第3章红外光谱法1共26页文档

合集下载

红外光谱谱图解析课件

红外光谱谱图解析课件

第19页,幻灯片共70页
(3) 双键伸缩振动区( 2000 1500 cm-1 )
① RC=CR’ 1620 1680 cm-1
强度弱, R=R’(对称)时,无红外活性。
②单核芳烃 的C=C键伸缩振动(1626 1650 cm-1 )
202222//11//1188
第20页,幻Βιβλιοθήκη 片共70页苯衍生物的C=C
(3)2000 1500 cm-1
双键伸缩振动区
(4)1500 670 cm-1
X—Y伸缩,
X—H变形振动区
202222//11//1188
第15页,幻灯片共70页
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸
a)由于支链的引入,使CH3的对称变形振动发生变化。
b)C—C骨架振动明显
H C C H3 C H3
C H3 C C H3
C H3 C C H3 C H 202222//11//1188
3
CH3 δs C—C骨架振动
1385-1380cm-1
第1页,幻灯片共70页
概述 introduction
分子中基团的振动和转动能级跃迁产生:振-转光谱
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构
近红外区:低能电子跃 迁、含氢原子团伸缩 振动的合频吸收;稀 土、过渡金属
中红外区: 远红外区:纯转动能级跃 迁,变角、骨架振动;异 构体、金属有机物、氢键
2002222//11//1188
第2页,幻灯片共70页
一、认识红外光谱图
2002222//11//1188

2红外光谱

2红外光谱

C-H (2000-1667cm-1)
-(CH2)n- (900-600cm-1)
一、红外光的区划
红外线:波长在0.76~500μm (1000μm) 范围内的电磁波
近红外区:0.76~2.5μm 主要用于研究O-H、N-H、C-H键的倍频吸收或组
频吸收,此区域吸收峰强度较弱。
中红外区:2.5~25μm (400-5000cm-1) 振动、伴随转动光谱主要研究
基本形式 伸缩振动:原子沿键轴方向伸缩,键长变化但键角不变的振动。 变形振动:基团键角发生周期性变化,但键长不变的振动。又称 弯曲振动或变 角振动。 下图给出了各种可能的振动形式(以甲基和亚甲基为例)。
HH C
对称伸缩振动 s
symmetric stretching
HH C
面内弯曲振动或剪切振动 s
红外吸收强度
红外吸收强度由振动时偶极矩变化的大小决定。 分子中含有杂原子时,其红外谱峰一般都较强。
如C=C,C-C因对称度高,其振动峰强度小;而C=X,C-X,因对
称性低,其振动峰强度就大。峰强度可用很强(vs)、强(s)、 中(m)、弱(w)、很弱(vw)等来表示。
五 、红外谱图解析
红外吸收波段
面内弯曲振动 ✓ 特点:吸收峰密集、难辨认→指纹 ✓ 注:相关峰常出现在指纹区
• 经典力学导出的波数计算式为近似式。因 为振动能量变化是量子化的,分子中各基 团之间、化学键之间会相互影响,即分子 振 动的波数与分子结构(内因)和所处的化 学环境(外因)有关。
六、影响吸收峰位的因素
1.内部因素:化学键的振动频率不仅与其性质有关, 还受分子的内部结构和外部因素影响。相同基团的特 征吸收并不总在一个固定频率上。 (1)诱导效应(吸电效应): 使振动频率移向高波数区

