流体力学中的假设模型有哪些

流体力学中的假设模型有哪些
流体力学中的假设模型有哪些

1.流体力学中的假设模型有哪些,并说出具体内容。

(1).把流体当做是由密集质点构成的,内部无间隙的连续体来研究,就是连续介质假设。(2).实际的流体,无论液体或气体都是有黏性的。无黏性流体是指无黏性即u=0的流体.无黏性流体是不存在的,它只是一种对物性简化的力学模型。(3),实际流体都是课压缩的,然而有许多流动流体密度的变化很小,可以忽略,由此引出不可压缩流体概念,即=

ρ常数。不可压缩流体是又一理想化的力学模型。

2.描述雷诺实验及其揭示的结果

雷诺实验的装置由水箱引出玻璃管,末端装有阀门,在水箱上部的容器中装有密度和水接近的颜色的水,打开小水箱阀门,颜色水就可经针管注入玻璃管中。①,稍许开启玻璃管阀门,可见玻璃管内的颜色水成一条界线分明的汗流,各层质点互不掺混,这种流动状态称为层流。

②逐渐开大阀门,颜色水汗流出现抖动,使玻璃管的整个断面都带颜色,表明此时质点的运动轨迹不规则,各层质点相互掺混,这种流动状态称为紊流或湍流。

3.简述尼古拉兹实验及其揭示的结果。

为便于分析粗糙的影响,尼古拉兹将经过筛选的均匀砂粒,紧密地贴在管壁表面,做成人工粗糙。由上分析得出,雷诺数和水相对粗糙是沿程摩阻系数的两个影响因素。即入=

λf(Re,Ks/d).根据λ的变化特征,尼古拉兹实验曲线分为五个阻力区,(1)I区是层流表明λ与相应粗糙Ks/d无关,只是Re的函数,并符合=

λ64/Re。(2)∏区是层流向紊流过度,这个区的范围很窄,实用意义不大,表明λ与相对粗糙Ks/d无关。(3)Ⅲ区称为紊流光滑区,表明λ与相对粗糙Ks/d无关,只是Re的函数。(4)Ⅳ区为紊流过渡区,表明λ既与Re有关,又与Ks/d有关。(5)Ⅴ区称为紊流粗糙区,表明λR与相对粗糙Ks/d有关,与Re无关,又称为是阻力平方区。

4.总结明渠流水面曲线变化规律。

①紊流M,急流S,临界流C,平流H,逆流A。②N-N线,C-C线之上的为Ⅰ区,之间

的为3区,之下的为3区。③除C-1,C-3型水面曲线,当H趋向于h

时,水面曲线以N-N

线为渐近线,h趋向h

c

时,水面曲线与C-C线相互垂直,h趋向∞时,以水平线为渐进线④凡1,3区水面曲线均为拥水曲线,2区为降水曲线,⑤C-1,C-3型水面曲线近似为水平线。5,总结缓流和急流的判别方法。

①临界流速V

c 是缓流V>V

c

是急流

②h>h

c 是缓流,反之是急流。③i

c

是缓流,反之是急流。

④f

r

<1是缓流,反之是急流

6,相似理论包括哪些具体含义?

流体力学相似扩展为以下四方面内容:①几何相似是指两个流动场的几何形状相似,即相应的线段长度成比例,夹角相等,几何相似是两流动相似的基础和前提。②运动相似是指两个流动相应点速度方向相同,大小成比例,是两流动相似的表现。③动力相似是指两个流动相应点处质点受同名力作用,力的方向相同,大小成比例,是两流动相似的保障。④边界条件相似指两个流动相应边界性质相同,是保证流动相似的充分条件。

1.按堰壁厚度薄壁堰:(宽顶堰(实用断面堰)。

2.静水压强两大特点:①作用于同一点的各方向静水压强相等

②静水压强的方向和作用面的内法线方向相同

3.临界水深是指:断面比能为最小时的水深

4.给定边坡系数:b:h=2(2

m

1 -m )

