造业的核心设备之一,其技术发展水平直接关系到加工精度、生产效率和产品质量。

随着科技的日新月异,数控车床技术也在持续进步,不断满足复杂多变的制造需求。

本文旨在探讨数控车床技术的当前发展现状,分析其内在的技术特点与优势,并展望未来的发展趋势。

通过深入研究数控车床的控制系统、驱动技术、加工工艺等关键领域,本文期望为相关行业的从业者和技术人员提供有价值的参考信息,推动数控车床技术的进一步创新和应用。

二、数控车床技术发展现状数控车床技术作为现代制造业的核心组成部分,经历了从简单的数控编程到高度集成化和智能化的变革。

目前,数控车床技术的发展现状主要体现在以下几个方面:数控系统智能化:随着人工智能和大数据技术的不断融入,数控车床的控制系统日趋智能化。

现代数控系统能够自动识别材料类型、厚度和硬度,并自动调整切削参数以达到最优的加工效果。

高精度与高效率:随着超精密加工技术和新型切削工具的应用,数控车床的加工精度得到了显著提升。

同时,通过优化数控算法和机床结构,提高了加工效率,减少了非生产时间。

复合加工能力:现代数控车床不仅具备车削、铣削、钻孔等基本功能,还能实现磨削、激光加工等多种加工方式的复合,从而在一台机床上完成复杂零件的多工序加工。

模块化与标准化:数控车床的设计制造越来越倾向于模块化和标准化,这不仅简化了生产流程,降低了制造成本,还有利于机床的维护和升级。

网络安全与远程监控:随着工业0和物联网技术的发展,数控车床的网络安全和远程监控成为新的关注点。

现代数控系统配备了完善的安全防护措施,并通过云平台实现远程故障诊断和监控,大大提高了设备的运行可靠性和维护效率。

绿色环保与节能减排:数控车床在设计和制造过程中越来越注重绿色环保和节能减排。

通过优化机床结构、减少空载时间和使用环保切削液等措施,有效降低了能耗和污染排放。

数控车床技术在高精度、高效率、复合加工、智能化和网络化等方面取得了显著进展,为现代制造业的转型升级提供了有力支撑。

机床数控技术的现状及发展趋势

机床数控技术的现状及发展趋势

机床数控技术的现状及发展趋势1. 引言1.1 介绍机床数控技术的重要性机床数控技术的重要性在于其能够提高生产效率、提高产品质量、降低人力成本、减少生产过程中的浪费,并且具有灵活性和自动化程度高的特点。

机床数控技术使得生产过程更加精准和稳定,有效减少了人为因素带来的误差,提高了生产的可靠性和稳定性。

机床数控技术也使得生产过程更加灵活,可以根据不同需求进行快速调整,实现批量生产和个性化定制生产的转换。

这种灵活性和自动化程度的提高,可以更好地满足市场需求,促进企业的竞争力和发展。

机床数控技术的重要性在于其对生产效率、产品质量、人力成本以及生产过程中的优化和改进方面都能够带来明显的提升,这对于推动工业生产的现代化和高效化具有重要的意义。

1.2 探讨机床数控技术的发展历程机床数控技术的发展历程可以追溯到20世纪50年代。

当时,随着电子技术和计算机技术的不断发展,人们开始尝试将这些先进技术应用到机床控制中。

最早的数控机床是由美国麻省理工学院研制成功的,从此拉开了机床数控技术的序幕。

随着时代的发展,机床数控技术经历了多个阶段的演进。

60年代至70年代,数值控制系统逐渐普及,并且出现了专用数控机床。

80年代至90年代,数控技术开始向多轴、高速、高精度和高可靠性方向发展,实现了更加精密和高效的加工。

21世纪以来,随着信息技术和通信技术的飞速发展,机床数控技术进入了全面智能化和网络化时代,实现了智能监控、远程调整和自动化生产。

机床数控技术的发展历程充分展示了人类科技的创新和进步。

通过不断探索和实践,机床数控技术已经成为现代工业生产中不可或缺的重要技术,为提高生产效率、保障产品质量、降低生产成本发挥着重要作用。

2. 正文2.1 机床数控技术的当前应用领域机床数控技术在当前的应用领域非常广泛,涵盖了各个工业领域。

在航空航天领域,随着飞机设计的复杂性和航空发动机的要求越来越高,机床数控技术被广泛运用于航空零部件的加工。

其精密度和效率能够满足航空产品的高要求。

数控技术的现状发展趋势

数控技术的现状发展趋势

数控技术的现状发展趋势
一、数控技术的现状
数控技术是将计算机技术和机械技术有机结合起来的一种技术,被广
泛应用于机床的自动化控制,以提高机床的加工精度和生产效率。

