高考专题:用样本估计总体

合集下载

用样本的数字特征估计总体-高考数学复习

用样本的数字特征估计总体-高考数学复习

1. (多选)如图是某班50名学生期中考试数学成绩的频率分布直方
图,其中成绩分组区间是[40,50),
[50,60),[60,70),[70,80),
[80,90),[90,100],则下列说
法正确的是(

A. 图中的 x 的值为0.018
B. 该班50 名学生期中考试数学成绩的众数是75
C. 该班50 名学生期中考试数学成绩的中位数是72
目录
1
C O N T E N T S
2
3
知识 逐点夯实
考点 分类突破
课时 跟踪检测
PART
1
知识 逐点夯实
课前自修
必备知识 系统梳理 基础重落实
目录
高中总复习·数学
1. 总体百分位数的估计
(1)百分位数
定义
意义
百 一组数据的第 p 百分位数是这样一个值,
分 它使得这组数据中 至少
有 p %的数据小
为 ,第二层抽取 n 个,即 y 1, y 2,…, yn ,平均数为 ,则


x 1, x 2,…, xm , y 1, y 2,…, yn 的平均数 =




.


(2)中位数:将一组数据按大小依次排列,处于
最中间 位置

的一个数据(或最中间两个数据的平均数)叫做这组数据的
目录
高中总复习·数学
2. 平均数、方差的公式推广
若数据 x 1 , x 2 ,…, x n 的平均数为 ത ,方差为 s 2 ,那么 mx 1 +
a , mx 2 + a , mx 3 + a ,…, mx n + a 的平均数是 m ത + a ,方

第二节 用样本估计总体-高考状元之路

第二节 用样本估计总体-高考状元之路

第二节 用样本估计总体预习设计 基础备考知识梳理1.频率分布直方图(1)通常我们对总体作出的估计一般分成两种,一种是用 估计总体的分布,另一种是用 估计总体的数字特征.(2)在频率分布直方图中,纵轴表示 ,数据落在各小组内的频率用 表示.各小长方 形的面积总和2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的 ,就得到频率分布折线图.(2)总体密度曲线:随着 的增加,作图时 增加, 减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图的优点用茎叶图表示数据有两个突出的优点: 一是从统计图上没有 的损失,所有的 都可以从茎叶图中得到; 二是茎叶图可以在比赛时 方便记录与表示.4.标准差和方差(1)标准差是样本数据到平均数的一种(2)标准差:=s(3)方差:=2sn x (是样本数据,砚是样本容量,x 是样本平均数). 5.利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积 ,由此可以估计中位数的值.(2抨均数:平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的(3)众数:在频率分布直方图中,众数是最高的矩形的中点的典题热身1.已知一个样本中的数据为..0,15.0,13.0,15.0,12.0,14.0,13.0,16.0,15.0,17.0则该样本的众数、中位数分别是( )15.0,14.0.A 14.0,15.0.B 15.0,15.0.C 145.0,15.0.D答案:D2.已知一个样本中的数据为,5,4,3,2,1那么该样本的标准差为( )1.A2.B3.C 2.D答案:B3.(2011.潍坊模拟)甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如下图所示,若甲、乙两人的平均成绩分别,乙甲、X X 则下列结论正确的是 ( );.乙甲X X A < 乙比甲成绩稳定;.乙甲X X B >甲比乙成绩稳定乙甲X X C >.乙比甲成绩稳定;.乙甲X X D <甲比乙成绩稳定答案:A4.一个容量为32的样本,分成5组,已知第三组的频率为0.375,则另外四组的频数之和为 答案:205.为了了解某地区高三学生身体发育情况,抽查了该地区100名年龄在17.5岁~18岁的男生体重(kg),得到频率分布直方图如下图所示.则样本数据落在[62.5,64.5)内的频率是 .这100名学生的体重的众数是答案:14.0 5.65课堂设计 方法备考题型一 频率分布直方图的绘制与应用【倒1】为了解某校初中毕业男生的体能状况,从该校初中毕业班学生中抽取若干名男生进行铅球测试,把所得数据(精确到0.1 m)进行整理后,分成6组画出频率分布直方图的一部分(如下图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.(1)请将频率分布直方图补充完整,(3)若成绩在8.0 m 以上(含8.0 m)的为合格,试求这次铅球黼试的成绩的合格率.题型二 茎叶图的应用【例2】在某电脑杂志的一篇文章中,每个句子的字数如下:,15,25,14,27,36,19,20,24,26,15,18,27,23,17,3,28,101.17,27,24,11,22在某报纸的一篇文章中,每个句子中所含的字的个数如下:,22,13,27,41,36,12,35,27,33,41,32,19,28,24,33,39,27.22,32,46,18,23(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,得到什么结论?题型三 用样本的数字特征估计总体的数字特征【例3】甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价,技法巧点(1)用样本频率分布来估计总体分布的重点是:频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,难点是频率分布表和频率分布直方图的理解及应用,在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致,通过频率分布表和频率分布直方图可以对总体作出估计.(2)几种表示频率分布的方法的优点与不足:①频率分布表在数量表示上比较确切,但不够直观、形象,分析数据分布的总体态势不太方便. ②频率分布直方图能够很容易地表示大量数据,非常直观地表明分布的形状,使我们能够看到在分布表中看不清楚的数据模式,但从直方图本身得不出原始的数据内容,也就是说,把数据表示成直方图后,原有的具体数据信息就被抹掉了。