光谱法色谱法

光谱法色谱法
紫外分光光度(电子光谱)法:吸收光波 长范围200~400nm,可用于物质的定性和 定量分析。 可见分光光度(电子光谱)法:吸收光波 长范围400~760nm,主要用于有色物质的 定性和定量分析。 二者合称为紫外-可见分光光度法即UV-ViS 红外分光光度法(IR,分子振-转光谱): 利用红外吸收光谱对物质进行分析的方 法,吸收光波长范围2.5—1000m,主要 用于已知结构的有机化合物鉴别(定性)
此式为光吸收定律的数学表达式。
式中A称为吸光度; K是比例常数,与入射光的波长、 物质的性质和溶液的温度等因 素有关。
第10页/共71页
❖ 吸收系数 A=Kbc中比例常数K称为吸收系数; 物理意义:单位浓度的溶液液层厚度为1 cm 时,在一定波长下测得的吸光度。
在药品检验的实际工作中,通常有两种表示方 法:
④与标准谱图进行对照
在相同的实验条件下操作,将得到的红外光谱图 与标准谱图进行比较,若两张谱图吸收峰的位置和形 状完全相同,峰的相对强度一样,可以认为样品与该 种已知物是同一物质。
第31页/共71页
定量分析
红外光谱定量分析是通过对特征吸收谱带 强度的测量来求出组份含量。其理论依据是朗 伯-比耳定律。
TLC的基本材料
载板: 具有一定机械强度、化学惰性、耐一定温度、表面 平整、厚度均匀,价格合理,常用为玻璃板。 玻璃板的常用规格:5×20cm、10×20cm、 20×20cm,要求光滑、平整、洗净后不附水珠、干 燥。
第42页/共71页
第29页/共71页
③谱图的解析
首先观察官能团区,解析第一强吸收峰属于何种基团
的特征吸收峰。
如,羰基(C=O)在1820cm-1~1600cm-1有强吸收峰,其中:
O RC

透射光栅反射光栅PPT课件

透射光栅反射光栅PPT课件
第1页/共29页
第二节 电磁辐射的性质
一.电磁波的基本性质
1.电磁波的种类:
波 5×10-3 0.1~10 10~200
200~400
长 ~0.1
λ
ห้องสมุดไป่ตู้
名 γ射线 x射线 远紫外光 近紫外光

波 4 0 0 ~ 7 5 0 ~ 1.0×106~ 1.0×109~
长 750
1.0×106 1.0×109
第9页/共29页
• 1)吸收光谱法:它是利用物质 吸收光后所产生的吸收光谱来进行 分析的方法。
第10页/共29页
2)发光光谱法:物质中的粒子 用一定的能量(如光、电、热等)激 发到高能级后,当跃迁回低能级时, 便产生出特征的发射光谱,利用此发 射光谱进行的分析的方法
第11页/共29页
•3)散射光谱法:利用物质对 光的散射来进行分析的方法。
•光 的 能 量 与 光 的 波 长 及 频 率 之 间 的 关系为:
• E=hγ=hc/λ
•式中E为光的能量(尔格);γ为频 率;λ为波长;h为普朗克常数,其 值为6.6256×10-27尔格·秒;c为光 速。
第6页/共29页
• 三、物质与光的相互作用: • 1、折射和反射 • 2、散射 • 3、吸收和发射
第23页/共29页
(4)聚焦透镜或凹面反射镜,使每个单色光束在单色器 的出口曲面上成像。
第24页/共29页
棱镜
棱镜对不同波长的光具有不同的折射率,波长长的光, 折射率小;波长短的光,折射率大。
平行光经过棱镜后按波长顺序排列成为单色光;经聚焦 后在焦面上的不同位置上成像,获得按波长展开的光谱;
棱镜的分辨能力取 决于棱镜的几何尺寸和 材料;

红外光谱最全最详细明了

红外光谱最全最详细明了

CH3-CO-CH3 CH2Cl-CO-CH3 CI-CO-CH3 Cl-COCl F-CO-F
υC=O 1715
1724
1806
1828 1928
第31页/共108页
(2)共轭效应(C效应): 共轭效应要求共轭体系有共平面性。
共轭效应使共轭体系的电子云密度平均化,键长也平均 化,双键略有伸长,单键略有缩短。
如乙酰乙酸乙酯有酮式和烯醇式结构,两者的吸收皆能 在红外谱图上找到,但烯醇式的υC=O较酮式υC=O弱,说 明稀醇式较少。
CH3-CO-CH2-COO-C2H5 υC=O 1738(s),1717(s)
CH2-C(OH)=CH-COOC2H5 υC=O与υC=C在1650cm-1(w) υOH3000cm-1
C=C 1780
1646
CH2
1611
CH2
1566
CH2
1641 cm-1
1678
1657
1651 cm-1
第37页/共108页
(5)氢键的影响:氢键的形成,往往使伸缩振动频率移向 低波数,吸收强度增强,并变宽;形成分子内氢键时影响很 显著。
O OH
H OO
υC=O ( cm-1)
O
O
1676,1673; 1675,1622
第15页/共108页
问题:C=O 强;C=C 弱;为什么?
吸收峰强度跃迁几率偶极矩变化
吸收峰强度 偶极矩的平方
偶极矩变化——结构对称性;
对称性差偶极矩变化大吸收峰强度大
符号:S (strong)
M (medium) W (weak)
B (broad)
Sh (sharp)
红外吸收峰强度比紫外吸收峰小2~3个数量级;