近年来,在精密加工、自动化制造等领域的发展,数控技术发挥了重要作用。

随着数控技术已经取得的重大进步,如今主要使用的数控技术有数控
加工中心、数控车床、数控刨削机、数控火花机等等。

这些设备具有自动
化操作、加工精度高、操作安全性好、节省能源、制造效率高等特点。

数控技术在特种机床、智能机床等方面也得到广泛的应用,在气动控制、电动控制、传动控制等多方面的发展,促进了数控机床的精确操作,
在计算机技术、机器人技术、伺服控制技术等方面也取得了很大的进步,
使得数控加工的技术更加成熟可靠。

二、数控技术的发展趋势
(一)智能化加工方面
数控技术在加工过程中,将会朝着更高级,更自动化,更智能化的方
向发展,精度、准确性更高,技术更成熟。

此外,智能化对加工质量的控制,将会发展成多层次的监控,如:传
感器采集参数,在计算机端进行实时监控,直接控制机床端的机器人,准
确控制加工参数,改变机床加工的运行轨迹。

数控机床的现状和发展趋势

数控机床的现状和发展趋势

我国数控机床的现状和发展数控机床是数字控制机床是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。

数控机床具有广泛的适应性,加工对象改变时只需要改变输入的程序指令;加工性能比一般自动机床高,可以精确加工复杂型面,因而适合于加工中小批量、改型频繁、精度要求高、形状又较复杂的工件,并能获得良好的经济效果。

因而了解和提升数控机床对我国的制造业的发展至关重要。

一.国内外数控机床的发展(1)我国数控机床的发展我国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。

建国初期在1958—1979年间为第一阶段,第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,主要存在的问题是盲目性大,缺乏实事求是的科学精神。

改革开放,从1979年至今为第二阶段。

在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国家(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。

在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、多轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。

至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,严重缺乏各方面专家人才和熟练技术工人;缺少深入系统的科研工作;元部件和数控系统不配套;企业和专业间缺乏合作,基本上孤军作战,虽然厂多人众,但形成不了合力。

(2)国外数控技术的发展数控机床的起源1948年,美国帕森斯公司接受美国空军委托,研制飞机螺旋桨叶片轮廓样板的加工设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控机床的现状与发展趋势综述数控机床的现状与发展趋势摘要:从20世纪中叶数控技术出现以来,数控机床给机械制造业带来了革命性的变化。

数控加工具有如下特点:加工柔性好,加工精度高,生产率高,减轻操作者劳动强度、改善劳动条件,有利于生产管理的现代化以及经济效益的提高。

数控技术的应用,关键在于开发具有高速度、高精度、高稳定性的高新技术设备,在现有加工设备中,只有数控机床才有可能担当其重任。

然而,要实现真正意义上的高速切削加工,数控机床还需向高速、高精度、柔性化、控制系统开放性、控制系统支撑软件和工厂生产数据管理方向迈进,才能适应现代制造业飞速发展的要求。

关键:高速化 / 高精度化 / 复合化 / 智能化 / 开放化 / 网络化 / 多轴化 / 绿色化进入21世纪,我国经济与国际全面接轨,进入了一个蓬勃发展的新时期。

机床制造业既面临着机械制造业需求水平提升而引发的制造装备发展的良机,也遭遇到加入世界贸易组织后激烈的国际市场竞争的压力,加速推进数控机床的发展是解决机床制造业持续发展的一个关键。

随着制造业对数控机床的大量需求以及计算机技术和现代设计技术的飞速进步,数控机床的应用范围还在不断扩大,并且不断发展以更适应生产加工的需要。

本文简要分析了数控机床高速化、高精度化、复合化、智能化、开放化、网络化、多轴化、绿色化等发展趋势,并提出了我国数控机床发展中存在的一些问题。

一、数控机床的发展趋势机械加工装备对促进制造技术发展的紧密关系和以数字化为特征数控机床是柔性化制造系统和敏捷化制造系统的基础装备。

其总的发展趋势是:高精化、高速化、高效化、柔性化、智能化和集成化,并注重工艺实用性和经济性。

(一)高速化随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。

(1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min;(2)进给率:在分辨率为0.01μm时,最大进给率达到240m/min且可获得复杂型面的精确加工;(3)运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。

