高二数学基本不等式练习题
高二数学专项练习:基本不等式训练题

高二数学专项练习:基本不等式训练题为了帮助学生们更好地学习高中数学,查字典数学网精心为大家搜集整理了高二数学专项练习:基本不等式训练题,希望对大家的数学学习有所帮助!高二数学专项练习:基本不等式训练题1.若xy>0,则对xy+yx说法正确的是()A.有最大值-2 B.有最小值2C.无最大值和最小值D.无法确定答案:B2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是()A.400 B.100C.40 D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:244.已知f(x)=12x+4x.(1)当x>0时,求f(x)的最小值;(2)当x<0 时,求f(x)的最大值.解:(1)∵x>0,12x,4x>0.12x+4x212x?4x=83.当且仅当12x=4x,即x=3时取最小值83,当x>0时,f(x)的最小值为83.(2)∵x<0,-x>0.则-f(x)=12-x+(-4x)212-x??-4x?=83,当且仅当12-x=-4x时,即x=-3时取等号.当x<0时,f(x)的最大值为-83.一、选择题1.下列各式,能用基本不等式直接求得最值的是()A.x+12x B.x2-1+1x2-1C.2x+2-x D.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3 B.-3C.62 D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3.3.已知m、nR,mn=100,则m2+n2的最小值是() A.200 B.100C.50 D.20解析:选A.m2+n22mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b(0,+),ba+ab2ba?ab=2;②∵x,y(0,+),lgx+lgy2lgx?lgy;③∵aR,a0,4a+a 24a?a=4;④∵x,yR,,xy<0,xy+yx=-[(-xy)+(-yx)]-2?-xy??-yx?=-2.其中正确的推导过程为()A.①② B.②③C.③④ D.①④解析:选D.从基本不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合基本不等式的条件,故①的推导过程正确;②虽然x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;③∵aR,不符合基本不等式的条件,4a+a24a?a=4是错误的;④由xy<0得xy,yx均为负数,但在推导过程中将全体xy +yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a>0,b>0,则1a+1b+2ab的最小值是()A.2 B.22C.4 D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab =1时,等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64 B.最大值164C.最小值64 D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x?2y=8xy,当且仅当8x=2y时等号成立.xy64.二、填空题7.函数y=x+1x+1(x0)的最小值为________.答案:18.若x>0,y>0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y2x?4y=4xy,xy116.答案:大1169.(2019年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.解析:∵x>0,y>0且1=x3+y42xy12,xy3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x>-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x>1)的最值.解:(1)∵x>-1,x+1>0.y=x+4x+1+6=x+1+4x+1+52 ?x+1??4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x>1,x-1>0.(x-1)+9x-1+22?x-1??9x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,y有最小值8.11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)?(1b -1)?(1c-1)8.证明:∵a,b,c(0,+),a+b+c=1,1a-1=1-aa=b+ca=ba+ca2bca,同理1b-12acb,1c-12abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400(2x+2200x)+100200x+60200=800(x+225x)+120191600x?225x+12019=36000(元)当且仅当x=225x(x>0),“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
高二数学基本不等式试题

高二数学基本不等式试题1.已知则mn的最小值是【答案】【解析】。
【考点】本题主要考查均值定理的应用。
点评:应用均值定理,应注意“一正、二定、三相等”。
常见错误是忽视等号成立的条件。
2.已知正数满足,求的最小值有如下解法:解:∵且.∴∴.判断以上解法是否正确?说明理由;若不正确,请给出正确解法.【答案】错误.见解析。
【解析】∵①等号当且仅当时成立,又∵②等号当且仅当时成立,而①②的等号同时成立是不可能的.正确解法:∵且.∴,当且仅当,即,又,∴这时∴.【考点】本题主要考查均值定理的应用。
点评:应用均值定理,应注意“一正、二定、三相等”。
常见错误是忽视等号成立的条件。