遥感图像分析与处理.pptx

遥感图像分析与处理.pptx
航空摄影的种类
(1)按感光胶片和所用的波段分类: 普通黑白摄影:用全色黑白感光片,感受可见光范围内各种色光,用途广。 黑白红外摄影:用黑白红外感光片和近红外滤光片组合起来摄影,记录近 红外短波段(0.76μm~1.4μm)和可见光范围的信息。 对水体和植被反映明显,具有较大的反差和地面分辨率。 天然彩色摄影:用彩色感光片,记录可见光波段的信息。 信息量比黑白象片丰富得多。 彩色红外摄影:用彩红外感光片,记录绿、红、近红外(0.5~0.9μm) 信息。一般在摄影机物镜上套一个黄色滤光片,以消除蓝、 紫光。在彩红外摄影中: 绿光感光蓝色 红光感光绿色 近红外感光红色 红外线对大气层的穿透力强,彩红外象片一般比天然彩色象片鲜艳得多。 多光谱摄影:用摄影机镜头、滤光片、感光片的几种不同组合,同时对一 个地区进行几个不同波段的摄影,得到多个波段的航片,从 而得到合成象片。
第10页/共29页
航空象片的特性
航空象片的主要点和线
第11页/共29页
航空象片的特性
3. 象片比例尺计算和象片纠正:(1)象片比例尺: 求小区域和点的比例尺: h为地形起伏,H0为平均高程面。 右图中以T0为起始面,其航高为H0, 则有: 航测部门提供的航高为象主点的航高, 称为“主比例尺”。 求平均比例尺: d1,d2,……dn通过象片中心。
物面扫描成像仪
第21页/共29页
1)线阵列推扫式扫描仪Spot HRV(High ResolutionVisible range instrument )平面反射镜将地面辐射信号反射到反射镜组,聚焦在CCD线阵列元件,不需要摆动扫描镜,可以推扫方式获取沿轨道的连续图像带。
像面扫描成像仪
第22页/共29页
第14页/共29页
第三章 航空遥感

第3章红外光谱法

第3章红外光谱法

Rayleigh散射:
激发虚态
弹性碰撞;无能
E1 + h0
h(0 - )
量交换,仅改变方向
Raman散射:
h0
非弹性碰撞;方
向改变且有能量交换 E1
E0 + h0
h0 h0 V=1
h0 +
E0
V=0
Rayleigh散射
Raman散射
h
E0基态, E1振动激发态; E0 + h0 , E1 + h0 激发虚态;
发生振动能级跃迁需要能量的大小取决于键两端原子 的折合质量和键的力常数,即取决于分子的结构特征。
14.06.2019
分析化学研究所
第8页
分子中基团的基本振动形式
1.两类基本振动形式
伸缩振动
弯曲振动
亚甲基
14.06.2019
亚甲基
分析化学研究所
第9页
伸缩振动
甲基的振动形式
弯曲振动
对称 υ s(CH3) 2870 ㎝-1
频峰
14.06.2019
分析化学研究所
第13页
官能团区和指纹区
• 官能团区 4000~1300cm-1是基团伸缩振动出现的区域,对鉴定 基团很有价值
• 指纹区 1300~600cm-1是单键振动和因变形振动产生的复杂光 谱区,当分子结构稍有不同时,该区的吸收就有细微 的差异,对于区别结构类似的化合物很有帮助。
共轭效应:使共轭体系中的电子云密度平均化,使双键略有伸 长,因此,双键的吸收频率向低波数方向位移。
中介效应:当含有孤对电子的原子(如:O, N, S等)与具有多 重键的原子相连时,也可起类似的共轭作用,使吸收频率向低 波数方向位移。

红外光谱技术及其应用进展

红外光谱技术及其应用进展

红外光谱技术及其应用进展摘要波数13000~10cm-1或波长0.75~1000μm之间称为红外区,在此范围内的物质吸收红外辐射后,因分子振动、转动、或晶格等运动产生偶极矩变化,形成可观测的红外光谱。

