焊接缺陷对结构强度的影响
钢结构工程常见质量缺陷及防治措施

钢结构工程常见质量缺陷及防治措施引言钢结构工程是一种广泛应用的建筑结构形式,在高层建筑、桥梁和工业厂房等领域中具有重要的地位。
然而,由于施工过程中可能存在的问题,钢结构工程常常会出现一些质量缺陷,影响其使用寿命和结构安全。
为了保证钢结构工程的质量,我们需要了解这些常见缺陷,并采取相应的预防和控制措施。
常见质量缺陷1. 焊接缺陷:在钢结构工程的制作和安装过程中,焊接是一项非常重要的工艺。
然而,不当的焊接技术和材料质量等问题可能导致焊缝的缺陷,如气孔、裂纹和焊缝凹陷等。
2. 表面缺陷:钢结构工程的表面缺陷主要指涂层的质量问题,如涂层的起泡、剥落和变色等。
这些缺陷可能会导致腐蚀和结构整体性能的下降。
3. 尺寸偏差:由于施工过程中的测量和布置问题,钢结构工程的尺寸偏差也是常见的质量缺陷。
过大的偏差可能导致构件之间的不匹配和安装困难。
4. 材料质量问题:钢结构工程所使用的钢材质量直接影响其整体质量和性能。
材料的缺陷和不合格可能导致结构的强度和耐久性下降。
防治措施为了减少以上常见质量缺陷对钢结构工程造成的影响,我们可以采取以下防治措施:1. 加强焊接质量管理:制定合理的焊接技术规范和施工工艺,严格把关焊接材料的质量,加强焊接人员的培训和监督,确保焊接质量达到要求。
2. 定期检查和维护涂层:在钢结构工程的使用过程中,定期检查涂层的状况,及时修补和维护,防止涂层质量问题导致结构腐蚀。
3. 加强尺寸测量和布置控制:在施工过程中,加强对钢结构工程尺寸的测量和布置控制,确保构件的准确安装,避免尺寸偏差过大。
4. 严格控制材料质量:选用正规的供应商和合格的钢材,对每批材料进行严格检查和测试,确保材料质量符合要求。
结论钢结构工程的质量缺陷会对结构安全和使用寿命产生严重影响。
通过加强焊接质量管理、定期检查和维护涂层、控制尺寸偏差和严格控制材料质量等防治措施,可以有效预防和控制这些质量缺陷的发生。
建议在钢结构工程的设计、施工和使用过程中,始终关注质量问题,确保结构的安全性和使用寿命。
焊接缺陷危害及对应措施

焊接缺陷危害及对应措施摘要本文介绍了焊接缺陷定义、分类、及常见焊接缺陷,重点分析了常见焊接缺陷产生的原因及其危害,最后详细介绍了常见焊接缺陷的防止措施,因此,采取措施,避免焊接缺陷。
对指导实际工作有一定帮助。
关键词焊接缺陷原因危害措施随着焊接技术的发展和进步,焊接几乎渗透到国民经济的各个领域,很多重要的焊接结构,如果出现缺陷,就可能造成巨额的经济损失。
为确保焊接结构的完整性,可靠性,安全性和使用性,研究焊接缺陷及对应的工艺措施的重要性就不言而喻。
一、焊接缺陷概述1、焊接缺陷定义焊接过程中,在焊接接头上产生的金属不连续、不致密或链接不良的现象称为焊接缺陷。
2、焊接缺陷分类焊接缺陷的产生原因十分复杂,基本上可以分为三类:(1)尺寸上的缺陷包括焊接结构的尺寸误差和焊缝形状不佳等。
(2)结构上的缺陷包括气孔、夹渣、非金属夹渣物、融合不良、未焊透、咬边、裂纹、表面缺陷等。
(3)性质上的缺陷包括力学性能和化学性质等不能满足焊件的使用要求的缺陷。
力学的性能值的是抗拉强度、屈服点、伸长率、硬度、冲击吸收功、塑性、疲劳强度、弯曲角度等。
化学性质指的是化学成分和耐腐蚀性等。
二、常见的焊接缺陷1、未焊透:母体金属接头处中间(某坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。
未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。
2、未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。
3、气孔:在熔化焊接过程中,焊缝金属内的气体或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙.4、其他的焊缝外部缺陷还有:焊瘤:焊缝根部的局部突出,这是焊接时因液态金属下坠形成的金属瘤。
焊瘤下常会有未焊透缺陷存在,这是必须注意的。
焊接缺陷对结构强度的影响

渣 、气孔 、咬边 、满溢 、烧 穿和焊缝 成 形 不 良等 。各 种缺 陷 对焊接 结构 承载 能力都 有不 同程度 的影响 。
一
、
焊 接缺 陷对 结构 静载 非脆性 破坏 的 影响
一
般 情 况 下 ,材 料 的 破 坏 形 式 多 属 塑 性 断 裂 。 这
22
0 国 唧凰 鼬可 鹰 @0 鹰 @— — 鹰 啸0
维普资讯
中 教隆 程22 圆 工 0. 0 5
气孔 比深埋 气孔 危 险 ,成 串或密 集气孔 比单个 气孔 更
危险。 2 夹 渣 的 影 响 .