3.当时,不等式恒成立,则的取值范围是()A.B.C.D.【答案】D【解析】由时,恒成立得对任意恒成立,即当时,取得最大值,的取值范围是,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).4.当时,不等式恒成立,则的取值范围是()A.B.C.D.【答案】D【解析】由时,恒成立得对任意恒成立,即当时,取得最大值,的取值范围是,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).5.当时,函数的最小值为()A.B.C.D.【答案】C【解析】,,当且仅当时取等号,函数的最小值为4,选C.6.函数的最小值为__________.【答案】5【解析】,,当且仅当时取等号,故答案为.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).7.设a>0,b>0,若是3a与3b的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】由题意,,得,则,故选B。
基本不等式及其应用-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版

2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第04练基本不等式及其应用(精练)1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在生活实际问题中的应用.一、单选题1.(2022·全国·高考真题)已知910,1011,89m m m a b ==-=-,则()A .0a b >>B .0a b >>C .0b a >>D .0b a>>二、多选题2.(2022·全国·高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥三、填空题3.(2023·天津·高考真题)在ABC 中,160BC A =∠= ,,11,22AD AB CE CD == ,记,AB a AC b ==,用,a b表示AE =;若13BF BC = ,则AE AF ⋅ 的最大值为.四、解答题4.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.【A 级基础巩固练】一、单选题1.(23-24高二下·福建三明·阶段练习)若0x >,则22y x x=+的最小值是()A .B C .4D .22.(2024高二下·湖南株洲·学业考试)已知04x <<)A .12B .1C D .33.(23-24高一下·贵州贵阳·阶段练习)已知02x <<,则()32x x -的最大值是()A .3-B .3C .1D .6【答案】B【分析】利用基本不等式,直接计算即可.取得等号,满足题意4.(23-24高一下·河南周口·阶段练习)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为()A .4B .6C .8D .165.(2023·湖南岳阳·模拟预测)若0,0a b >>且1a mb +=,若ab 的最大值为8,则正常数m =()A .1B .2C .3D .46.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为()A .1B .2C .4D .87.(23-24高一下·福建南平·期中)已知0a >,0b >,230a b +-=,则21a b++的最小值为()A .2B .1C .32D .348.(23-24高一下·湖南衡阳·阶段练习)已知向量()2,1a m m =+,(),12b n =,若向量a ,b 共线且0m >,则n 的最大值为()A .6B .4C .8D .39.(23-24高一下·浙江·期中)已知实数a ,b ,满足310ab +=(1b >),则31b a ++的取值范围是()A .()(),04,-∞⋃+∞B .()4,+∞C .(][),04,-∞+∞U D .[)4,+∞10.(2024·辽宁葫芦岛·一模)已知0a >,0b >,2a b +=,则()A .01a <≤B .01ab <≤C .222a b +>D .12b <<11.(2024·山东枣庄·一模)已知0,0a b >>,则“2a b +>”是“222a b +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.(23-24高一下·辽宁抚顺·阶段练习)已知,a b 均为正实数,240a b -+≤,则23a ba b++的最小值为()A .135B .145C .3D .513二、多选题13.(2024高三·全国·专题练习)已知x ≥1,则下列函数的最小值为2的有()A .22xy x =+B .2y =C .13y xx=-D .411y x x =-+14.(23-24高三上·云南楚雄·期末)已知正数a ,b 满足5a b ab +=,则()A .151a b+=B .a 与b 可能相等C 6≥D .a b +的最小值为6+【答案】BD15.(23-24高二下·浙江·期中)已知正数,a b 满足()()111a b --=,则下列选项正确的是()A .111a b+=B .25ab b+³C .4a b +≥D .228a b +≤三、填空题16.(23-24高一上·北京·期中)已知()8233y x x x =+>,则当x =时,y 取最小值为.17.(2024·上海徐汇·二模)若正数a b 、满足1a b+=,则2a b +的最小值为.18.(2024·河南商丘·模拟预测)若正数,a b 满足232a b a b =+,则a 的最小值是.19.(23-24高二下·云南·阶段练习)设0,0m n >>,若直线:22l mx y +=过曲线11x y a -=+(0a >,且1a ≠)的定点,则11m n+的最小值为.20.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.21.(2023·湖南岳阳·模拟预测)如图,某人沿围墙CD 修建一个直角梯形花坛ABCD ,设直角边AD x =米,2BC x =米,若12AD AB BC ++=米,问当x =米时,直角梯形花坛ABCD 的面积最大.22.(23-24高二下·湖南长沙·阶段练习)已知02a <<,则2a a+-的最小值为.四、解答题23.(23-24高二下·全国·期中)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用32年的隔热层,每厘米厚的隔热层建造成本为8万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位;cm )满足关系:()()161102C x x x =≤≤+,设()f x 为隔热层建造费用与32年的能源消耗费用之和.(1)求()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小,并求最小值.24.