5.若红细管输水管中:4.28*104,-4.28*104,-4.37

6.水流经便经管:2;2:1

CFD—计算流体动力学软件介绍

CFD 流体动力学软件介绍 CFD—计算流体动力学,因历史原因,国一直称之为计算流体力学。其结构为: 提出问题—流动性质(流、外流;层流、湍流;单相流、多相流;可压、不可压等等),流体属性(牛顿流体:液体、单组分气体、多组分气体、化学反应气体;非牛顿流体) 分析问题—建模—N-S方程(连续性假设),Boltzmann方程(稀薄气体流动),各类本构方程与封闭模型。 解决问题—差分格式的构造/选择,程序的具体编写/软件的选用,后处理的完成。 成果说明—形成文字,提交报告,赚取应得的回报。 CFD实现过程: 1.建模——物理空间到计算空间的映射。 主要软件: 二维: AutoCAD: 大家不要小看它,非常有用。一般的网格生成软件建模都是它这个思路,很少有参数化建模的。相比之下AutoCAD的优点在于精度高,草图处理灵活。可以这样说,任何一个网格生成软件自带的建模工具都是非参数化的,而对于非参数化建模来说,AutoCAD应该说是最好的,毕竟它发展了很多很多年! 三维: CATIA:航空航天界CAD的老大,法国人的东西,NB,实体建模厉害,曲面建模独步武林。本身可以生成有限元网格,前几天又发布了支持ICEM-CFD的插件ICEM-CFD CAA V5。有了它和ICEM-CFD,可以做任何建模与网格划分! UG:总觉得EDS脑袋进水了,收了I-deas这么久了,也才发布个几百M的UG NX 2.0,还被大家争论来争论去说它如何的不好用!其实,软件本身不错,大公司用得也多,可是就这么打市场,早晚是走下坡路。按CAD建模的功能来说它排不上第一,也不能屈居第二,尤其是加上了I-DEAS更是如虎添翼。现

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

流体力学习题解答

流体力学习题解答一、填 空 题 1.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。 2.在现实生活中可视为牛顿流体的有水 和空气 等。 3.流体静压力和流体静压强都是压力的一种量度。它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。 4.均匀流过流断面上压强分布服从于水静力学规律。 5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。 6.空气在温度为290K ,压强为760mmHg 时的密度和容重分别为 1.2a ρ= kg/m 3和11.77a γ=N/m 3。 7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。 8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示 9.1工程大气压等于98.07千帕,等于10m 水柱高,等于735.6毫米汞柱高。 10.静止流体任一边界上压强的变化,将等值地传到其他各点(只要静止不被破坏),这就是水静压强等值传递的帕斯卡定律。 11.流体静压强的方向必然是沿着作用面的内法线方向。 12.液体静压强分布规律只适用于静止、同种、连续液体。= 13.静止非均质流体的水平面是等压面,等密面和等温面。 14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。 15.在微压计测量气体压强时,其倾角为?=30α,测得20l =cm 则h=10cm 。 16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。 17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。 19.静压、动压和位压之和以z p 表示,称为总压。 20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。 21.由紊流转变为层流的临界流速k v 小于 由层流转变为紊流的临界流速k v ',其

流体力学基本公式

1流体中稳定流动和均匀流动的区别 (1)①根据当地加速度是否为0,即流体运动要素是否随时间变化,流体分为 稳定流动和不稳定流动。 ②根据迁移加速度是否为0,即流体运动要素是否随空间参数变化,流体 分为均匀流和非均匀流。(非均匀流又分为缓变流和急变流) (2)稳定流动是流场中流体质点通过空间点时所有的运动要素都不随时间改变 的流动。 (3)均匀流动是指流场中同一直线上的各流体质点的运动要素沿程不变(不随 空间参数变化)的流动。 (4)稳定流的流线可以为曲线。均匀流的流线不能为曲线,只能是一元流动。 2迹线方程最后是写成多个还是整合成一个? 答:如果迹线方程可以合并为一个,尽量合并为一个,并且尽量消掉参数t 。如果不能合并,就不用合并。理论上说都是可以的,但是从考试的答案来说,基本上都是合并的。 流体力学基本公式 1.牛顿内摩擦定律 (1)表达式: dy du μτ±=。 (2)内摩擦定律与三个因素相关,粘性切应力与流体粘度和速度梯度有关,与 压力的大小关系不大。 (3)适用条件:牛顿流体的层流运动。 2.欧拉平衡微分方程 (1)01=??-x p X ρ,01=??-y p Y ρ,01=??-z p Z ρ (2)适用于绝对静止状态和相对静止状态,可压缩流体和不可压缩流体。 3.静力学基本方程式 (1) g p z g p z ρρ2 211+=+ (2)适用条件:重力作用下、静止的、连通的、均质流体。 (3)几何意义:静止流体中,各点的测压管水头为常数。 (4)物理意义:静止流体中,各点的总比能为常数。 4.连续性方程