红外光谱技术的发展进程和红外光谱技术分析速度快,分析效率高,分析成本低,测试重现性好等特点,因此,红外光谱有化合物“指纹”之称,是鉴定有机化合物和结构分析的重要工具。

本文主要介绍了红外光谱技术在制浆造纸工业中木素的定性和结构分析、木素的定量分析、研究纤维素的结晶结构、测定纸浆Kappa 值等,以及在临床医学和药学方面,农业方面,以及食品方面在食品中农药残留检测、食品参假鉴定、食品内部质量的评定等方面的应用环境科学中水环境监测、固体环境监测、气体环境监测,石油工业中对于油品成分,含量等方面的分析。

通过具体的阐述对红外光谱技术从理论基础到技术应用进行全方面系统的介绍。

关键词红外光谱特点应用引言波数13000~10cm-1或波长0.75~1000μm之间称为红外区,在此范围内的物质吸收红外辐射后,因分子振动、转动、或晶格等运动产生偶极矩变化,形成可观测的红外光谱。

红外光谱广泛应用于分子结构的基础研究和化学组成的分析领域, 对有机化合物的定性分析具有鲜明的特征性。

因此,红外光谱有化合物“指纹”之称,是鉴定有机化合物和结构分析的重要工具。

由于其专属性强各种基因吸收带信息多,固可用于固体、液体和气体定性和定量分析[1]。

由于用红外光谱作样品分析时基本不需要处理,且不破坏和消耗样品,自身又无环境污染,因而被广泛运用,目前红外光谱广泛已应用于制浆造纸工业、临床医学和药学方面、农业方面、食品方面、环境科学、石油工业等学科领域,并随着技术和研究的深入越来越受到重视。

1 红外光谱法的基本原理红外吸收光谱是由分子振动能级的跃迁同时伴随转动能级跃迁而产生的,因此,红外光谱的吸收峰是有一定宽度的吸收带。

物质吸收红外光应满足两个条件,即辐射应具有刚好能满足物质振动能级跃迁时所需的能量;辐射与物质之间有偶合作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/16
二、红外光谱法的特点 1、任何气态、液态和固态样品均可进行测定; 2、红外光谱可用来鉴定未知物的分子结构或确定其 化学基团; 3、样品用量少。
2020/4/16
§3-2 红外光谱法的基本原理 一、产生红外吸收的条件 1. 振动的偶极距必须发生变化
首先我们介绍一下偶极距的概念: 分子是由原子构成的,如果组成一个分子的原子的电负性不 同,此分子将表现出极性,如HCl,由于H与Cl的电负性不同, H带部分正电荷,Cl带部分负电荷。HCl的一端显“+”,一端 显“-”,在物理学上这种状态称为偶极子。 分子极性的大小,用偶极距描述,如HCl
H带正电荷+q,Cl带负电荷-q,两 原子中心距离为d,则偶极距为:
=qd
2020/4/16
当偶极子处在电磁辐射的电磁场中时,该电场做周期性反转, 偶极子将经受交替的作用力。如下图:
-
+
-
+
+
+
+
+