(23-24高一上·陕西渭南·阶段练习)已知0a >,0b >,0c >,求证:(1)6b c a c a ba b c+++++≥;(2)()()()2222226a b c b a c c a b abc +++++≥.25.(23-24高一上·浙江·期末)为了进一步增强市场竞争力,某公司计划在2024年利用新技术生产某款运动手表,经过市场调研,生产此款运动手表全年需投入固定成本100万,每生产x (单位:千只)手表,需另投入可变成本()R x 万元,且()228020,05064002015200,50x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.2万元,且全年生产的手机当年能全部销售完.(利润=销售额-固定成本-可变成本)(1)求2024年的利润()W x (单位:万元)关于年产量x (单位:千只)的函数关系式.(2)2024年的年产量为多少(单位:千只)时,企业所获利润最大?最大利润是多少?26.(23-24高一上·黑龙江哈尔滨·阶段练习)完成下列不等式的证明:(1)对任意的正实数a ,b ,c,证明:a b c ++(2)设a ,b ,c 为正实数,且1a b c ++=,证明:13ab ac bc ++≤.【B 级能力提升练】一、单选题1.(23-24高一下·辽宁葫芦岛·开学考试)已知0,0x y >>,且41x y +=,则2y xxy+的最小值为()A .5B .C .4D .2.(2023·河南信阳·模拟预测)若51x -<<-,则函数()22f x x ++=+有()A .最小值1B .最大值1C .最小值1-D .最大值1-所以函数()f x 有最大值1-.故选:D.3.(23-24高三下·浙江·阶段练习)已知实数x ,y 满足3x >,且2312xy x y +-=,则x y +的最小值为()A .1+B .8C .D .1+4.(2024·辽宁·一模)已知20m n >>,则2m mm n n+-的最小值为()A .3+B .3-C .2+D .25.(2024·全国·模拟预测)已知,则下列不等式中不成立...的是()A .01ab <<B .122a b ->C >D .114a b+>【答案】C【分析】对于AB ,利用对数函数的性质即可判断;对于CD ,利用对数的运算得到1a b +=,结合基本不等式即可判断.【详解】因为lg 2,lg5a b ==,所以lg 2lg 5lg101a b +=+==,6.(2024·辽宁大连·一模)若()()ln 0,01f x m n n x+=>>--奇函数,则41m n ++的最小值为().A .65B .95C .4D .57.(23-24高一下·贵州贵阳·阶段练习)故宫博物院收藏着一幅《梧桐双兔图》.该绢本设色画纵约176cm ,横约95cm ,挂在墙上最低点B 离地面194cm ,小兰身高160cm (头顶距眼睛的距离为10cm).为使观测视角θ最大,小兰离墙距离S 应为()A.B .94cm C.D .76cm8.(2024·全国·模拟预测)已知0x >,0y >且1x y +=,则222211x y x y +++的最小值为()A .15B .25C .35D .459.(23-24高二下·江苏苏州·阶段练习)为提高市民的健康水平,拟在半径为200米的半圆形区域内修建一个健身广场,该健身广场(如图所示的阴影部分)分休闲健身和儿童活动两个功能区,图中ABCD 区域是休闲健身区,以CD 为底边的等腰三角形区域PCD 是儿童活动区,P ,C ,D 三点在圆弧上,AB 中点恰好在圆心O ,则当健身广场的面积最大时,OB 的长度为()A .100米B .150米C.米D.由于2AD BC OC ==-都是上底为21R t -,下底为所以,健身广场的面积S 从而,健身广场的面积最大的时候,恰好就是()22111tt t t t -+=-+=()223323223t t t +-+-≤=二、多选题10.(2023·浙江绍兴·二模)已知0a >,0b >,a b ab +=,则()A .1a >且1b >B .4ab ≥C .49a b +≤D .11b ab+>11.(2024·全国·模拟预测)已知0a >,0b >且2a b+=,则下列说法正确的是()A .ab 有最小值4B .a b +有最小值92C .2ab a +有最小值D的最小值为12.(23-24高二下·江西宜春·期中)已知0,1a b a b >>+=.则下列结论正确的有()A .a 32B .22122a b ++的最小值为C .1422a b a b+的最小值为3D .sin 1a b +<三、填空题13.(23-24高一下·河北保定·开学考试)若正数,m n 满足2212516m n +=,则mn 的最大值为.14.(23-24高一上·江苏扬州·期末)若1x >,1y >,10xy =,则lg lg x y 的最大值为.15.(2024·全国·模拟预测)已知1x >,0y >,且2x y +=,则11y x +-的最小值是.17.(2024·上海普陀·二模)若实数a ,b 满足20a b -≥,则24ab+的最小值为.18.(23-24高一上·浙江·期末)已知22321(,R)x xy y x y -+=∈,则222x y +的最小值为.四、解答题19.(2024·全国·二模)已知实数0,0a b >>,满足a b +=(1)求证:2224a b +≥;(2)求()()2211ab ab++的最小值.【答案】(1)证明见解析(2)1220.(23-24高一上·湖北武汉·阶段练习)已知0a >,0b >,且2a b +=.(1)求证:11413a b +≥+;(2)求证:42aab b+≥.21.(23-24高一下·甘肃白银·期中)养鱼是现在非常热门的养殖项目,为了提高养殖效益,养鱼户们会在市场上购买优质的鱼苗,分种类、分区域进行集中养殖.如图,某养鱼户承包了一个边长为100米的菱形鱼塘(记为菱形ABCD )进行鱼类养殖,为了方便计算,将该鱼塘的所有区域的深度统一视为2米.某养鱼户计划购买草鱼苗、鲤鱼苗和鲫鱼苗这三种鱼苗进行分区域养殖,用不锈钢网将该鱼塘隔离成ABD ,DEFB ,CEF 三块区域,图中,BD EF 是不锈钢网露出水面的分界网边,E 在鱼塘岸边DC 上(点E 与D ,C 均不重合),F 在鱼塘岸边BC .上(点F 与B ,C 均不重合).其中△ECF 的面积与四边形DEFB 的面积相等,△DAB 为等边三角形.(1)若测得EC 的长为80米,求CF 的长.(2)已知不锈钢网每平方米的价格是20元,为了节约成本,试问点E ,F 应如何设置,才能使得购买不锈钢1.414=)22.(2023·贵州黔西·一模)设a,b,c均为正数,且1a b c++=,证明:(1)2221 3a b c++≥;(2)333a cb ac b abc++≥.23.