最新高考一轮总复习《10.2 用样本估计总体》

最新高考一轮总复习《10.2 用样本估计总体》

如果直方图在右边“拖尾”(如图(2)),那么平均数大于中位数;
如果直方图在左边“拖尾”(如图(3)),那么平均数小于中位数.
问题思考
在频率分布直方图中,如何确定中位数?
在频率分布直方图中,中位数左边和右边的直方图的面积相等.
4.方差和标准差
假设一组数据是 x1,x2,…,xn,用表示这组数据的平均数.
解 ①由题图可得甲、乙两人五次测试的成绩得分分别为
甲:10,13,12,14,16;乙:13,14,12,12,14.
则甲 =
2

2

=
=
10+13+12+14+16
=13,

5
=
13+14+12+12+14
=13,
5
1
2
2
2
2
2
×[(10-13)
+(13-13)
+(12-13)
+(14-13)
中的中间数据,由于样本数据在区间
[13,14)内的频率为0.02,在区间[14,15)内
的频率为0.18,在区间[15,16)内的频率为
0.36,0.02+0.18+0.36>0.5,所以中位数落
在区间[15,16)内,设中位数为x,
95
则0.02+0.18+(x-15)×0.36=0.5,得 x= 6 .
解离散程度参数的统计含义.
3.结合实例,能用样本估计总体的取值规律.
4.结合实例,能用样本估计百分位数,理解百分位数的统计含义.
备考指导
用样本估计总体在高考中主要以选择题或填空题的形式出现,在概率、统

用样本估计总体(高三一轮复习)

用样本估计总体(高三一轮复习)
A.平均来说,蓝队比红队防守技术好 B.蓝队很少失球 C.红队有时表现很差,有时表现又非常好 D.蓝队比红队技术水平更不稳定
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
解析 因为红队每场比赛平均失球个数是1.6,蓝队每场比赛平均失球个数是 2.2,所以平均来说,红队比蓝队防守技术好,故A错误;因为蓝队每场比赛平均失 球个数是2.2,全年比赛失球个数的标准差为0.4,所以蓝队经常失球,故B错误;因 为红队全年比赛失球个数的标准差为1.1,蓝队全年比赛失球个数的标准差为0.4,所 以红队有时表现很差,有时表现又非常好,故C正确;因为红队全年比赛失球个数 的标准差为1.1,蓝队全年比赛失球个数的标准差为0.4,所以蓝队比红队技术水平更 稳定,故D错误.
例1 (1)某单位为了解该单位党员开展学习党史知识活动情况,随机抽取了部
分党员,对他们一周的党史学习时间进行了统计,统计数据如下表所示:
党史学习时间(小时) 7 8 9 10 11
党员人数
6 10 9 7 8
数学 N 必备知识 自主学习 关键能力 互动探究
— 16 —
则该单位党员一周学习党史时间的众数及第50百分位数分别是( D )
排列得,10,12,14,14,15,15,16,17,17,17,则有b=12×(15+15)=15,c=17. 所以c>b>a.
数学 N 必备知识 自主学习 关键能力 互动探究
— 11 —
4.(易错题)在某次足球联赛上,红队每场比赛平均失球个数是1.6,全年比赛失 球个数的标准差是1.1;蓝队每场比赛平均失球个数是2.2,全年比赛失球个数的标准 差是0.4.则下列说法正确的是( C )
数学 N 必备知识 自主学习 关键能力 互动探究