+
-
+
-
偶极子具有一定的原有振动频率,当辐射的频率与偶极子原 有频率匹配时,分子振动在电场作用下被加强,分子由低能 态跃向高能态。此时分子振动幅度增大,偶极距发生变化。 辐射能通过电场将能量传给分子,自身光强减弱,从宏观上 讲分子产生了吸收,致使光强减弱。
1 En(n 2)h ν n0,12 , 3 , .....
n为振动量子数
在常温下,绝大多数分子处于基态(n=0),接受能量后跃迁到 第一振动激发态(n=1),此时跃迁能差为
E(11)h(01)hh
2
2
吸收光子的能量为ha ,则 E= hν=ha
因此
=a 入射光子频率与分子振动频率相等
2020/4/16
§3-1 概述 ➢ 红外光谱又称为分子振动转动光谱,也是一种分子光谱。 ➢ 当一束红外光照射物质时,被照射的物质的分子将吸收一部 分相应的光能,转变为分子的振动能和转动能,使分子固有的 振动及转动跃迁到较高的能级,光谱上即出现吸收谱带,将这 种吸收情况以吸收曲线的形式记录下来,就得到该物质的红外 吸收光谱简称红外光谱(Infrared specrea)。
也就是说
基频谱带的频率与分子振动频率相等。
当辐射频率与偶极子振动频率不一致时,电场能量无法传给 分子,这时分子不产生吸收。
➢由上述可见,当一定频率的红外光照射分子时,如果分子的 某个基团的振动频率和它一致,二者就产生共振。此时光的 能量通过分子偶极距变化而传给分子,这个基团就吸收一定 频率的红外光,产生振动跃迁,如果红外光的频率和分子中 的各基团的振动频率不匹配,该部分的红外光就不会被吸收。 如果用连续改变频率的红外光照射某试样,由于试样对不同 频率的红外光吸收的程度不同,使通过试样的红外光在一定 波数范围内减弱了,在另一些波数范围内则仍较强。由仪器 记录该试样的红外吸收光谱,得红外谱图。
2020/4/16
利用红外光谱图进行定性分析、结构分析和定量分 析的方法称红外光谱法。
2020/4/16
一、红外光区划分 红外光区在可见光区和微波光区之间,其波长范围约为0.75— 1000m,根据实验技术应用不同,通常将红外区划分为三个区:
中红外区是研究和应用最多的区域,一般说的红外光谱就是指 的中红外区的红外光谱。
2020/4/16
下面我们看一下CO2的反对称伸缩振动: O C O
此振动使CO2产生瞬间极性,分子存在偶极距变化,产生红外 吸收。
νas 2349cm1
2020/4/16
2. 辐射的光子具有的能量与发生振动跃迁所需的能量相等
以双原子分子的纯振动为例,双原子分子可近似看作谐振子,根 据量子力学,其振动能量:
1 k 2
或: 1 k 2 c
可以看出影响基本振动 频率的直接因素是原子 的质量和化学键的力常 数。
式中:k—键的力常数,也就是连接原子的化学键的力的大小
,单位:dyn·cm-1
( 1N=105dyn )
—是质量为m1和m2两个原子的折合质量,单位:g
m1m2
m1 m2
C—光速,3.0×1010 cm/s
双原子分子是一个最简单的振动模式,可以认为它是一个谐 振子,振动方式为简谐振动。
r
m1
m2
这种分子振动模型,以经典力学的方法可把两个质量为m1和m2 的原子看作刚体小球,连接两原子的化学键设想成无质量的弹 簧,弹簧的长度r就是分子化学键的长度。
2020/4/16
020/4/16
如果分子的某一振动不能导致偶极距发生变化,即=0,如CO2
的对称伸缩 O C O
分子处于无极性状态,电场对无极性分子不作用,电磁场不能 将能量传给分子,分子对光不吸收。 =0的分子振动不能产生红外振动吸收,这类振动称为非红 外活性振动。 由以上讨论可以看出,并非所有振动都产生红外吸收。 只有偶极距发生变化的振动才产生红外吸收,这样的振动称为 红外活性振动。
2020/4/16
例:已知C—H键的力常数kC-H=5.1N·cm-1,请计算C—H的伸 缩振动频率、波数和波长。 解:C的原子量为12.011,则一个C原子重:
m 16.0 1.2 0 212 1203 11.9 9 10 23g
同理:
m2
1.00794 6.0221023
1.6741024
2020/4/16
二、吸收峰的强度 吸收光谱图上的纵坐标表示样品中分子对红外辐射的 吸收强弱,吸收峰越高,表示样品对该频率的光吸收 能力越强,在红外光谱区,光与物质的吸收关系遵循 郎伯—比尔定律。
AlogI0 bc
I
2020/4/16
红外光谱的强弱,可根据A值大小,在光谱上定性的 划分为五个等级:
很强vs——几乎充满整个谱图 Very Strong

S ——峰大于
2 3
A坐标
Strong
中强 m ——峰高在半个A坐标左右 Middle

w ——峰高在
1 3
A坐标左右
Weak
很弱vw——谱图中为锯齿峰 Very Weak
2020/4/16
VW W
M S
VS
2020/4/16
三、双原子分子的振动
g
m1m2 m1 m2
1.9910231.6741024 1.991023 1.6741024
1.541024
g
1 2 c
k
1
23.1431010
相关文档
最新文档