(23-24高一上·山东·阶段练习)已知0a >,0b >.(1)若4a b -=,证明:471a b +≥+.(2)若8a b ab ++=,求a b +的最小值.(3)若229327a b ab ++=,求3a b +的最大值.【C 级拓广探索练】一、单选题1.(22-23高一上·江苏徐州·阶段练习)设正实数,,x y z 满足22-3+4-=0x xy y z ,则当xyz取得最大值时,212+-x y z 的最大值为()A .9B .1C .94D .32.(23-24高三上·浙江绍兴·期末)已知x 为正实数,y 为非负实数,且22x y +=,则1x y +++的最小值为()A .34B .94C .32D .923.(2024·全国·模拟预测)设{}max ,,x y z 为,,x y z 中最大的数.已知正实数,a b ,记max 8,2M a b⎧=⎨⎩,则M 的最小值为()A .1B C .2D .44.(22-23高一上·河南·阶段练习)已知22321x xy y -+=(),R x y ∈,则22x y +的最小值为()A 6B 6C .6D .6二、多选题5.(23-24高一上·福建泉州·期末)已知0,0,21x y x y >>+=,则()A .42x y +的最小值为B .22log log x y +的最大值为3-C .y x xy --的最小值为1-D .22221x y x y +++的最小值为16正确;三、填空题6.(2023·山西·模拟预测)已知0,0a b >>,且122a b +=,则161211a b +--的最小值是.7.(23-24高三上·湖北荆州·阶段练习)已知实数,x y 满足22221x xy y -+=,则22x y -的最大值为.四、解答题8.(2023·全国·模拟预测)已知(),,0,x y z ∈+∞,且1x y z ++=.(1)1z>-;(2)求222544x y z xy yz xz +++++的最大值.,三式相加,可得:9.(23-24高一上·山东青岛·期末)某药品可用于治疗某种疾病,经检测知每注射t ml药品,从注射时间起血药浓度y(单位:ug/ml)与药品在体内时间x(单位:小时)的关系如下:162,06,89,618.2t xxyx t x⎧⎛⎫-≤≤⎪⎪-⎪⎝⎭=⎨⎛⎫⎪-<≤⎪⎪⎝⎭⎩当血药浓度不低于2ug/ml时才能起到有效治疗的作用,每次注射药品不超过2ml.(1)若注射1ml药品,求药品的有效治疗时间;(2)若多次注射,则某一时刻体内血药浓度为每次注射后相应时刻血药浓度之和.已知病人第一次注射1ml 药品,12小时之后又注射a ml药品,要使随后的6小时内药品能够持续有效消疗,求a的最小值.。
高二数学不等式的性质试题答案及解析

高二数学不等式的性质试题答案及解析1.根据条件:满足,且,有如下推理:(1)(2) (3) (4) 其中正确的是()A.(1)(2)B.(3) (4)C.(1) (3)D.(2) (4)【答案】B【解析】由,因为,所以,对于的值可正可负也可为0,对于(1)错误,因为,而,所以;对于(2)错误,因为,从而;对于(3)正确,因为,当时,,当时,由;对于(4)正确,因为;综上可知,选B.【考点】不等式的性质.2.设.则下列不等式一定成立的是( )A.B.C.D.【答案】D【解析】由得不到,故A错误.利用基本不等式得,故B错误;令a=-1,b=-1得,即,故C错误;,,故选D.【考点】不等式的基本性质;基本不等式。
3.若,则下列结论不正确的是()A.B.C.D.【答案】D【解析】由已知,则均正确,而故D不正确【考点】不等式的性质4.如果关于x的不等式和的解集分别为和,那么称这两个不等式为对偶不等式. 如果不等式与不等式为对偶不等式,且,则 .【答案】【解析】由题意得:不等式与为对偶不等式.,因此与同解,即与同解,所以【考点】不等式解集5.设,则下列不等式中一定成立的是A.B.C.D.【答案】A【解析】A.故A正确;B中,故B不正确,D中,故D不正确;C中当,故C不正确【考点】不等式的性质6.已知,则下列推证中正确的是()A.B.C.D.【答案】C【解析】A 当时不成立;B 当时不成立;D 当均为负值时,不成立.【考点】本题主要考查不等式的性质.7.已知,则下列说法正确的是 ( )A.若,则B.若,则C.若,则D.若,则【答案】A【解析】当时,B和D均不正确。
当时,若则。
故C不正确。
由不等式的性质可知A正确。
【考点】不等式的性质。
8.设,现有下列命题:①若,则;②若,则;③若,则;④若,则其中正确命题的序号为 .【答案】①,④【解析】因为,现有下列命题:①若即,又.所以成立,即①式成立;因为,令.所以.所以②式不成立;因为令则所以不成立.故③式不成立;因为所以又因为所以.故④式成立.【考点】1.不等式的性质.2.含绝对值的运算.3.含根式的运算.9.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是( )A.[-2,+)B.(-,-2)C.[-2,2]D.[0,+)【答案】A【解析】对一切实数x,恒成立.当时, 恒成立.当时,因为的最大值为-2, 故【考点】恒成立问题,及参数分离法.10.若,,,则A.B.C.D.【答案】A【解析】根据题意,由于>1,,<0,0<<1那么可知其大小关系为,故选A.【考点】对数函数与指数函数的值域点评:解决的关键是根据指数函数与对数函数性质来求解范围,比较大小,属于基础题。
高二数学不等式的性质试题

高二数学不等式的性质试题1.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sin x>sin y D.x3>y3【答案】D【解析】函数y=a x当0<a<1时单调递减,所以x>y;又因为函数y= x3 在R上单调递增,所以x3>y3也可以用特殊值法.【考点】函数的单调性.2.函数在恒为正,则实数的范围是.【答案】【解析】注意到,所以函数在恒为正显然不可能;或,故应填入:.【考点】不等式的恒成立.3.设,,,(e是自然对数的底数),则()A.B.C.D.【答案】D【解析】由于,所以;又因为,从而有,故选D.【考点】比较大小.4.已知满足且,则下列选项中不一定能成立的是( )A.B.C.D.【答案】C【解析】由已知满足且得到:,所以A、B、D一定成立,故选C.【考点】不等式的基本性质.5.已知且,则下列不等式中成立的是( )A.B.C.D.【答案】D【解析】A.当时不成立,同理B.、 C.也不成立,由指数函数的单调性, D.成立【考点】不等式,指数函数的单调性6.已知,则下列推证中正确的是()A.B.C.D.【答案】C【解析】A 当时不成立;B 当时不成立;D 当均为负值时,不成立.【考点】本题主要考查不等式的性质.7.已知,则下列不等关系正确的是()A.B.C.D.【答案】C【解析】A中当时不等式不成立,A错;B中当时,不等式不成立,B错;C中对于,因为在范围内是增函数,当时,不等式成立,所以C正确;D中要使不等式成立需,故选C.【考点】不等式的性质;指数函数与对数函数的单调性.8.如果, 那么()A.B.C.D.【答案】D【解析】利用不等式的性质:故选D【考点】不等式的性质。