高考数学 用样本估计总体 专题

高考数学  用样本估计总体  专题

高考数学用样本估计总体专题课下练兵场命题报告难度及题号知识点容易题(题号)中等题(题号)稍难题(题号)用样本的频率分布估计总体的频率分布1、3、4812茎叶图的应用2、911用样本的数字特征估计总体的数字特征56、7、10一、选择题1.一个容量为20的样本数据,分组后,组别与频数如下:组别(10,20](20,30](30,40](40,50](50,60](60,70]频数23454 2 则样本在(20,50]上的频率为() A.12%B.40% C.60% D.70%解析:本题考查样本的频率运算.据表知样本分布在(20,50]的频数3+4+5=12,故其频率为1220=0.6.答案:C2.甲、乙两名同学在五次《数学基本能力》测试中,成绩统计用茎叶图表示如下,若甲、乙两人的平均成绩分别是X甲、X乙,则下列结论正确的是()A.X甲>X乙,甲比乙成绩稳定B.X甲>X乙,乙比甲成绩稳定C.X甲<X乙,甲比乙成绩稳定D.X甲<X乙,乙比甲成绩稳定解析:由茎叶图知识,可知道甲的成绩为68、69、70、71、72,平均成绩为70;乙的成绩为63、68、69、69、71,平均成绩为68;再比较标准差:甲的标准差为15[(68-70)2+(69-70)2+(70-70)2+(71-70)2+(72-70)2]=2,乙的标准差为15[(63-68)2+(68-68)2+(69-68)2+(69-68)2+(71-68)2]=655>2,故甲比乙的成绩稳定.答案:A3.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在[50,60)的汽车大约有()A.30辆B.40辆C.60辆D.80辆解析:面积为频率,在[50,60)的频率为0.3,所以大约有200×0.3=60辆.答案:C4.(2009·福建高考)一个容量为100的样本,其数据的分组与各组的频数如下:组别频数(0,10]12(10,20]13(20,30]24(30,40]15(40,50]16(50,60]13(60,70]7则样本数据落在(10,40]()A.0.13 B.0.39 C.0.52 D.0.64解析:由列表知样本数据落在(10,40]上的频数为52,∴频率为0.52.5.甲、乙两射击运动员进行比赛,射击相同的次数,已知两运动员射击的环数稳定在7,8,9,10环,他们的成绩频率分布条形图如下:由乙击中8环及甲击中10环的概率与甲击中环数的平均值都正确的一组数据依次是() A.0.350.258.1 B.0.350.258.8C.0.250.358.1 D.0.250.358.8解析:乙击中8环的概率为1-0.2-0.2-0.35=0.25;甲击中10环的概率为1-0.2-0.15-0.3=0.35;甲击中环数的平均值为7×0.2+8×0.15+9×0.3+10×0.35=8.8.答案:D6.(2009·四川高考)设矩形的长为a,宽为b,其比满足b:a=5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是() A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定解析:x甲=0.598+0.625+0.628+0.595+0.6395=0.617,x 乙=0.618+0.613+0.592+0.622+0.6205=0.613,∴x甲与0.618更接近.二、填空题7.已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是____________.解析:这10个数的中位数为a+b2=10.5.这10个数的平均数为10.要使总体方差最小,即(a-10)2+(b-10)2最小.又∵(a-10)2+(b-10)2=(21-b-10)2+(b-10)2=(11-b)2+(b-10)2=2b2-42b+221,∴当b=10.5时,(a-10)2+(b-10)2取得最小值.又∵a+b=21,∴a=10.5,b=10.5.答案:10.5,10.58.某地教育部门为了解学生在数学答卷中的有关信息,从上次考试的10 000名考生的数学试卷中,用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如图).则这10 000人中数学成绩在段的约是________人.解析:本题考查了频率直方图的一些知识,由图在的频率为0.008×10,所以在10 000人中成绩在的学生有10 000×0.008×10=800人.答案:8009.(2010·珠海模拟)如图是CBA篮球联赛中,甲乙两名运动员某赛季一些场次得分的茎叶图,则平均得分高的运动员是________.解析:从茎叶图上可得甲得分:8,10,15,16,22,23,25,26,27,32,平均值为20.4;乙得分:8,12,14,17,18,19,21,27,28,29,平均值为19.3,∴平均得分高的运动员是甲. 答案:甲 三、解答题10.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位 mm): 甲:99,100,98,100,100,103 乙:99,100,102,99,100,100(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1) x 甲=99+100+98+100+100+1036=100 mm ,x 乙=99+100+102+99+100+1006=100 mm , 甲2S =16=73 mm 2. 2乙S =16=1 mm 2.(2)因为甲2S >甲2S ,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.11.甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5项预赛成绩记录如下:甲 82 82 79 95 87 乙9575809085(1)用茎叶图表示这两组数据;(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由. 解:(1)作出茎叶图如下:(2)记甲被抽到的成绩为x ,乙被抽到的成绩为y ,用数对(x ,y )表示基本事件: (82,95) (82,75) (82,80) (82,90) (82,85) (82,95) (82,75) (82,80) (82,90) (82,85) (79,95) (79,75) (79,80) (79,90) (79,85) (95,95) (95,75) (95,80) (95,90) (95,85) (87,95) (87,75) (87,80) (87,90) (87,85) 基本事件总数n =25.记“甲的成绩比乙高”为事件A ,事件A 包含的基本事件: (82,75) (82,80) (82,75) (82,80) (79,75) (95,75) (95,80) (95,90) (95,85) (87,85) (87,75) (87, 80) 事件A 包含的基本事件数是m =12. 所以P (A )=m n =1225.(3)派甲参赛比较合适.理由如下: x甲=85,x 乙=85,2甲S =31.6,2乙S =50.∵x甲=x 乙,2甲S <2乙S ,∴甲的成绩较稳定,派甲参赛比较合适.12.从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8. (1)列出样本的频率分布表;(2)画出频率分布直方图和频率分布折线图; (3)估计成绩在[60,90)分的学生比例;(4)估计成绩在85分以下的学生比例.解:(1)频率分布表如下:成绩分组频数频率频率/组距[40,50)20.040.004[50,60)30.060.006[60,70)100.20.02[70,80)150.30.03[80,90)120.240.024[90,100)80.160.016合计5010.1 (2)频率分布直方图和折线图为:(3)所求的学生比例为0.2+0.3+0.24=0.74=74%.(4)所求的学生比例为1-(0.12+0.16)=1-0.28=0.72=72%.。