修 与 造 理 改
许 多 焊 接 结 构 的 脆 性 断 裂 都 是 由微 小 裂 纹 引 发 的 ,由于小裂 纹未 达到 临界 尺寸 ,运 行后 结构 不会 立 即 断裂 。但 小 的焊 接缺 陷 可能 在 使 用 期 间 出现 变化 , 最后 达 到临 界值 。 生脆 性 断裂 。所 以 , 发 在结构 使用 期 间定 期 检查 以及 时 发现 和 监测 接近 临 界条 件 的缺 陷 , 是 防止焊 接结 构脆性 断 裂 的有效措施 。 三 、焊 接缺 陷对疲 劳 强度 的影 响 焊 接 工艺缺 陷在 构件 中引 起很 大的 应 力集 中 。在 交 变负 载 下引发 疲劳裂 纹 。不 同种类 的缺陷 对疲 劳强 度 的影 响不 同。 1 裂 纹 、未焊 透和 未熔 合对疲 劳强 度 的影 响 . 裂 纹 、未 焊 透 和未 熔 合 等 对 疲 劳 强 度 的 影 响较
接 应 力 ,防 止 裂 纹 产 生 。
用小 锤或 扁铲 将焊 肉撵 向未 焊部位 ,待 温度 降低 后再 继续 焊 接 , 如此 反 复 , 即可将 引 流 管 与设 备 之间 满 焊 。
焊缝缺陷的危害及预防措施

焊缝缺陷的危害及预防措施焊接是工程中常用的连接技术,但由于各种原因,焊接中常常会出现焊缝缺陷。
焊缝缺陷不仅会给结构造成严重的安全隐患,影响使用寿命,还可能导致灾难性的事故发生。
为了确保焊接质量和工程的安全可靠,必须要重视焊缝缺陷的危害,并采取相应的预防措施。
一、焊缝缺陷的危害1. 强度降低:焊缝缺陷会导致接头的强度降低,降低了结构的承载能力。
在受到外力作用时,焊接缺陷容易产生破坏,导致结构失效。
2. 断裂风险增加:焊缝中存在缺陷,会增加材料的应力集中,使得断裂风险增加。
尤其是在动态载荷下,焊缝的材料疲劳寿命会大大缩短。
3. 泄漏和渗透:如果焊缝中存在气孔、裂纹等缺陷,会导致结构在内外压力的作用下发生泄漏和渗透。
对于承压设备或管道,这个问题尤为严重,可能造成环境污染或人员伤亡。
4. 腐蚀加剧:焊缝缺陷是腐蚀的滋生和发展的聚集点,容易引起局部腐蚀速度的加剧。
腐蚀会降低结构的强度和耐久性,严重的话可能导致设备失效。
5. 破坏结构完整性:焊缝缺陷会破坏结构的完整性,使得结构整体变得脆弱,很容易发生局部或整体的破坏。
对于高速公路桥梁、大型建筑等重要工程,这种破坏可能会导致灾难性的后果。
二、预防焊缝缺陷的措施1. 规范化操作:在焊接过程中,按照标准化的工艺操作,严格控制焊接参数和工艺要求,包括电流、电压、焊接速度等因素。
只有在规范化的操作下,才能有效地降低焊缝缺陷的发生概率。
2. 质量检测:在焊接完成后,进行质量检测是非常重要的。
可以采用目测、超声波检测、射线检测等方法,对焊缝进行全面的检查。
及时发现并修补焊缝缺陷,可以有效减少危险因素。
3. 质量培训:针对焊接工人,必须进行全面的培训,提高他们的技术水平和质量意识。
培训内容包括焊接工艺知识、缺陷识别和修补方法等。
只有使焊工具备全面的技术知识,才能减少操作中的疏忽和失误。
4. 合理设计:在结构设计中,要合理布置焊接接头,尽量减少焊接缺陷的发生。
避免焊缝过长或连接件厚度不均匀等设计缺陷。
焊接缺陷危害分析及其采取的工艺措施

焊接缺陷危害分析及其采取的工艺措施焊接是现代工业生产中最常见的加工工艺之一,但也容易造成焊接缺陷,如气孔、裂纹、夹渣等,这些缺陷不仅影响产品的外观和质量,还可能导致严重的安全事故。