(1)适用于系统的质量守恒定律在控制体上的应用。 (2)三种形式:一般形式,恒定流,不可压缩流。 ①一般形式:0)()()(=??+??+??+??z u y u x u t z y x ρρρρ ②恒定流:0)()()(=??+??+??z u y u x u z y x ρρρ ③不可压缩流体:0=??+??+??z u y u x u z y x 5.欧拉运动方程 (1) dt du z p Z dt du y p Y dt du x p X z y x =??-=??-=??-ρρρ1,1,1 (2)适用条件:所有理想流体。 6.理想流体的伯努利方程 (1)2211221222p u p u z z g g g g ρρ++=++ (2)适用条件:理想流体;不可压缩流体;质量力只有重力;沿稳定流的流线 或微小流束。 (3)几何意义:沿流线总水头为常数。 (4)物理意义:沿流线总比能为常数。 7.实际流体总流的伯努利方程 (1)221112221222w p v p v z z h g g g g ααρρ++=+++ (2)适用条件:实际流体稳定流;不可压缩流体;质量力只有重力;所取断面 为缓变流断面。 (3)动能修正系数α:总流有效断面上的实际动能与按平均流速算出的假想动 能的比值。1α>,由断面上的速度分布不均匀引起,不均匀性越大,α越大。 8.动量方程 (1)() 21=Q F v v ρ-∑

流体力学中的假设模型有哪些

1.流体力学中的假设模型有哪些,并说出具体内容。 (1).把流体当做是由密集质点构成的,内部无间隙的连续体来研究,就是连续介质假设。(2).实际的流体,无论液体或气体都是有黏性的。无黏性流体是指无黏性即u=0的流体.无黏性流体是不存在的,它只是一种对物性简化的力学模型。(3),实际流体都是课压缩的,然而有许多流动流体密度的变化很小,可以忽略,由此引出不可压缩流体概念,即= ρ常数。不可压缩流体是又一理想化的力学模型。 2.描述雷诺实验及其揭示的结果 雷诺实验的装置由水箱引出玻璃管,末端装有阀门,在水箱上部的容器中装有密度和水接近的颜色的水,打开小水箱阀门,颜色水就可经针管注入玻璃管中。①,稍许开启玻璃管阀门,可见玻璃管内的颜色水成一条界线分明的汗流,各层质点互不掺混,这种流动状态称为层流。 ②逐渐开大阀门,颜色水汗流出现抖动,使玻璃管的整个断面都带颜色,表明此时质点的运动轨迹不规则,各层质点相互掺混,这种流动状态称为紊流或湍流。 3.简述尼古拉兹实验及其揭示的结果。 为便于分析粗糙的影响,尼古拉兹将经过筛选的均匀砂粒,紧密地贴在管壁表面,做成人工粗糙。由上分析得出,雷诺数和水相对粗糙是沿程摩阻系数的两个影响因素。即入= λf(Re,Ks/d).根据λ的变化特征,尼古拉兹实验曲线分为五个阻力区,(1)I区是层流表明λ与相应粗糙Ks/d无关,只是Re的函数,并符合= λ64/Re。(2)∏区是层流向紊流过度,这个区的范围很窄,实用意义不大,表明λ与相对粗糙Ks/d无关。(3)Ⅲ区称为紊流光滑区,表明λ与相对粗糙Ks/d无关,只是Re的函数。(4)Ⅳ区为紊流过渡区,表明λ既与Re有关,又与Ks/d有关。(5)Ⅴ区称为紊流粗糙区,表明λR与相对粗糙Ks/d有关,与Re无关,又称为是阻力平方区。 4.总结明渠流水面曲线变化规律。 ①紊流M,急流S,临界流C,平流H,逆流A。②N-N线,C-C线之上的为Ⅰ区,之间 的为3区,之下的为3区。③除C-1,C-3型水面曲线,当H趋向于h 时,水面曲线以N-N 线为渐近线,h趋向h c 时,水面曲线与C-C线相互垂直,h趋向∞时,以水平线为渐进线④凡1,3区水面曲线均为拥水曲线,2区为降水曲线,⑤C-1,C-3型水面曲线近似为水平线。5,总结缓流和急流的判别方法。 ①临界流速VV c 是急流 ②h>h c 是缓流,反之是急流。③i