9.下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则【答案】D【解析】选项A中忽略了当的情况,故A错;选项B的结论中不等号方向没改变,故B错;选项C中忽略了的情况,故C错;所以正确答案是D.【考点】不等式的基本性质.10.下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则【答案】D【解析】选项A中忽略了当的情况,故A错;选项B的结论中不等号方向没改变,故B错;选项C中忽略了的情况,故C错;所以正确答案是D.【考点】不等式的基本性质.11.若不等式与同时成立,则必有( )A.B.C.D.【答案】C【解析】因为两个不等式同时成立,利用2个等价关系可以得到a与b的关系.又因为所以.故答案为C【考点】不等式的性质12.若a、b、c,则下列不等式成立的是()A.B.C.D.【答案】C【解析】因为,,不等式两边同时乘以或除以一个正数,不等号的方向不变,因此.A答案中或为0则不成立,B答案中要求,D答案中为0则不成立.【考点】不等式的性质.13.下列命题中的真命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】不等式基本性质中,与乘法有关的性质,不等式两边都要是非负数,才可能得出相应的结论,如果出现负数,结论不一定成立.如A中为负数,结论就可能不成立:,但;B中如,但,C中,但,故A、B、C都是错误的,排除A、B、C,只能选D.实际上D中条件不等式右边的是,,不等式两边均非负,可同时平方得.【考点】不等式的基本性质.14.已知,,则A.B.C.D.【答案】C【解析】因为,,,所以,,即,故选C。
高二数学不等式试题答案及解析

高二数学不等式试题答案及解析1.若关于x的不等式|x+2|+|x-1|<a的解集为,则实数a的取值范围为___________.【答案】(-∞,3)【解析】因为关于x的不等式|x+2|+|x-1|<a的解集为,那么说明a小于分段函数的最小值3,故可知实数a的取值范围为(-∞,3)2.解关于的不等式:【答案】当或时,不等式解集是:;当或时,原不等式解集是:;当时,原不等式解集是:【解析】本试题主要是考查了一元二次不等式的求解的综合运用。
由于二次方程有根,但是根的大小不定,因此要对于根的情况,对判别式进行分类讨论,然后得到不同情况下的解集。
3.不等式的解集为()A.B.C.D.【答案】A【解析】主要考查一元二次不等式解法及简单高次不等式解法。
解:即,其解集为,故选A。
4.已知集合,,则=()A.B.C.D.【答案】B【解析】主要考查集合的运算及一元二次不等式解法。
解:因为,所以==,故选B。
5.已知集合,,则集合=()A.B.C.D.【答案】C【解析】主要考查集合的运算及一元二次不等式解法。
解:因为,,所以=,故选C。
6.不等式的解集为()A.B.R C.D.【答案】A【解析】主要考查一元二次不等式解法。
解:因为判别式1-8<0,所以不等式的解集为,故选A。
7.若,是方程的两根,则的最小值是()A.B.18C.2D.不存在【答案】C【解析】主要考查一元二次方程根与系数的关系及一元二次不等式解法。
解:因为,是方程的两根,所以,且从而====,,所以时,取到最小值是2.故选C。
8.已知方程无正根,求实数的取值范围.【答案】m>-4【解析】主要考查一元二次不等式解法。
解:因为方程无正根,所以或,解得m>-4。
9.若,下列不等式恒成立的是()A.B.C.D.【答案】A【解析】主要考查不等关系与基本不等式。
解:取特殊值进行检验,如令a=0,可排除B,D;令a=-3可排除C,故选A。
10.若且,则下列四个数中最大的是()A.B.C.2ab D.a【答案】B【解析】主要考查不等关系与基本不等式。
高二数学不等式试题答案及解析
高二数学不等式试题答案及解析1.买4枝郁金香和5枝丁香的金额小于22元,而买6枝郁金香和3枝丁香的金额和大于24元,那么买2枝郁金香和买3枝丁香的金额比较,其结果是()A.前者贵B.后者贵C.一样D.不能确定【答案】A【解析】设郁金香x元/枝,丁香y元/枝,则,∴由不等式的可加(减)性,得x>3,y<2,∴2x>6,3y<6,故前者贵,选A。
【考点】本题主要考查不等式的概念、不等式的性质。
点评:解答此类题目,首先要审清题意,明确变量应受到的限制条件,建立变量的约束条件。
2.设x>0,则函数y=2--x的最大值为;此时x的值是。
【答案】-2,2【解析】因为+x≥4,所以y=2--x的最大值为-2,又+x≥2等号成立须=x,x>0,故x2,等号成立。
【考点】本题主要考查均值定理的应用。
点评:从题目的条件看,可有两种思路,一是利用函数知识,二是应用均值定理。
特别注意,特别注意,应用均值定理需满足“一正、二定、三相等”。
3.若x>1,则log+log的最小值为;此时x的值是。
【答案】2,2【解析】因为x>1,所以log>0,log>0.由均值定理log+log≥2,log=log,即x=2时等号成立。
【考点】本题主要考查均值定理的应用、对数函数的性质。
点评:从题目的条件看,可有两种思路,一是利用函数知识,二是应用均值定理。
特别注意,特别注意,应用均值定理需满足“一正、二定、三相等”。
4.完成一项装修工程,请木工需要付工资每人50元,请瓦工需要付工资每人40元,现有工人工资2000元,设木工x人,瓦工y人,则所请工人的约束条件是()A.5x+4y<200B.5x+4y≥200C.5x+4y=200D.5x+4y≤200【答案】D【解析】【考点】本题主要考查不等式的概念、不等式的性质。
点评:解答此类题目,首先要审清题意,明确变量应受到的限制条件,建立变量的约束条件。
高二数学基本不等式试题