因此,对焊接缺陷进行分析并采取相应的工艺措施是非常重要的。
一、焊接缺陷危害分析1.气孔:气孔指焊缝中的气体孔洞,这些气孔会导致焊缝强度降低,从而影响产品的使用寿命。
在高温、高压环境下,气孔还会导致焊缝的爆裂、破损等事故。
此外,焊接过程中产生的气孔还可能影响产品的封闭性和内部结构的安全性。
2.裂纹:焊接过程中产生的裂纹是焊接缺陷中比较严重的一种,它不仅大幅降低产品的强度和耐久性,还会导致焊接构件的失效。
特别是在高温、高压及震动等环境下,焊接裂纹很容易扩展,从而引发安全事故。
3.夹渣:夹渣是金属残渣或掉落在焊缝中的杂物,它会造成焊缝中部分区域断裂或分离,在高温、高压或振动的环境下容易引起产品的裂纹和断裂。
二、采取的工艺措施1.提高焊接质量控制:焊接过程中应严格控制气体含量,确保焊接工作区域的干燥和清洁,并加强焊接过程的监控和控制。
同时,对焊接设备和焊接工具进行维护和检修,保证设备状态以及焊接操作者的技术水平。
2.选择高品质的焊材:焊接过程中使用高品质的焊接材料,能有效减少焊缝中的夹渣和气孔,并提高焊接的强度和耐久性。
同时,选用适合任务的焊接材料和焊接工艺,也是降低缺陷发生率的有效措施之一。
3.采用合适的焊接工艺:针对不同的焊接任务,选择相应的焊接工艺,比如是手工焊、自动焊、埋弧焊等,能充分发挥这些工艺的优势,减少缺陷的发生。
4.使用检测和修复工具:对焊接过程和成品焊缝进行定期检查和修复,如使用钢丝刷、磨砂轮、压缩机等工具,将焊接缺陷修复,保证产品的质量和安全性。
总而言之,焊接缺陷是生产安全的重大隐患,企业应充分认识焊接缺陷的危害,采取相应的措施加强质量管理,以保证产品质量和安全性。
常见的焊接缺陷

根据咬边处于焊缝的上下面,可分为外咬边(在坡口开口大的一面)和内咬边(在坡口底部一面)。咬边也可以说是沿焊缝边缘低于母材表面的凹槽状缺陷。 其他的焊缝外部缺陷还有:
b.冷裂纹:焊接完成后冷却到低温或室温时出现的裂纹,或者焊接完成后经过一段时间才出现的裂纹(这种冷裂纹称为延迟裂纹,特别是诸如14MnMoVg、18MnMoNbg、14MnMoNbB等合金钢种容易产生此类延迟裂纹,也称之为延迟裂纹敏感性钢)。冷裂纹多出现在焊道与母材熔合线附近的热影响区中,其取向多与熔合线平行,但也有与焊道轴线呈纵向或横向的冷裂纹。冷裂纹多为穿晶裂纹(裂纹穿过晶界进入晶粒),其成因与焊道热影响区的低塑性组织承受不了冷却时体积变化及组织转变产生的应力而开裂,或者焊缝中的氢原子相互结合形成分子状态进入金属的细微孔隙中时将造成很大的压应力连同焊接应力的共同作用导致开裂(称为氢脆裂纹),以及焊条(填充金属)或母材中的磷含量过高等因素有关。
焊偏:在焊缝横截面上显示为焊道偏斜或扭曲。
加强高(也称为焊冠、盖面)过高:焊道盖面层高出母材表面很多,一般焊接工艺对于加强高的高度是有规定的,高出规定值后,加强高与母材的结合转角很容易成为应力集中处,对结构承载不利。
以上的外部缺陷多容易使焊件承载后产生应力集中点,或者减小了焊缝的有效截面积而使得焊缝强度降低,因此在焊接工艺上一般都有明确的规定,并且常常采用目视检查即可发现这些外部缺陷。
焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性变形,超过材料的强度极限则导致开裂。裂纹的存在大大降低了焊接接头的强度,并且焊缝裂纹的尖端也成为承载后的应力集中点,成为结构断裂的起源。