第1章流体力学的基本概念

第1章 流体力学的基本概念 流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。 连续介质与流体物理量 连续介质 流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。例如,常温下每立方厘米水中约含有3×1022 个水分子,相邻分子间距离约为3×10-8 厘米。因而,从微观结构上说,流体是有空隙的、不连续的介质。 但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。 所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。 流体物理量 根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即 V M V V ??=?→?'lim ρ (1-1) 式中,M ?表示体积V ?中所含流体的质量。 按数学的定义,空间一点的流体密度为 V M V ??=→?0 lim ρ (1-2)

流体力学三大方程的推导(优选.)

微分形式的连续性方程

连续方程是流体力学的基本方程之一,流体运动的连续方程,反映流体运动和流体质量分布的关系,它是在质量守恒定律在流体力学中的应用。 重点讨论不同表现形式的流体连续方程。

用一个微六面体元控制体建立微分形式的连续性方程。 设在流场中取一固定不动的微平行六面体(控制体),在直角坐标系oxyz 中,六面体的边长取为dx ,dy ,dz 。 先看x 轴方向的流动,流体从ABCD 面流入六面体,从EFGH 面流出。 在x 轴方向流出与流入质量之差 ()()[]x x x x u u u dx dydzdt u dydzdt dxdydzdt x x ρρρρ??+-=??

用同样的方法,可得在y 轴方向和z 轴方向的流出与流入 质量之差分别为 ()y u dxdydzdt y ρ??() z u dxdydzdt z ρ??这样,在dt 时间内通过六面体的全部六个面净流出的质量为: ()()()[]y x z u u u dxdydzdt x x x ρρρ???++???

在dt 的时间内,六面体内的质量减少了 , 根据质量守恒定律,净流出六面体的质量必等于六面体内所减少的质量 ()dxdydzdt t ρ?-?()()()[]y x z u u u dxdydzdt dxdydzdt x y z t ρρρρ ????++=-????()()()0y x z u u u x y z t ρρρρ ????+++=????这就是直角坐标系中流体运动的微分形式的连续性方程。 这就是直角坐标系中流体运动的微分形式的连续性方程。 代表单位时间内,单位体积的质量变化 代表单位时间内,单位体积内质量的净流出

工程流体力学

工程流体力学 工程流体力学是一门研究流体(液体和气体)的力学运动规律及其应用的学科。 研究对象 工程流体力学主要研究在各种力的作用下,流体本身的静止状态和运动状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用和流动的规律。流体力学是力学的一个重要分支,而工程流体力学(应用流体力学)侧重在生产生活上的实际应用,它不追求数学上的严密性,而是趋向于解决工程中出现的实际问题。 实验研究 工程流体力学作为一门学科,在其历史发展过程中产生并不断完善了一些解决问题的方法,如试验研究、理论分析和数值计算。 实验研究包括现场观测和实验室模型两个方面。 对自然界固有的流动现象或实际工程中的流动现象,利用各种仪器进行系统观测,从而总结出立体运动的规律,并借以预测流动现象的演变。不过现场流动现象往往不能控制,发生条件几乎不易完全重复出现,影响到对流动现象的研究。又加上现场观测挥动用一些人力、物力、财力,因此人们建立实验室一是这些现象在可控制的时候出现,以便观察研究。 模型实验在流体力学中占有重要地位。这里所说的模型是指根据理论指导,是把研究对象的尺度改变(放大或缩小)以便能安排实验。有