高中数学用样本估计总体

高中数学用样本估计总体
总体方差
总体中所有个体值与总体平均数之差的平方的平均数,是衡量数据分散程度的量 。总体方差是参数,而样本方差是统计量。
样本比例和总体比例
样本比例
样本中某事件发生的次数与样本容量 的比值,用于估计总体比例。计算公 式为 $frac{a}{n}$,其中 $a$ 是事 件发生的次数,$n$ 是样本容量。
高中数学用样本估计总体
汇报人: 202X-01-02
contents
目录
• 样本和总体 • 用样本估计总体 • 样本估计总体的误差 • 用样本估计总体的应用 • 案例分析
01
样本和总体
样本和总体的定义
总体
研究对象的全体集合,表示为N。
样本
从总体中随机抽取的一部分个体,表示为n。
样本和总体的关系
05
案例分析
案例一:某品牌电视的市场占有率
总结词
通过调查某地区一定数量的家庭或零售商,了解他们购买电视的品牌偏好,从而估算该品牌电视在该 地区的整体市场占有率。
详细描述
选取一定数量的家庭或零售商作为样本,通过问卷调查或访谈的方式了解他们购买电视的品牌偏好。 然后,根据样本数据计算该品牌电视的市场占有率,并使用合适的统计方法对结果进行估计和误差分 析。
总体比例
总体中某事件发生的次数与总体容量 的比值。在统计学中,总体比例通常 作为参数来估计。
03
样本估计总体的误差
抽样误差和非抽样误差
抽样误差
由于从总体中随机抽取样本而产 生的误差,这种误差可以通过增 加样本量和提高样本代表性来减 小。
非抽样误差
由于调查过程中的非随机因素, 如测量误差、记录误差等而产生 的误差,这种误差难以控制和消 除。
案例二:某班级的数学成绩分布