焊接结构疲劳破坏的原因

焊接结构疲劳破坏的原因焊接结构在使用过程中可能会发生疲劳破坏,这是由于循环加载引起的应力积累和损伤累积。
以下是焊接结构疲劳破坏的一些常见原因:1.应力集中焊接接头通常具有应力集中的特点,尤其是焊缝附近。
当外部载荷作用于焊接结构时,应力会集中在焊接接头的某些区域,导致这些区域承受更高的应力,增加了疲劳破坏的风险。
2.结构设计不合理焊接结构的设计不合理也是引起疲劳破坏的原因之一。
例如,焊接接头的几何形状、尺寸和连接方式等方面的设计不当,会导致应力集中、应力分布不均匀或者局部刚度不足,进而影响结构的疲劳强度和寿命。
3.材料选择不当焊接材料的选择对焊接结构的疲劳性能有重要影响。
如果选用的焊接材料强度不匹配、韧性差或者存在其他缺陷,会使焊接结构容易发生疲劳破坏。
此外,材料的质量控制和工艺控制也会影响焊接结构的疲劳性能。
4.负荷作用频率负荷作用频率对焊接结构的疲劳寿命有显著影响。
当焊接结构频繁受到反复加载时,应力的累积和损伤的积累更为明显,容易导致疲劳破坏。
特别是在高循环载荷下,焊接结构更容易发生疲劳破坏。
5.环境条件环境条件对焊接结构的疲劳破坏也有一定影响。
例如,高温、湿度、腐蚀介质等环境因素都会加速焊接结构的疲劳过程,降低其疲劳寿命。
6.焊接质量问题焊接质量直接关系到焊接结构的疲劳性能。
焊接缺陷如焊孔、气孔、夹渣等都会导致局部应力集中,并降低焊接结构的强度和疲劳寿命。
此外,焊接工艺参数的选择和控制也对焊接质量和疲劳性能有重要影响。
7.维护不当焊接结构的维护不当也会导致疲劳破坏。
例如,未及时修复焊缝裂纹、松动的连接等问题,或者忽视定期检查和维护,都会增加焊接结构的疲劳风险。
为了减少焊接结构的疲劳破坏,可以采取以下措施:-合理设计焊接结构,避免应力集中和减小应力幅值。
-选择合适的焊接材料,并进行质量控制。
-控制负荷作用频率,避免过高频率的加载。
-提供适当的保护措施,防止环境因素对焊接结构的损害。
-加强焊接质量控制,避免焊接缺陷。
焊接结构疲劳强度

焊接结构疲劳强度焊接是一种常见的金属连接方法,但焊接接头在使用过程中容易受到疲劳破坏。
焊接结构的疲劳强度是指焊接接头在受到交变载荷作用下能够承受的最大循环载荷次数。
疲劳强度的评估对于焊接结构的设计和使用至关重要。
本文将介绍焊接结构的疲劳破坏机制、影响疲劳强度的因素以及提高焊接接头疲劳强度的方法。
焊接结构的疲劳破坏机制主要包括以下几种:1.脆性断裂:焊接接头容易出现脆性断裂,主要是由于焊接过程中,焊缝和周边热影响区的组织发生变化,使其变得脆性,降低了焊接接头的疲劳强度。
2.裂纹扩展:焊接接头中存在的焊接缺陷(如气孔、夹杂等)是裂纹扩展的起始点。
在交替加载下,焊接接头中的裂纹会逐渐扩展,最终导致疲劳破坏。
影响焊接结构疲劳强度的因素主要包括以下几个方面:1.焊接材料选择:焊接材料的强度和塑性对焊接接头的疲劳强度有着重要影响。
通常情况下,焊接接头的强度应大于被焊接材料的强度,以保证焊接接头的疲劳寿命。
2.焊接工艺参数:焊接过程中的工艺参数(如焊接电流、焊接速度等)会对焊接接头的组织结构和性能产生影响,进而影响焊接接头的疲劳强度。
3.焊接接头形状和几何尺寸:焊接接头的形状和几何尺寸也会影响其疲劳强度。
一般来说,焊接接头的强度随着接头厚度的增加而增加,但是当厚度过大时,会导致应力集中,从而降低疲劳强度。