由于运算速度的极大提高,使得当分辨率为0.1μm、0.01μm时仍能获得高达24~240m/min 的进给速度;(4)换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0.5s。

德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。

(二)高精度化数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。

(1)提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使CNC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01μm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法;(2)采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。

研究结果表明,综合误差补偿技术的应用可将加工误差减少60%~80%;(3)采用网格解码器检查和提高加工中心的运动轨迹精度,并通过仿真预测机床的加工精度,以保证机床的定位精度和重复定位精度,使其性能长期稳定,能够在不同运行条件下完成多种加工任务,并保证零件的加工质量。

(三)功能复合化复合机床的含义是指在一台机床上实现或尽可能完成从毛坯至成品的多种要素加工。

根据其结构特点可分为工艺复合型和工序复合型两类。

工艺复合型机床如镗铣钻复合——加工中心、车铣复合——车削中心、铣镗钻车复合——复合加工中心等;工序复合型机床如多面多轴联动加工的复合机床和双主轴车削中心等。

采用复合机床进行加工,减少了工件装卸、更换和调整刀具的辅助时间以及中间过程中产生的误差,提高了零件加工精度,缩短了产品制造周期,提高了生产效率和制造商的市场反应能力,相对于传统的工序分散的生产方法具有明显的优势。

加工过程的复合化也导致了机床向模块化、多轴化发展。

德国Index公司最新推出的车削加工中心是模块化结构,该加工中心能够完成车削、铣削、钻削、滚齿、磨削、激光热处理等多种工序,可完成复杂零件的全部加工。

随着现代机械加工要求的不断提高,大量的多轴联动数控机床越来越受到各大企业的欢迎。

在2005年中国国际机床展览会(CIMT2005)上,国内外制造商展出了形式各异的多轴加工机床(包括双主轴、双刀架、9轴控制等)以及可实现4~5轴联动的五轴高速门式加工中心、五轴联动高速铣削中心等。

(四)控制智能化随着人工智能技术的发展,为了满足制造业生产柔性化、制造自动化的发展需求,数控机床的智能化程度在不断提高。

具体体现在以下几个方面:(1)加工过程自适应控制技术:通过监测加工过程中的切削力、主轴和进给电机的功率、电流、电压等信息,利用传统的或现代的算法进行识别,以辩识出刀具的受力、磨损、破损状态及机床加工的稳定性状态,并根据这些状态实时调整加工参数(主轴转速、进给速度)和加工指令,使设备处于最佳运行状态,以提高加工精度、降低加工表面粗糙度并提高设备运行的安全性;(2)加工参数的智能优化与选择:将工艺专家或技师的经验、零件加工的一般与特殊规律,用现代智能方法,构造基于专家系统或基于模型的“加工参数的智能优化与选择器”,利用它获得优化的加工参数,从而达到提高编程效率和加工工艺水平、缩短生产准备时间的目的;(3)智能故障自诊断与自修复技术:根据已有的故障信息,应用现代智能方法实现故障的快速准确定位;(4)智能故障回放和故障仿真技术:能够完整记录系统的各种信息,对数控机床发生的各种错误和事故进行回放和仿真,用以确定错误引起的原因,找出解决问题的办法,积累生产经验;(5)智能化交流伺服驱动装置:能自动识别负载,并自动调整参数的智能化伺服系统,包括智能主轴交流驱动装置和智能化进给伺服装置。

这种驱动装置能自动识别电机及负载的转动惯量,并自动对控制系统参数进行优化和调整,使驱动系统获得最佳运行;(6)智能4M数控系统:在制造过程中,加工、检测一体化是实现快速制造、快速检测和快速响应的有效途径,将测量(Measurement)、建模(Modelling)、加工(Manufacturing)、机器操作(Manipulator)四者(即4M)融合在一个系统中,实现信息共享,促进测量、建模、加工、装夹、操作的一体化。