高考数学《随机抽样与用样本估计总体》真题含答案

高考数学《随机抽样与用样本估计总体》真题含答案

高考数学《随机抽样与用样本估计总体》真题含答案一、选择题1.某创业公司共有36名职工,为了了解该公司职工的年龄构成情况,随机采访了9位代表,得到的数据分别为36,36,37,37,40,43,43,44,44,若用样本估计总体,年龄在(x -s ,x +s)内的人数占公司人数的百分比是(其中x 是平均数,s 为标准差,结果精确到1%)( )A .14%B .25%C .56%D .67% 答案:C解析:因为x -=36+36+37+37+40+43+43+44+449=40,s 2=19 (16+16+9+9+0+9+9+16+16)=1009 ,即s =103 ,年龄在(x - -s ,x -+s)即⎝⎛⎭⎫1103,1303 内的人数为5,所以所求百分比为59≈0.56=56%,故选C . 2.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140 答案:D解析:由频率分布直方图知,200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.3.[2024·九省联考]样本数据16,24,14,10,20,30,12,14,40的中位数为( ) A .14 B .16 C .18 D .20 答案:B解析:将这些数据从小到大排列可得:10,12,14,14,16,20,24,30,40,则其中位数为16.故选B.4.[2024·新课标Ⅱ卷]某农业研究部门在面积相等的100块稻田上种植一种新型水稻,根据表中数据,下列结论中正确的是()A.100块稻田亩产量的中位数小于1 050 kgB.100块稻田中亩产量低于1 100 kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200 kg至300 kg之间D.100块稻田亩产量的平均值介于900 kg至1 000 kg之间答案:C解析:A选项,因为6+12+18=36<50,36+30=66>50,所以100块稻田亩产量的中位数不小于1 050 kg, A错误;B选项,因为100块稻田中亩产量低于1 100 kg的稻田有66块,所占比例为66%<80%,所以B错误;C选项,100块稻田亩产量的极差的最大值小于1 200-900=300,最小值大于1 150-950=200,所以极差介于200 kg至300 kg之间,C正确;D选项,同一组中的数据都用左端点值来估计,则这100块稻田亩产量的平均值的最小值为1100×(6×900+12×950+18×1 000+30×1 050+24×1 100+10×1 150)=1 042>1 000,所以平均值不介于900 kg至1 000 kg之间,D错误.故选C.5.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案:A解析:设建设前经济收入为a ,则建设后经济收入为2a ,由题图可得下表:根据上表可知B 、C 、D 均正确,A 不正确,故选A .6.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差 答案:B解析:由统计图可知,讲座前这10位社区居民问卷答题的正确率分别为65%,60%,70%,60%,65%,75%,90%,85%,80%,95%.对于A 项,将这10个数据从小到大排列为60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,因此这10个数据的中位数是第5个与第6个数的平均数,为70%+75%2 =72.5%>70%,A 错误.对于B 项,由统计图可知,讲座后这10位社区居民问卷答题的正确率分别为90%,85%,80%,90%,85%,85%,95%,100%,85%,100%,所以讲座后这10位社区居民问卷答题的正确率的平均数为110×(90%+85%+80%+90%+85%+85%+95%+100%+85%+100%)=89.5%>85%,B 正确.对于C 项,讲座后这10位社区居民问卷答题的正确率的方差s 2后 =110 ×[(90%-89.5%)2+(85%-89.5%)2+…+(85%-89.5%)2+(100%-89.5%)2]=42.2510 000 ,所以标准差s 后=6.5%.讲座前这10位社区居民问卷答题的正确率的平均数为110 ×(60%+60%+65%+65%+70%+75%+80%+85%+90%+95%)=74.5%,所以讲座前这10位社区居民问卷答题的正确率的方差为s 2前 =110×[(60%-74.5%)2+(60%-74.5%)2+…+(90%-74.5%)2+(95%-74.5%)2]=142.2510 000 ,所以标准差s 前≈11.93%.所以s 前>s 后,C 错误.对于D 项,讲座前问卷答题的正确率的极差为95%-60%=35%,讲座后问卷答题的正确率的极差为100%-80%=20%,D 错误.故选B .7.(多选)有一组样本数据x 1,x 2,…,x n ,由这组数据得到新样本数据y 1,y 2,…,y n ,其中y i =x i +c(i =1,2,…,n),c 为非零常数,则( )A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同 答案:CD解析:A :E(y)=E(x +c)=E(x)+c 且c ≠0,故平均数不相同,错误;B :若第一组中位数为x i ,则第二组的中位数为y i =x i +c ,显然不相同,错误;C :D(y)=D(x)+D(c)=D(x),故方差相同,正确.D :由极差的定义知:若第一组的极差为x max -x min ,则第二组的极差为y max -y min =(x max+c)-(x min +c)=x max -x min ,故极差相同,正确.故选CD .8.