高二数学基本不等式试题1.下列结论中正确的是A.的最小值为B.的最小值为C.的最小值为D.当时,无最大值【答案】B【解析】使函数有意义,则,当且仅当,即取到等号;对于可能小于0,对于当且仅当,即时取等号,但的最大值为1,错;对于在上为增函数,因此有最大值.【考点】基本不等式的应用.2.下列各式中,最小值是2的是()A.B.C.D.【答案】C【解析】,当且仅当,即,取得最小值,故选择C,不选择A的原因是不满足是正数的条件,不选择B的原因是中的等号不成立,不选择D的原因是该式没有最小值,所以运用均值不等式求最值,一定要注意“一正、二定、三相等”是否都具备,缺一不可.【考点】利用均值不等式求最值.3.若直线始终平分圆的周长,则的最小值为 ( )A.1B.5C.D.【答案】D【解析】由题可知直线进过圆心,即有.为求,可以利用前面的条件换掉,得,但考虑到不好求值,另寻它法.即将“1”.“2”换成,则有,故选D.【考点】巧用“1”和基本不等式证明不等式.4.已知,且,则的最小值是_______.【答案】9【解析】∵a+b=ab,∴,∴,当且仅当时,“=”成立,∴最小值为9.【考点】基本不等式求最值.5.已知,若恒成立,则实数的取值范围【答案】【解析】由题,则,则恒成立即恒成立,则【考点】基本不等式,恒成立问题6.已知x,y,z均为正数.求证:.【答案】不等式的证明可以考虑运用均值不等式法来得到。
【解析】证明:∵x,y,z都是为正数,∴. 4分同理,可得,. 6分将上述三个不等式两边分别相加,并除以2,得. 8分【考点】均值不等式点评:主要是考查了均值不等式的求证不等式的运用,属于中档题。
7.已知,,,则的最小值为.【答案】【解析】因为,,,,所以,=,当且仅当且时,的最小值为。
【考点】均值定理的应用点评:简单题,应用均值定理,要注意“一正,二定,三相等”,缺一不可。
8.已知函数在时取得最小值,则__________.【答案】36【解析】根据题意,由于函数在时取得,即时取得最小值故可知36,故答案为36.【考点】函数的最值点评:主要是考查了函数的最值的求解,属于基础题。
高二数学不等式试题
高二数学不等式试题,且恒成立,则n的最大值为( ).1.若a>b>c,n∈N+A.2B.3C.4D.5【答案】C【解析】=.=4.或者(a-c)·=[(a-b)+(b-c)]·所以nmax≥2·2 =4.2.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c ∈(0,1)),已知他投篮一次得分的数学期望为2(不计其他得分情况),则ab的最大值为()A.B.C.D.【答案】【解析】由又,所以,当且仅当时取等号.故答案选【考点】1.离散型随机变量的期望;2.基本不等式.3.若实数满足,则的最小值为_______【答案】18【解析】不等式表示的区域是直线的右上方区域,而表示点(x,y)与点(-3,1)两点的距离的平方。
显然两点间的最小距离为点(-3,1)到直线的距离,所以z的最小值为.【考点】利用几何意义求最值。
4.若为非零实数,且,则下列不等式成立的是()A.B.C.D.【答案】C【解析】:∵实数a,b满足a<0<b,若 a=-3,b=1,则 A、B、D都不成立,只有C成立【考点】不等关系与不等式5.若不等式的解集为,则不等式的解集为()A.B.或C.D.或【解析】由三个二次关系可知方程的解为且,设,所以,所以不等式为,解集为【考点】三个二次关系与一元二次不等式解法6.已知实数,满足不等式组,则关于的方程的两根之和的最大值和最小值分别是()A.,B.,C.,D.,【答案】A【解析】作出不等式组表示的平面区域,如图所示,则关于的方程的两根之和,由图可知当目标函数经过点时取得最大值,=,经过点时取得最小值,,故选A.【考点】简单的线性规划问题.7.不等式的解集是【答案】;【解析】,解集为【考点】分式不等式解集8.设关于x,y的不等式组表示的平面区域内存在点,满足,则m的取值范围是()A.B.C.D.【解析】将化成,将其代入,得,即,由题意,得有解,即,解得,即m的取值范围是;故选C.【考点】不等式组与平面区域.【技巧点睛】本题考查二元一次不等式组和平面区域、不等式组的解的存在性,属于中档题;学生解决本题的常用方法是先画出可行域再思考如何处理,难度较大;本题的解题技巧在于,将平面区域内存在点使成立,利用消元法将其转化为关于的不等式组有解的问题,再利用集合间的关系进行求解.9.(2015秋•宁德校级期中)不等式x2+2x﹣3≤0的解集为()A.[﹣1,3]B.[﹣3,﹣1]C.[﹣3,1]D.[1,3]【答案】C【解析】根据解一元二次不等式的基本步骤,进行解答即可.解:不等式x2+2x﹣3≤0可化为(x+3)(x﹣1)≤0,该不等式对应方程的两个实数根为﹣3和1,所以该不等式的解集为[﹣3,1].故选:C.【考点】一元二次不等式的解法.10.已知,则的最小值是()A.4B.3C.2D.1【答案】A【解析】因为,且,所以;则(当且仅当,即时取等号);故选A.【考点】1.对数的运算;2.基本不等式.11.表示不等式的平面区域(不含边界的阴影部分)是()【答案】A【解析】作出直线,将原点代入不等式不成立,因此不等式表示直线的右上方,因此只有A正确【考点】不等式表示平面区域12.若、满足,且的最小值为,则的值为()A.2B.C.D.【答案】D【解析】对不等式组中的讨论,可知直线与轴的交点在与轴的交点的右边,故由约束条件作出可行域如图,由,令得,,由得,由图可知,当直线过时直线在轴上的截距最小,即最小,此时,解得:,故选D.【考点】1、可行域的画法;2、已知最优解求参数.13.(2015秋•厦门期末)若a>b,c>d,则下列不等式成立的是()A.B.ac>bd C.a2+c2>b2+d2D.a+c>b+d【答案】D【解析】本题是选择题,可采用逐一检验,利用特殊值法进行检验,很快问题得以解决.解:∵a>b,c>d,∴设a=1,b=﹣1,c=﹣2,d=﹣5分别代入选项A、B、C均不符合,故A、B、C均错,而选项D正确,故选:D.【考点】不等式的基本性质.14.给定两个命题:对任意实数都有恒成立;:关于的方程有实数根.如果为假命题,为真命题,求实数的取值范围.【答案】(-∞,0)∪(,4)【解析】先求出,为真命题时的取值范围,由为假命题,为真命题可得,一真一假进行分类讨论求出的取值范围试题解析:命题P:对任意实数x都有ax2+ax+1>0恒成立,则“a=0”,或“a>0且a2-4a<0”.解得0≤a<4.命题:关于x的方程x2-x+a=0有实数根,则Δ=1-4a≥0,得a≤.因为P∧为假命题,P∨为真命题,则P,有且仅有一个为真命题,故∧为真命题,或P∧为真命题,则或解得a<0或<a<4.所以实数a的取值范围是(-∞,0)∪(,4).【考点】简单的逻辑用语的应用.【方法点睛】(1)正确理解逻辑连接词“或”、“且”,“非”的含义是关键,解题时应根据组成各个复合命题的语句中所出现的逻辑连接词进行命题结构与真假的判断,其步骤为:①确定复合命题的构成形式;②判断其中简单命题的真假;③判断复合命题的真假;(2)解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算;(3)注意或为真,且为假说明一真一假.15.若不等式ax2+bx-2>0的解集为则a,b的值分别是()A.B.C.D.