些流动现象难于靠理论计算解决,有的则不可能做原型实验(成本太高或规模太大)。这时,根据模型实验所得的数据可以用像换算单位制那样的简单算法求出原型的数据。 理论分析 理论分析是根据流体运动的普遍规律如质量守恒、动量守恒、能量守恒等,利用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。理论分析的步骤大致如下: 建立“力学模型”,即针对实际流体的力学问题,分析其中的各种矛盾并抓住主要方面,对问题进行简化而建立反映问题本质的“力学模型”。流体力学中最常用的基本模型有:连续介质、牛顿流体、不可压缩流体、理想流体、平面流动等。 建立模型常用无限微元法和有限控制体法(平均值法)。

流体力学计算公式

C3.6.2 达西摩擦因子 为了确定λ与Re 的关系,人们作了大量实验和理论研究,下面介绍有代表性的结果。 1.尼古拉兹实验 尼古拉兹(J.Nikuradse,1932)分析了达西的圆管沿程阻力实验数据后,发现壁面粗糙度对λ的影响很大,决定用人工粗糙度方法实现对粗糙度的控制。他用当地黄砂砂粒经筛选后分类均匀粘贴在管内壁上,相对粗糙度ε/d 从1/30—1/1014分6种,测得λ与Re 的关系,得到尼古拉兹图(图C3.6.1)。 2. 常用计算公式 从尼古拉兹图中看到在不同Re 数和ε/d 值的区域,λ有不同的变化规律。 图C3.6.1

(1)层流区 由泊肃叶定律推导的沿程水头损失(C3.4.10)式可得 代入达西公式(C3.6.3)式,可得层流区λ的解析式 上式表明层流区λ与管壁粗糙度无关,写成常用对数形式为 上式在双对数坐标系中是一条直线,与尼古拉兹图吻合。 (2)过渡区 该区是层流向湍流的转捩区(2000ε)时(图C3.6.2)摩擦因子同壁面粗糙度无关,称为湍流光滑管区。 布拉修斯(P.Blasius,1911)运用1/ 7次指数律速度分布式,结合实验数据导出经验公式: 上式称为布拉修斯公式,适用范围为4000

流体力学WEB(网络版)虚拟仿真实验CAI软件——浙江大学土建类虚拟仿真实验中心

以下介绍杭州源流科技毛根海教授团队的软件系列产品 名称:基于WEB的(网络版)流体力学实验虚拟仿真实验平台(非单机版)主要配置及技术参数: 1、配套WEB网络版实验虚拟仿真CAI软件,基于互联网+,电脑、IPAD、手机都可通过其上的WEB浏览器访问做实验,不需下载APP,网上实验真正做到了24小时全开放,方便学生实验虚实结合,随时随地进行实验预习和复习。 2、每项实验CAI 均包含仪器真实仿真,真实动态操作界面、实验原理、后台数据采集、真实成果分析、操作指南和问题解答。 3、可供学生利用网络做各项实验的真实过程操作、真实数据采集和成果分析,还设有实验提示、错误纠正等功能,以辅导学生按正确途径深入有序地进行实验。 4、所附的实验原理和问题解答除用文本形式外,均以多媒体动画和录像的形式给出,形象生动、简单易懂,可供学生实验预习与答疑,帮助学生成功地完成实验。 5、实验数值仿真可靠,操作过程要求符合实际。 6、实验分析以表格形式显示,符合实验报告要求,具有图形分析自动处理