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差 答案:C解析:甲的平均数是4+5+6+7+85 =6,中位数是6,极差是4,方差是(-2)2+(-1)2+02+12+225=2;乙的平均数是5+5+5+6+95=6,中位数是5,极差是4,方差是(-1)2+(-1)2+(-1)2+02+325 =125,比较可得选项C 正确.9根据上表可得经验回归方程为y ^ =6.3x +a ^,下列说法正确的是( ) A .回归直线y ^ =6.3x +a ^必经过样本点(2,19),(6,44)B .这组数据的样本点中心(x - ,y - )未必在回归直线y ^ =6.3x +a ^上 C .回归系数6.3的含义是广告费用每增加1万元,销售额实际增加6.3万元 D .据此模型预报广告费用为7万元时销售额约为50.9万元 答案:D解析:由表格中的数据可得x - =2+3+4+5+65 =4,y - =19+25+34+38+445=32,将点(x - ,y - )的坐标代入经验回归方程得6.3×4+a ^=32, 解得a ^=6.8,所以回归方程为y ^=6.3x +6.8.对于A 选项,当x =2时,y ^=6.3×2+6.8=19.4,A 选项错误;对于B 选项,这组数据的样本点中心(x - ,y - )必在回归直线y ^ =6.3x +a ^上,B 选项错误;对于C 选项,回归系数6.3的含义是广告费用每增加1万元,销售额约增加6.3万元,C 选项错误;对于D 选项,当x =7时,y ^=6.3×7+6.8=50.9,所以据此模型预报广告费用为7万元时销售额约为50.9万元,D 选项正确.故选D .二、填空题10.已知一组数据4,2a ,3-a ,5,6的平均数为4,则a 的值是________. 答案:2解析:由平均数公式可得4+2a +(3-a )+5+65=4,解得a =2.11.某电子商务公司对10 000名网络购物者2021年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 答案:(1)3 (2)6 000解析:(1)0.1×(0.2+0.8+1.5+2.0+2.5+a)=1,解得a =3.(2)消费金额在区间[0.5,0.9]内的购物者的频率为0.1×(3.0+2.0+0.8+0.2)=0.6,所以所求购物者的人数为0.6×10 000=6 000.12.在一容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,即9,10,11,1■,■,那么这组数据的方差s 2可能的最大值是________.答案:32.8解析:设这组数据的最后两个数据为10+x ,y(x ∈N ,x ≤9) ∵9+10+11+10+x +y =10×5=50, ∴x +y =10,∴y =10-x .∴s 2=15 [1+0+1+x 2+(y -10)2]=15 (2+2x 2).∵x ≤9,∴当x =9时,s 2取得最大值32.8.[能力提升]13.[2024·重庆南开中学月考]今年入夏以来,我市天气反复,降雨频繁.如图统计了上个月前15天的气温,以及相对去年同期的气温差(今年气温-去年气温,单位:摄氏度),以下判断错误的是( )A.今年每天气温都比去年同期的气温高B.今年的气温的平均值比去年同期的气温的平均值低C.去年8~11号气温持续上升D.今年8号气温最低答案:A解析:由图可知,1号温差为负值,所以今年1号气温低于去年同期的气温,故选项A 不正确;除6,7号,今年气温略高于去年同期的气温外,其他日子,今年气温都低于去年同期的气温,所以今年的气温的平均值比去年同期的气温的平均值低,选项B正确;今年8~11号气温上升,但是气温差逐渐下降,说明去年8~11号气温持续上升,选项C正确;由图可知,今年8号气温最低,选项D正确.故选A.14.(多选)[2023·新课标Ⅰ卷]有一组样本数据x1,x2,…,x6,其中x1是最小值,x6是最大值,则()A.x2,x3,x4,x5的平均数等于x1,x2,…,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,…,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,…,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,…,x6的极差答案:BD解析:取x1=1,x2=x3=x4=x5=2,x6=9,则x2,x3,x4,x5的平均数等于2,标准差为0,x1,x2,…,x6的平均数等于3,标准差为223=663,故A,C均不正确;根据中位数的定义,将x1,x2,…,x6按从小到大的顺序进行排列,中位数是中间两个数的算术平均数,由于x1是最小值,x6是最大值,故x2,x3,x4,x5的中位数是将x2,x3,x4,x5按从小到大的顺序排列后中间两个数的算术平均数,与x1,x2,…,x6的中位数相等,故B正确;根据极差的定义,知x2,x3,x4,x5的极差不大于x1,x2,…,x6的极差,故D正确.综上,选BD.15.已知一组正数x 1,x 2,x 3的方差s 2=13 (x 21 +x 22 +x 23 -12),则数据x 1+1,x 2+1,x 3+1的平均数为________. 答案:3解析:∵s 2=13 [(x 1-x - )2+(x 2-x - )2+(x 3-x -)2]=13 ⎣⎡⎦⎤x 21 +x 22 +x 23 -2x -(x 1+x 2+x 3)+3x -2 =13 ⎣⎡⎦⎤x 21 +x 22 +x 23 -3x -2 , 又s 2=13 (x 21 +x 22 +x 23 -12), ∴3x - 2=12,∴x -=2.∴x 1+1,x 2+1,x 3+1的平均数为x 1+x 2+x 3+33=3.16.已知样本容量为200,在样本的频率分布直方图中,共有n 个小矩形,若中间一个小矩形的面积等于其余(n -1)个小矩形面积和的13,则该组的频数为________.答案:50解析:设除中间一个小矩形外的(n -1)个小矩形面积的和为P ,则中间一个小矩形面积为13 P ,P +13 P =1,P =34 ,则中间一个小矩形的面积等于13 P =14 ,200×14 =50,即该组的频数为50.。