(五)体系开放化(1)向未来技术开放:由于软硬件接口都遵循公认的标准协议,只需少量的重新设计和调整,新一代的通用软硬件资源就可能被现有系统所采纳、吸收和兼容,这就意味着系统的开发费用将大大降低而系统性能与可靠性将不断改善并处于长生命周期;(2)向用户特殊要求开放:更新产品、扩充功能、提供硬软件产品的各种组合以满足特殊应用要求;(3)数控标准的建立:国际上正在研究和制定一种新的CNC系统标准ISO14649(STEP-NC),以提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程乃至各个工业领域产品信息的标准化。

标准化的编程语言,既方便用户使用,又降低了和操作效率直接有关的劳动消耗。

(六)驱动并联化并联运动机床克服了传统机床串联机构移动部件质量大、系统刚度低、刀具只能沿固定导轨进给、作业自由度偏低、设备加工灵活性和机动性不够等固有缺陷,在机床主轴(一般为动平台)与机座(一般为静平台)之间采用多杆并联联接机构驱动,通过控制杆系中杆的长度使杆系支撑的平台获得相应自由度的运动,可实现多坐标联动数控加工、装配和测量多种功能,更能满足复杂特种零件的加工,具有现代机器人的模块化程度高、重量轻和速度快等优点。

并联机床作为一种新型的加工设备,已成为当前机床技术的一个重要研究方向,受到了国际机床行业的高度重视,被认为是“自发明数控技术以来在机床行业中最有意义的进步”和“21世纪新一代数控加工设备”。

(七)极端化(大型化和微型化)国防、航空、航天事业的发展和能源等基础产业装备的大型化需要大型且性能良好的数控机床的支撑。

而超精密加工技术和微纳米技术是21世纪的战略技术,需发展能适应微小型尺寸和微纳米加工精度的新型制造工艺和装备,所以微型机床包括微切削加工(车、铣、磨)机床、微电加工机床、微激光加工机床和微型压力机等的需求量正在逐渐增大。

(八)信息交互网络化对于面临激烈竞争的企业来说,使数控机床具有双向、高速的联网通讯功能,以保证信息流在车间各个部门间畅通无阻是非常重要的。

既可以实现网络资源共享,又能实现数控机床的远程监视、控制、培训、教学、管理,还可实现数控装备的数字化服务(数控机床故障的远程诊断、维护等)。

例如,日本Mazak公司推出新一代的加工中心配备了一个称为信息塔(e-Tower)的外部设备,包括计算机、手机、机外和机内摄像头等,能够实现语音、图形、视像和文本的通信故障报警显示、在线帮助排除故障等功能,是独立的、自主管理的制造单元。

(九)新型功能部件为了提高数控机床各方面的性能,具有高精度和高可靠性的新型功能部件的应用成为必然。

具有代表性的新型功能部件包括:高频电主轴:高频电主轴是高频电动机与主轴部件的集成,具有体积小、转速高、可无级调速等一系列优点,在各种新型数控机床中已经获得广泛的应用;直线电动机:近年来,直线电动机的应用日益广泛,虽然其价格高于传统的伺服系统,但由于负载变化扰动、热变形补偿、隔磁和防护等关键技术的应用,机械传动结构得到简化,机床的动态性能有了提高。

如:西门子公司生产的1FN1系列三相交流永磁式同步直线电动机已开始广泛应用于高速铣床、加工中心、磨床、并联机床以及动态性能和运动精度要求高的机床等;德国EX-CELL-O公司的XHC卧式加工中心三向驱动均采用两个直线电动机;电滚珠丝杆:电滚珠丝杆是伺服电动机与滚珠丝杆的集成,可以大大简化数控机床的结构,具有传动环节少、结构紧凑等一系列优点。

(十)高可靠性数控机床与传统机床相比,增加了数控系统和相应的监控装置等,应用了大量的电气、液压和机电装置,易于导致出现失效的概率增大;工业电网电压的波动和干扰对数控机床的可靠性极为不利,而数控机床加工的零件型面较为复杂,加工周期长,要求平均无故障时间在2万小时以上。

为了保证数控机床有高的可靠性,就要精心设计系统、严格制造和明确可靠性目标以及通过维修分析故障模式并找出薄弱环节。

国外数控系统平均无故障时间在7~10万小时以上,国产数控系统平均无故障时间仅为10000小时左右,国外整机平均无故障工作时间达800小时以上,而国内最高只有300小时。

相关文档
最新文档