功能。 7、WEB网络版实验虚拟仿真CAI软件系统,具有通过IE浏览器上网操作、使用用户名、密码登录界面的用户管理功能。 源流公司与浙江大学土建类虚拟仿真实验中心联合研发的最新流体力学实验 1、CAI 虚拟仿真WEB网络版(非单机版)。 2、浙江大学流体力学虚拟仿真实验CAI网上实验。 3、可随时随地上网用户名、密码登录即可操作虚拟实验。 以下是杭州源流科技毛根海教授团队研发的一系列实验仪器的简单介绍。 名称:自循环水击综合实验仪(水击综合实验仪) 型号:MGH-ZS 1-3-3 主要功能:水击的产生和传播;水击压强的定量观测;水击的利用——水击扬水原理;水击危害的消除——调压井工作原理. 主要配置及技术参数:有机玻璃精制的自循环供水器,低噪环保型水泵,恒

流体力学公式总结(完整资料).doc

【最新整理,下载后即可编辑】 工程流体力学公式总结 第二章 流体的主要物理性质 ? 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m 5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水 6.热膨胀性 7.压缩性. 体积压缩率κ 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律) 11..动力粘度μ: T V V ??=1αp V V ??-=1κV P V K ??- =κ1n A F d d υμ=dn d v μτ±=n v d /d τμ=

12.运动粘度ν :ν = μ/ρ 13.恩氏粘度°E :°E = t 1 / t 2 第三章 流体静力学 ? 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1.常见的质量力: 重力ΔW = Δmg 、 直线运动惯性力ΔFI = Δm ·a 离心惯性力ΔFR = Δm ·rω2 . 2.质量力为F 。:F = m ·am = m (f xi+f yj+f zk) am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g 式中负号表示重力加速度g 与坐标轴z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数。即: p = p (x ,y ,z ),由此得静压强的全微分为: 4.欧拉平衡微分方程式 z z p y y p x x p p d d d d ??????++=d d d d d d 0x p f x y z x y z x ??-=ρd d d d d d 0y p f x y z x y z y ??-=ρd d d d d d 0z p f x y z x y z z ??- =ρ

汽车外形设计的流体力学仿真依据.docx

大连民族学院毕业设计(论文)汽车外形设计的流体力学仿真依据 学院(系):物理与材料工程学院 专业:光电子技术与科学 学生姓名:王世泽 学号: 2011153221 指导教师:毕振华 评阅教师:赫然 完成日期: 2015年月日 民族学院

Hydrodynamics simulation based automotive exterior design Abstract The purpose of domestic and foreign large collection and read about the development process of automotive design, automotive design analyze advantages and difficulties, affect vehicle design and documentation of relevant information, to understand the performance and characteristics of automotive design methods of various techniques . This paper mainly through the familiar and simulation software COMSOL to simulate a different appearance of the car model, as much relevant data obtained under different designs for the main image and data analysis. Through a variety of different graphical appearance of the car model data comparison and contrast optimum model design, and analysis to do the report. To learn and master the physical simulation design software COMSOL. And application software COMSOL collected different modes simulation modeling and optimization, the final result of the data obtained after the simulation and optimization were discussed. Keywords: COMSOL; automotive design; simulation model

流体力学公式总结

工程流体力学公式总结 第二章流体得主要物理性质 ?流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。1.密度ρ= m/V 2.重度γ= G /V 3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g 4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m 5.流体得相对密度:d = γ流/γ水= ρ流/ρ水 6.热膨胀性 7.压缩性、体积压缩率κ 8.体积模量 9.流体层接触面上得内摩擦力 10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律) 11.、动力粘度μ: 12.运动粘度ν:ν=μ/ρ 13.恩氏粘度°E:°E = t 1 /t 2 第三章流体静力学 ?重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。 1.常见得质量力: 重力ΔW = Δmg、 直线运动惯性力ΔFI =Δm·a 离心惯性力ΔFR =Δm·rω2、 2.质量力为F。:F= m·am= m(fxi+f yj+fzk) am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度 实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为 fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反 3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。即:p=p(x,y,z),由此得静压强得全微分为: 4.欧拉平衡微分方程式 单位质量流体得力平衡方程为:

CFD 基 础(流体力学)解析

第1章 CFD 基 础 计算流体动力学(computational fluid dynamics ,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、 热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等 领域。 本章介绍CFD 一些重要的基础知识,帮助读者熟悉CFD 的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。 1.1 流体力学的基本概念 1.1.1 流体的连续介质模型 流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微 元体。 连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。 连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u (t ,x ,y ,z )。 1.1.2 流体的性质 1. 惯性 惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。惯性与质量有关,质量越大,惯性就越大。单位体积流体的质量称为密度(density),以r 表示,单位为kg/m 3。对于均质流体,设其体积为V ,质量为m ,则其密度为 m V ρ= (1-1) 对于非均质流体,密度随点而异。若取包含某点在内的体积V ?,其中质量m ?,则该点密度需要用极限方式表示,即 0lim V m V ρ?→?=? (1-2) 2. 压缩性 作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。压缩性(compressibility)可用体积压缩率k 来量度

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

CFD基础(流体力学)

第1章CFD 基础 计算流体动力学(computational fluid dynamics,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等领域。 本章介绍CFD一些重要的基础知识,帮助读者熟悉CFD的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。 1.1 流体力学的基本概念 1.1.1 流体的连续介质模型 流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。 连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u(t,x,y,z)。 1.1.2 流体的性质 1. 惯性 惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。惯性与质量有关,质量越大,惯性就越大。单位体积流体的质量称为密度(density),以r表示,单位为kg/m3。对于均质流体,设其体积为V,质量为m,则其密度为 m ρ=(1-1) V 对于非均质流体,密度随点而异。若取包含某点在内的体积V?,其中质量m ?,则该

点密度需要用极限方式表示,即 0lim V m V ρ?→?=? (1-2) 2. 压缩性 作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。压缩性(compressibility)可用体积压缩率k 来量度 d /d /d d V V k p p ρρ =-= (1-3) 式中:p 为外部压强。 在研究流体流动过程中,若考虑到流体的压缩性,则称为可压缩流动,相应地称流体为可压缩流体,例如高速流动的气体。若不考虑流体的压缩性,则称为不可压缩流动,相应地称流体为不可压缩流体,如水、油等。 3. 粘性 粘性(viscosity)指在运动的状态下,流体所产生的抵抗剪切变形的性质。粘性大小由粘度来量度。流体的粘度是由流动流体的内聚力和分子的动量交换所引起的。粘度有动力粘度μ和运动粘度ν之分。动力粘度由牛顿内摩擦定律导出: d d u y τμ= (1-4) 式中:τ为切应力,Pa ;μ为动力粘度,Pa ?s ;d /d u y 为流体的剪切变形速率。 运动粘度与动力粘度的关系为 μ νρ = (1-5) 式中:ν为运动粘度,m 2/s 。 在研究流体流动过程中,考虑流体的粘性时,称为粘性流动,相应的流体称为粘性流体;当不考虑流体的粘性时,称为理想流体的流动,相应的流体称为理想流体。 根据流体是否满足牛顿内摩擦定律,将流体分为牛顿流体和非牛顿流体。牛顿流体严格满足牛顿内摩擦定律且μ保持为常数。非牛顿流体的切应力与速度梯度不成正比,一般又分为塑性流体、假塑性流体、胀塑性流体3种。 塑性流体,如牙膏等,它们有一个保持不产生剪切变形的初始应力0τ,只有克服了这个初始应力后,其切应力才与速度梯度成正比,即 0d d u y ττμ=+ (1-6) 假塑性流体,如泥浆等,其切应力与速度梯度的关系是

流体力学公式总结

工程流体力学公式总结 第二章 流体的主要物理性质 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m 5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水 6.热膨胀性 7.压缩性. 体积压缩率κ 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律) 11..动力粘度μ: 12.运动粘度ν :ν = μ/ρ 13.恩氏粘度°E :°E = t 1 / t 2 第三章 流体静力学 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1.常见的质量力: 重力ΔW = Δmg 、 直线运动惯性力ΔFI = Δm·a 离心惯性力ΔFR = Δm·r ω2 . T V V ??=1αp V V ??-=1κV P V K ??-=κ1n A F d d υμ=dn d v μτ±=n v d /d τμ=