《用样本估计总体》典型例题

《用样本估计总体》典型例题

《用样本估计总体》典型例题【考情分析】用样本的频率分布估计总体分布的有关问题在高考中的常考题型有两个:(1)根据频率分布表和频率分布直方图进行频数或频率的计算,这种考查形式出现的频率很高;(2)频率分布直方图的绘制,这种考查形式常出现在解答题中,用样本的数字特征估计总体的数字特征也是高考中的常考题型,从近几年高考命题的趋势可以看出,对本节概念的考查开始逐步朝着对数据分析能力考查的方向发展,题目往往需结合相关数字特征的统计意义进行求解.题型1统计图表的信息读取(逻辑推理)典例1、[推测解释能力](2018·全国卷I)某地区经过1年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半思路本题以实际生活为背景考查了统计图表信息提取的知识,图表命题涉及广泛,解决本题时要注意题目条件中的“农村的经济收入增加了一倍,实现翻番”,否则计算出错,导致判断失误.解析方法一(通解)设建设前经济收入为a,则建设后经济收入为2a,则由图可得建设前种植收入为0.6a,其他收入为0.04a,养殖收入为0.3a.建设后种植收入为0.74a,其他收入为0.1a,养殖收入为0.6a,养殖收入与第三产业收入的总和为1.16a,所以只有A是错误的.方法二(优解)因为0.6<0.37×2,所以新农村建设后,种植收入增加,而不是减少,所以A是错误的.答案A题型2与统计图表有关的计算(数据分析)典例2、[分析计算能力(2020-天津卷)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),⋯,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A.10B.18C.20D.36×组距,进行求解思路本题通过分析、读取频率分布直方图中数据的信息,利用公式频率=频率组距运算.解析根据题意,在被抽取的零件中,直径落在区间[5.43,5.47)内的频率为(6.25+5.00)×0.02= 0.225,则个数为80×0.225=18.答案 B题型3数字特征的含义与计算(数据分析)典例3-1[概括理解能力](全国II卷)为了评估一种农作物的种植效果,选了n块地作试验田.这n 块地的亩产量(单位:kg)分别为x1,x2,x3,⋯,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,x3,⋯,x n的平均数B.x1,x2,x3,⋯,x n的标准差C.x1,x2,x3,⋯,x n的最大值D.x1,x2,x3,⋯,x n的中位数思路 本题依据数据的数字特征的意义,分析判断数据运用数字特征进行评价时,应从平均数、众数、中位数、方差、极差等多个角度对这组数据进行分析,全面考虑各数字特征的优缺点. 解析 平均数和中位数都能反映一组数据的集中趋势,而且平均数能反映一组数据的平均水平;标准差和方差都能反映一组数据的稳定程度.答案 B典例3-2、(2019-江苏卷)已知一组数据6,7,8,9,10,则该组数据的方差是_________.思路 本题考查了平均数和方差的计算公式,解决本题的关键是熟记平均数和方差的计算公式,本题考查了学生的分析计算能力和数学运算核心素养.解析 由平均数公式可得这组数据的平均数为8,则方差为(−2)2+(−1)2+0+0+12+226=53. 答案 53题型4用样本数字特征估计总体数字特征的简单计算典例4、[简单问题解决能力]某学校高一年级共有三个班,按优秀率进行评选.1班30人,优秀率30%,2班35人,优秀率60%,三班35人,优秀率40%,则全年级优秀率为_________.解析 本题通过优秀率、加权平均数来考查样本估计总体的数字特征,分析题意,根据班级优秀率求解全年级优秀率.由于某学校高一年级共有三个班,按优秀率进行评选:1班30人,优秀率30%,2班35人,优秀率60%,三班35人,优秀率40%,则全年级优秀率为:30×30%+35×60%+35×40%30+35+35=44%.答案 44%题型5用样本数字特征估计总体数字特征的综合计算(数学建模)典例5、[综合问题解决能力](2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲,乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).思路本题属于样本平均值估计总体的综合应用,根据频率分布直方图的特征,通过数据分析,在频率分布直方距计算a的值.解析(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1−0.05−0.15−0.70=0.10. (2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用样本估计总体1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差). (2)决定组距与组数. (3)将数据分组. (4)列频率分布表. (5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数. 4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离. (2)标准差:(3)方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数).知识拓展1.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.(2)在频率分布直方图中,各小长方形的面积总和等于1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观. 2.平均数、方差的公式推广(1)若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a .(2)数据x 1,x 2,…,x n 的方差为s 2.①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2; ②数据ax 1,ax 2,…,ax n 的方差为a 2s 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ ) (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × )(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √ ) (6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( × )题组二 教材改编2.[P100A 组T2(1)]一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为( )A .4B .8C .12D .16 答案 B解析 设频数为n ,则n 32=0.25,∴n =32×14=8.3.[P81A 组T1]若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92答案 A解析 ∵这组数据由小到大排列为87,89,90,91,92,93,94,96,∴中位数是91+922=91.5,平均数x =87+89+90+91+92+93+94+968=91.5.4.[P71T1]如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有______人.答案 25解析 0.5×0.5×100=25.题组三 易错自纠5.