【答案】C【解析】由不等式的解集可知方程的根为解方程得【考点】三个二次关系16.已知实数x、y满足,若不等式恒成立,则实数a的最小值是.【答案】【解析】不等式对应的可行域为直线围成的三角形及其内部,其中三个顶点为,设,不等式变形为恒成立最大值为,所以实数a的最小值是【考点】1.线性规划;2.不等式性质17.某人需要补充维生素,现有甲、乙两种维生素胶囊,这两种胶囊都含有维生素,,,和最新发现的.甲种胶囊每粒含有维生素,,,,分别是1mg,1mg,4mg,4mg,5mg;乙种胶囊每粒含有维生素,,,,分别是3mg,2mg,1mg,3mg,2mg.此人每天摄入维生素至多19mg,维生素至多13mg,维生素至多24mg,维生素至少12mg.(1)设该人每天服用甲种胶囊粒,乙种胶囊粒,为了能满足此人每天维生素的需要量,请写出,满足的不等关系.(2)在(1)的条件下,他每天服用两种胶囊分别为多少时,可摄入最大量的维生素.并求出最大量.【答案】(1)详见解析;(2)服用5粒甲种胶囊和4粒乙种胶囊时,可摄入最大量的维生素为33mg【解析】(1)直接由题意列出关于x,y的不等关系所组成的不等式组;(2)由(1)中的不等式组作出可行域,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案试题解析:(1).(2)目标函数为:作出以上不等式组所表示的平面区域,即可行域.作直线:,把直线向右上方平移,直线经过可行域上的点时,取得最大值.解方程组得点坐标为,此时(mg).答:每天服用5粒甲种胶囊和4粒乙种胶囊时,可摄入最大量的维生素为33mg.【考点】线性规划问题的实际应用18.已知常数,解关于的不等式【答案】当,原不等式为;当时,原不等式的解集为或.;当时,时,原不等式的解集为.当时,原不等式的解集为.【解析】讨论是否为0.当,再讨论的正负,同时讨论其判别式.当判别式大于0时注意两根的大小,画抛物线结合图像可解不等式.试题解析:解(1)若,则原不等式为,故解集为.(2)若①当,即时,方程的两根为,∴原不等式的解集为.②当时,即时,原不等式的争集为.③当,即时,原不等式的争集为.(3)若.①当,即,原不等式的解集为或.②当时,时,原不等式化为,∴原不等式的解集为.③当,即时,原不等式的解集为综上所述,当时,原不等式的解集为;当原不等式的解集为;当,原不等式为;当时,原不等式的解集为或.;当时,时,原不等式的解集为.当时,原不等式的解集为.【考点】一元二次不等式.19.若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.a+c≥b﹣c B.ac>bc C.>0D.(a﹣b)c2≥0【答案】D【解析】A、令a=﹣1,b=﹣2,c=﹣3,计算出a+c与b﹣c的值,显然不成立;B、当c=0时,显然不成立;C、当c=0时,显然不成立;D、由a大于b,得到a﹣b大于0,而c2为非负数,即可判断此选项一定成立.解:A、当a=﹣1,b=﹣2,c=﹣3时,a+c=﹣4,b﹣c=1,显然不成立,本选项不一定成立;B、c=0时,ac=bc,本选项不一定成立;C、c=0时,=0,本选项不一定成立;D、∵a﹣b>0,∴(a﹣b)2>0,又c2≥0,∴(a﹣b)2c≥0,本选项一定成立,故选D【考点】两角和与差的正弦函数;正弦定理.20.若不等式ax2+bx+2>0的解集为{x|﹣},则a+b= .【答案】﹣14【解析】利用不等式的解集与方程解的关系,结合韦达定理,确定a,b的值,即可得出结论.解:∵不等式ax2+bx+2>0的解集为{x|﹣},∴﹣和为方程ax2+bx+2=0的两个实根,且a<0,由韦达定理可得,解得a=﹣12,b=﹣2,∴a+b=﹣14.故答案为:﹣14.【考点】一元二次不等式的应用.21.已知a,b,c都是正实数,求证(1)≥a+b+c.【答案】(1)(2)证明见解析【解析】(1)利用分析法证明,由于a,b,c都是正实数,所以最终只需要证明:(a﹣b)2≥0;(2)根据不等式特点,先利用基本不等式证明,,从而得证.证明:(1)要证即证:a2≥2ab﹣b2即证:(a﹣b)2≥0显然成立,故得证;(2)∵a,b,c都是正实数,∴,相加,化简得≥a+b+c.【考点】不等式的证明;其他不等式的解法.22.如果实数x、y满足条件,那么2x﹣y的最大值为()A.2B.1C.﹣2D.﹣3【答案】B【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大值即可.当直线过点时,最大为1.故选B.【考点】简单线性规划的应用.23.命题“恒成立”则实数的取值范围为 ;【答案】【解析】当时,不等式恒成立;当,不等式恒成立,则,解得;因此实数的取值范围为【考点】恒成立问题;24.设满足约束条件,若目标函数的最大值为1,则的最小值为________.【答案】【解析】画出可行域如下图所示,由得,平移直线,由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.【考点】1、线性规划;2、基本不等式.【方法点晴】题目分成两个部分,每个部分用相应的知识点来解决,第一部分是线性规划,先画出可行域,将目标函数移到取得最大值为,这样就求出了的一个关系式;第二部分是基本不等式,求此类基本不等式的方法是“”的代换,也就是,展开后就可以用基本不等式求解了,最后要注意等号是否成立.25.若关于的不等式有解,则实数的取值范围是 _________.【答案】【解析】由题意得,关于的不等式有解,所以的最小值小于,而表示数轴上的对应点到对应点的距离之和它的最小值为,所以有,可得.【考点】绝对值不是的解法及绝对值的意义.【方法点晴】本题主要考查了绝对值的几何意义、绝对值不等式的解法,函数的恒成立问题的求解,着重考查了转化与化归的思想方法,属于中档试题,本题的解答中,根据关于的不等式有解,转化为的最小值小于,再利用绝对值的几何意义,得到的最小值为,即可列出不等式关系,求解出的范围.26.若不等式组表示的平面区域为三角形,其面积等于,则的值为A.B.C.D.【答案】B【解析】易知直线只有有图中位置,题设不等式组才能表示一个三角形区域,计算得,,,(),直线与轴交点为,由,解得或(舍去),故选B.【考点】二元一次不等式组表示的平面区域.【名师】要作出二元一次不等式组表示平面区域关键是作出二元一次不等式表示的平面区域,在平面直角坐标系中,平面内所有的点被直线Ax+By+C=0分成三类:(1)满足Ax+By+C=0的点;(2)满足Ax+By+C>0的点;(3)满足Ax+By+C<0的点.27.已知,,,则三者的大小关系是()A.B.C.D.【答案】A【解析】【考点】比较大小28.若实数满足条件,则的最大值为________.【答案】4【解析】由图可得当取到:时,最大,为4【考点】线性规划中的最优解问题。