提高焊接接头疲劳强度的方法主要包括以下几个方面:1.选择合适的焊接方法:不同的焊接方法对焊接接头的疲劳强度有着重要影响。
例如,自动化焊接方法相对于手工焊接方法具有更高的焊接质量和疲劳强度。
2.进行焊接前的准备工作:在焊接前,需要对焊接接头进行彻底的清洁和表面处理,以减少焊接缺陷的产生。
3.优化焊接工艺参数:通过调整焊接的工艺参数,可以改善焊接接头的疲劳强度。
例如,适当增大焊接电流和焊接速度,可以减少焊缝内的局部熔化区,从而提高焊接接头的强度。
4.对焊接接头进行后处理:通过对焊接接头进行热处理或应力释放,可以改善焊接接头的组织结构和性能,提高其疲劳强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接缺陷对结构强度的影响
焊接缺陷的产生过程是十分复杂的,既有冶金的原因,也受到应力和变形的作用,缺陷对焊接结构承载能力有非常显著的影响,更为重要的是应力和变形与缺陷同时存在。
焊接缺陷容易出现在焊缝及其附近地区,而那些地区正是结构中拉伸残余应力最大的地方。
焊接缺陷之所以会降低焊接结构的强度,其主要原因是缺陷减小了结构承载横截面的有效面积,并且在缺陷周围产生了应力集中。
在一般焊接结构中,由于设计或施工不当也会出现应力集中和承载截面的变化。
焊接缺陷一般包括有未焊透、未熔合、裂纹、夹渣、气孔、咬边、焊穿和焊缝成型不良等。
焊接缺陷是平面的或立体的,平面类型的缺陷比立体类型的缺陷对应力增加的影响要大得多,因而也危险得多。
属于前者的有裂纹、未焊透、未熔合等;属于后者的有气孔、夹渣等。
1.焊接缺陷产生应力集中的机理
材料由于传递负载截面的突然变化而出现局部应力增大,这种现象叫作应力集中,缺陷的形状不同,引起截面变化的程度不同,对负载方向所成的角度不同,都会使缺陷周围的应力集中程度大不一样。
以一个椭球状的空洞缺陷为例,空洞为各向同性的无限大弹性体所包围,并作用有应力,当椭球空洞逐渐变为片状裂纹,其结果是应力集中变得十分严重。
除了空洞类型的气孔、裂纹和未焊透之外,还有夹渣也是常见的焊接缺陷,当多个缺陷间的距离较小时(如密集的气孔和夹渣等),在缺陷区域内将会产生很高的应力集中,使这些地方出现缺陷间裂纹将孔间连通。
在此情况下,最大的应力集中出现在两外孔的边缘处。
在焊接接头中,焊缝增高量、错边和角变形等几何不连续,有些虽然为现行规范所允许,但都会产生应力集中。
此外,由于接头形式的差别也会出现不同的应力集中,在焊接结构常用的接头形式中,对接接头的应力集中程度最小,角接头、T形接头和正面搭接接头的应力集中程度相差不多。
重要结构中的T形接头,如动载下工作的H形板梁,可以采用板边开坡口的方法使接头中应力集中程度大量降低,但对于搭接接头就不可能做到这一点,侧面搭接焊缝中沿整个焊缝长度上的应力分布很不均匀,而且焊缝越长,不均匀度就越严重,故一般钢结构设计规范都规定侧面搭接焊缝的计算长度不得大于60倍焊脚尺寸。
因为超过此限值后即使增加侧面搭接焊缝的长度,也不可能降低焊缝两端的应力峰值。
2.焊接缺陷对结构静载非脆性破坏的影响
焊接缺陷对结构的静载破坏有不同程度的影响,在一般情况下,材料的破坏形式多属于塑性断裂,这时缺陷所引起的强度降低,大致与它所造成承载截面积的减少成比例。
在一般标准中,允许焊缝中有个别的、不成串的或非密集型的气孔,假如气孔截面总量只占工作截面的5%时,气孔对屈服极限和抗拉强度极限的影响不大,当出现成串气孔总截面超过焊缝截面2%时,接头的强度极限急速降低。