若数据x 1,x 2,x 3,…,x n 的平均数x =5,方差s 2=2,则数据3x 1+1,3x 2+1,3x 3+1,…,3x n +1的平均数和方差分别为( ) A .5,2 B .16,2 C .16,18D .16,9答案 C解析∵x1,x2,x3,…,x n的平均数为5,∴x1+x2+x3+…+x nn=5,∴3x1+3x2+3x3+…+3x nn+1=3×5+1=16,∵x1,x2,x3,…,x n的方差为2,∴3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.6.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m,众数为n,平均数为x,则m,n,x的大小关系为________.(用“<”连接)答案n<m<x解析由图可知,30名学生得分的中位数为第15个数和第16个数(分别为5,6)的平均数,即m=5.5;又5出现次数最多,故n=5;x=2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈5.97.故n<m<x.题型一茎叶图的应用1.(优质试题·山东)如图所示的茎叶图记录了甲,乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5 B.5,5 C.3,7 D.5,7答案 A解析甲组数据的中位数为65,由甲,乙两组数据的中位数相等,得y=5.又甲、乙两组数据的平均值相等,∴15×(56+65+62+74+70+x)=15×(59+61+67+65+78),∴x=3.故选A.2.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图所示.据此可估计该校上学期400名教师中,使用多媒体进行教学次数在[16,30)内的人数为()A.100 B.160C.200 D.280答案 B解析观察茎叶图,抽取的20名教师中使用多媒体教学次数在[16,30)内的有8人,所以该区间段的频率为820=0.4,因此全校400名教师使用多媒体教学次数在[16,30)内的有400×0.4=160(人).思维升华茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.题型二频率分布直方图的绘制与应用命题点1用频率分布直方图求频率、频数典例(优质试题·山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140答案 D解析设所求人数为N,则N=2.5×(0.16+0.08+0.04)×200=140,故选D.命题点2用频率分布直方图估计总体典例(优质试题·四川)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解(1)由频率分布直方图可知,月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(2)估计全市居民中月均用水量不低于3吨的人数为3.6万.理由如下:由(1)知,100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.思维升华(1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率,不要和条形图混淆.(2)在很多题目中,频率分布直方图中各小长方形的面积之和为1,是解题的关键,常利用频率分布直方图估计总体分布.跟踪训练(优质试题·北京)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.解(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4,所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4. (2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9, 分数在区间[40,50)内的人数为100-100×0.9-5=5, 所以总体中分数在区间[40,50)内的人数估计为400×5100=20.(3)由题意可知,样本中分数不小于70的学生人数为 (0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30,所以样本中的男生人数为30×2=60, 女生人数为100-60=40,所以样本中男生和女生人数的比例为60∶40=3∶2,所以根据分层抽样原理,估计总体中男生和女生人数的比例为3∶2.题型三 用样本的数字特征估计总体的数字特征典例 (1)某市有210名初中生参加数学竞赛预赛,随机调阅了60名学生的答卷,成绩如表:①求样本的平均成绩和标准差(精确到0.01分);②若规定预赛成绩在7分或7分以上的学生参加复赛,试估计有多少名学生可以进入复赛. 解 ①x =160×(4×6+5×15+6×21+7×12+8×3+9×3)=6,s 2=160×[6×(4-6)2+15×(5-6)2+21×(6-6)2+12×(7-6)2+3×(8-6)2+3×(9-6)2]=1.5.∴s ≈1.22,故样本的平均成绩为6分,标准差约为1.22分.②在60名选手中,有12+3+3=18(名)学生预赛成绩在7分或7分以上,∴210人中有1860×210=63(名)学生的预赛成绩在7分或7分以上,故大约有63名学生可以参加复赛. (2)甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图:①分别求出两人得分的平均数与方差;②根据图和上面算得的结果,对两人的训练成绩作出评价. 解 ①由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分. x 甲=10+13+12+14+165=13;x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4; s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. ②由s 2甲>s 2乙,可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.思维升华 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.跟踪训练 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. 解 (1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数x甲=1015=23; 方差为s 2甲=115⎣⎡⎦⎤⎝⎛⎭⎫1-232×10+⎝⎛⎭⎫0-232×5=29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数x乙=915=35; 方差为s 2乙=115⎣⎡⎦⎤⎝⎛⎭⎫1-352×9+⎝⎛⎭⎫0-352×6=625.因为x 甲>x乙,s 2甲<s 2乙,所以甲组的研发水平优于乙组.(2)记恰有一组研发成功为事件E ,在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.因此事件E 发生的频率为715.用频率估计概率,即得所求概率为P (E )=715.高考中频率分布直方图的应用考点分析 频率分布直方图是高考考查的热点,考查频率很高,题型有选择题,填空题,也有解答题,难度为中低档.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.典例 (12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.。

相关文档
最新文档