高中数学专题复习基本不等式限时练习试卷与答案
高二数学专题复习(五)基本不等式1 限时练高二 ______班_____组 学号:_______ 姓名:______________ 一、【基础过关】(大约35分钟).225,0.1的最大值求已知xx x +<.19,1.2的最小值求已知-+>x x x.)41(,410.3的最大值求已知x x x -<<4.(2020·上海,13)下列不等式恒成立的是( )A.a 2+b 2≤2abB.a 2+b 2≥-2abC.a+b ≥2√|ab |D.a+b ≥-2√|ab |5.(2015·福建,理5)若直线x a +yb =1(a>0,b>0)过点(1,1),求a+b 的最小值.6.(2015·湖南,文)若实数a ,b 满足1a +2b =√ab ,则ab 的最小值为( )A.√2B.2C.2√2D.47.(2019·天津,文13)设x>0,y>0,x+2y=4,则(x+1)(2y+1)xy的最小值为 .8.(2019·天津,理13)设x>0,y>0,x+2y=5,则√xy的最小值为.9.(2014·重庆,文9)若log4(3a+4b)=log2√ab,则a+b的最小值是()A.6+2√3B.7+2√3C.6+4√3D.7+4√3二、【能力提升】(大约5分钟)10.(2015·重庆,文14)设a,b>0,a+b=5,则√a+1+√b+3的最大值为.高二数学专题复习(五)基本不等式1限时练答案1. 302. 73.641A.由基本不等式可知a2+b2≥2ab,故A不正确;B.a2+b2≥-2ab⇒a2+b2+2ab≥0,即(a+b)2≥0恒成立,故B正确;C.当a=-1,b=-1时,不等式不成立,故C不正确;D.当a=0,b=-1时,不等式不成立,故D不正确.故选B.∵直线xa+yb=1过点(1,1),∴1a+1b=1.又a,b均大于0,∴a+b=(a+b)(1a+1b)=1+1+ba+ab≥2+2√ba·ab=2+2=4.故选C.由已知1a+2b=√ab,可知a,b同号,且均大于0.由√ab=1a+2b≥2√2ab,得ab≥2√2.即当且仅当1a=2b,即b=2a时等号成立,故选C.(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy.∵x+2y=4,∴4≥2√2xy,∴2xy≤4.∴1xy≥12.∴2+5xy≥2+52=92.先化简,利用√xy 的范围求解.√xy=√xy=√xy =2√xy √xy≥2·√2√xy ·6√xy =4√3.当且仅当√xy =√xy,即xy=3时等号成立.由log 4(3a+4b )=log 2√ab ,得12log 2(3a+4b )=12log 2(ab ),所以3a+4b=ab ,即3b +4a =1. 所以a+b=(a+b )(3b +4a )=3ab +4ba +7≥4√3+7,当且仅当3ab =4ba ,即a=2√3+4,b=3+2√3时取等号.故选D .10.(2015·重庆,文14,5分,难度★★)设a ,b>0,a+b=5,则√a +1+√b +3的最大值0,a+b=5,所以(a+1)+(b+3)=9.令x=a+1,y=b+3,则x+y=9(x>1,y>3),于是=√x +√y,而(√x +√y )2=x+y+2√xy ≤x+y+(x+y )=18,所以√x +√y ≤3√2 .此时x=y ,即a+1=b+3,结合a+b=5可得a=3.5,b=1.5,故当a=3.5,b=1.5时,√a +1+√b +3的最大值为3√2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学基本不等式练习题
1.)0(14>+x x
x 的最小值是 ( ) A 、2 B 、4 C 、22 D 、8
2.已知1>x ,则函数1
1)(-+=x x x f 的最小值为 ( ) A 、1 B 、2 C 、3 D 、4
3.已知y
x 35+=2(x >0,y >0),则xy 的最小值是 ( ) A 、12 B 、14 C 、15 D 、18
4.若一个矩形的对角线长为常数a ,则其面积的最大值为 ( )
A 、2a
B 、212a
C 、a
D 、12
a 5.设x >0,y >0,x +y +xy =2,则x +y 的最小值是 ( )
A 、32
B 、1 + 3
C 、2 3 -2
D 、2- 3 6.下列结论正确的是 ( )
A 、当2lg 1lg ,10≥+≠>x x x x 时且
B 、21,0≥+>x
x x 时当 C 、21,2的最小值为时当x x x +
≥ D 、无最大值时当x
x x 1,20-≤< 7.若0<a <b 且1=+b a ,四个数2
1,b ,ab 2 ,22b a + 中最大的是 ( ) A 、2
1 B 、b C 、ab
2 D 、22b a + 8.有三个推断:(1)110,2,x x x x x ≠∴+≥∴+的最小值为2; (2)1(212
=≥+x x x 时取等号)12+∴x 的最小值为2; (3)4]2
)4([)4(422=-+≤-=-x x x x x x ,24x x -∴的最大值为4. 以上三个推断中正确的个数为 ( )
A 、1
B 、2
C 、3
D 、 0
9.设x 、y ∈R +,S=x+y ,P=xy ,以下四个命题中正确命题的序号是_________________.(把你认为正确的命题序号都填上)
(1)若P 为定值m ,则S 有最大值m 2;(2)若S=P ,则P 有最大值4;(3)若S=P ,则S 有最小值4;(4)若S 2
≥kP 总成立,则k 的取值范围为k ≤4.
10.已知232a b +=,则48a b +的最小值是 . 11设.11120,0的最小值,求且y x y x y x +=+>> .
12.已知两个正变量y x ,满足4=+y x ,则使不等式
m y x ≥+41恒成立的实数m 的取值范围是 .
13. 函数45
22++=x x y 的最小值为 .
14.已知集合A=﹛x ︳622<+x x ﹜,B=﹛x ︳342->x x ﹜,若C=A ∩B ,求集合C;若t ∈C,且y =
t t --11 求y 的最小值,并指出使得y 取最小值的t 值.
15.已知函数)2(122->+++=
x x x x y (1)求y
1的取值范围;(2)当x 为何值时,y 取何最大值?
16.某商场预计全年分批购入每台价值为2 000元的电视机共3 600台.每批都购入x 台(x ∈N *),且每批均需付运费400元.贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.。