2.质量力为F 。:F = m ·am = m (f xi+f yj+f zk) am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g 式中负号表示重力加速度g 与坐标轴z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数。即:p = p (x ,y ,z ),由此得静压强的全微分为: 4.欧拉平衡微分方程式 单位质量流体的力平衡方程为: 5.压强差公式(欧拉平衡微分方程式综合形式) 6.质量力的势函数 7.重力场中平衡流体的质量力势函数 z z p y y p x x p p d d d d ??????++=d d d d d d 0x p f x y z x y z x ??-=ρd d d d d d 0y p f x y z x y z y ??-=ρd d d d d d 0z p f x y z x y z z ??-=ρ0 1=??-x p f x ρ10y p f y ??-=ρ01=??-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (??+??+??=++ρ) d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dU ρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ??????=++++=-

2012流体力学思考题同济大学

流体力学思考题 第一章 流体及其主要物理性质 1、什么是连续介质?在流体力学中为什么也出现连续介质这一理论模型? 2、什么是流体质点或流体微团? 有人说—个球形体积的气体,如果其直径小 于cm 01.0就可以认为它是一个流体质点,如果直径大于cm 100则不可能把它看作是流体质点。 这种说法正确吗? 为什么? 3、什么是连续性假设? 4、什么是流体的压缩性?一般可用什么参数来描述它。 5、气体在什么情况下可视为不可压缩流体? 6、体积弹性模量与温度和压强有何关系? 7、一封闭容器盛满流体,流体随容器一起运动(即相对于容器无运动)请问这时流体内有没有切应力? 8、什么是粘性?流体的粘性与流体的宏观运动是否有关?静止流体是否有粘 性? 静止流体内部是否有粘性应力? 9、阐明动力粘性系数的定义和量钢。它和易流性概念有何关系? 10、流体粘性切应力与固体内的切应力有何区别? 11、何谓牛顿流体? 与 dy dv x 成线性关系的流体是否一定是牛顿流体?为什么? 12、液体粘度与气体的粘度,随温度变化为何不同? 13、动力粘度的单位与运动粘度单位有何不同? 第二章 流体静力学基础 1、流体中任一点的压强各向相等的结论,适用所有平衡流体及流动的非粘性 流体,对吗?为什么? 2、请阐述流体静力学基本方程的物理意义。 3、何谓等压面,在什么条件下等压面是水平面?

4、平衡微分方程适用于相对静止的流体吗?为什么? 5、h p γ=适用条件有何限制? 6、当静止液体自由液面压强00≠p ,其压强分布是否仍符合h p γ=?为什么? 7、能够求解重力场中静止流体内的压强分布。在重力作用下平衡流体中,压 强分布规律是什么样的?怎样去确定一点的压强大小?怎样确定等压面方程? 8、压强的计量单位有那些?如何测量压强?试举例说明测量压强的方法。 能够求解管道中不同位置的压强大小 9、能求解流体相对平衡中的压强分布和等压面 10、能求解静止流体作用于平面壁上的合力 11、能求解静止流体作用于曲面壁上的合力 12、平面压心是位于潜没平面形心?或压强分布图的重心?或合力作用线上的 任一点? 13、水下一圆平面,而积为A ,形心水深0h 。当该平面绕形心旋转任意角度, 所受静压力(包括大小、方向、作用点)改变否?为什么? 第三章 流体运动学基础 1. 研究流体流动的方法有哪几种? 2. 欧拉法与拉格朗日法有何不同?水文站采用定点测速研究流动用的是那种 方法? 3. 用拉格朗尔方法和欧拉方法表达的速度值分别为和 ,试说明两种表达式的物理意义 4. 流线、流管、流束和流量是如何定义的? 5. 流线和迹线有何区别?恒定流的流线期与非恒定流流线有何不同? 6. 如何确定流线方程、迹线方程,两者能否互相转换,如何转换? 7. 定常流动中流体质点没有加速度,这种说法对吗? 8. 说明 和 的物理意义