出现这种情况的主要原因是由于焊接时保护气氛的中断,使出现成串气孔的同时焊缝金属本身的机械性能下降。
因此限制气孔量还能起到防止焊缝金属性能恶化的作用。
焊缝表面或邻近表面的气孔要比深埋气孔更为危险,成串或密集气孔要比单个气孔危险得多。
夹渣或夹杂物,根据其截面积的大小成比例地降低材料的抗拉强度,但对屈服强度的影响较小。
这类缺陷的尺寸和形状对强度的影响较大,单个的间断小球
状夹渣或夹杂物并不比同样尺寸和形状的气孔危害大。
直线排列的、细小的而且排列方向垂直于受力方向的连续夹渣是比较危险的。
几何形状造成的不连续性缺陷,如咬边、焊缝成型不良或焊穿等不仅降低了构件的有效截面积,而且会产生应力集中。
当这些缺陷与结构中的高残余拉伸应力区或热影响区中粗大脆化晶粒区相重迭时,往往会引发脆性不稳定扩展裂纹。
未熔合和未焊透比气孔和夹渣更为有害。
当焊缝有增高量或用优于母材的焊条制成焊接接头时,未熔合和未焊透的影响可能并不十分明显。
事实上许多使用中的焊接结构已经工作多年,埋藏在焊缝内部的未熔合和未焊透并没有造成严重事故。
但是这类缺陷在一定条件下可能成为脆性断裂的引发点。
裂纹被认为是最危险的焊接缺陷,一般标准中都不允许它存在。
由于尖锐裂纹容易产生尖端缺口效应、出现三向应力状态和温度降低等情况,裂纹可能失稳和扩展,造成结构的断裂。
裂纹一般是在拉伸应力场和不良的热影响区显微组织段中产生的,在静载非脆性破坏条件下,如果塑性流动发生于裂纹失稳扩展之前,则结构中的残余拉伸应力将没有什么有害影响,而且也不会产生脆性断裂。
除非裂纹尖端处材料性能急剧恶化,附近区域的显微组织不良,有较高的残余拉伸应力,而且在工作温度低于临界温度等不利条件综合作用外,一般情况下即使材料中出现了裂纹,当它们离开拉伸应力场或恶化了的显微组织区之后,也常常会被制止住。
3.焊接缺陷对结构脆性破坏的影响
焊接结构经常会在有缺陷处或结构不连续处引发脆性断裂,造成灾难性的破坏。
一般认为,结构中缺陷造成的应力集中越严重,脆性断裂的危险越大。
由于裂纹尖端的尖锐度比未焊透、未熔合、咬边和气孔等缺陷要尖锐得多,所以裂纹
危害最大。
气孔和夹渣等体积类缺陷的存在量低于5%时,如果结构的工作温度不低于材料的塑性—脆性转变温度,它们对结构的安全是无害的。
带裂纹的构件的临界温度要比含夹渣构件高得多。
除用转变温度来衡量各种缺陷对脆性断裂的影响之外,许多重要焊接结构都采用断裂力学作为评价的依据,因为用断裂力学可以确定断裂应力和裂纹尺寸与断裂韧度之间的关系。
许多焊接结构的脆性断裂都是由微小的裂纹引发的,在一般情况下,由于小裂纹并未达到临界尺寸,结构不会在运行后立即发生断裂。
但是小的焊接缺陷和不连续很可能在使用期间出现稳定增长,最后达到临界值,而发生脆性断裂。
所以在结构使用期间进行定期检查,及时发现和监测接近临界条件的缺陷,是防止焊接结构脆性断裂最有效的措施。
当焊接结构承受冲击或局部发生高应变和恶劣环境因素,都容易使焊接缺陷引发脆性断裂,例如疲劳载荷和腐蚀环境都能使裂纹等缺陷变得更尖锐,使裂纹的尺寸逐渐增大,加速其达到临界值。
4.结束语
了解和掌握各种焊接缺陷对结构强度的影响对于我们正确把握焊接结构的安全性是十分必要的,也使我们明确了哪些焊接缺陷可能对焊接结构带来灾难性的后果,哪些焊接缺陷的存在是不会对焊接结构使用强度带来大的影响,这对于我们焊接质量检验标准的确定也提供了很好的参考。