管理运筹学对偶问题

合集下载

《运筹学》线性规划的对偶问题

《运筹学》线性规划的对偶问题

3、资源影子价格的性质
z y b1w1 b2w2 bi wi bmwm z z b1w1 b2w2 (bi bi )wi bmwm z bi wi
w
o i
z o bi
最大利润的增量 第i种资源的增量
第i种资源的边际利润
■影子价格越大,说明这种资源越是相对紧缺 ■影子价格越小,说明这种资源相对不紧缺 ■如果最优生产计划下某种资源有剩余,这种资源的影子 价格一定等于0
总利润(元)
单位产品的利润(元/件)
产品产量(件)
max z c1x1 c2 x 2 c2 x 2
s.t.
a11x1 a12x 2 a1n x n x n1
a 21x1 a 22x 2 a 2n x n
x n2
b1
b2
a m1x1 a m2 x 2 a mn x n
差额成本=机会成本 ——利润
5、互补松弛关系的经济解释
wix ni
0xwni
0 x ni i 0 wi
0 0
x jwmj
0xwjm j
0 0
w m x
j j
0 0
在利润最大化的生产计划中 (1)边际利润大于0的资源没有剩余 (2)有剩余的资源边际利润等于0 (3)安排生产的产品机会成本等于利润 (4)机会成本大于利润的产品不安排生产
4、产品的机会成本
增加单位资源可以增加的利润
max z c1x1 c2x2 c jx j cn xn
s.t.
a11x1 a12x 2 a1jx j a1nx n b1 w1
a 21x1 a 22x 2 a 2jx j a 2nx n b2 w2
a m1 x1 a m2 x 2 a mj x j a mn x n bm wm

运筹学课件 第二章-对偶问题

运筹学课件 第二章-对偶问题

2.4 运输问题
2.1 线性规划的模型与图解法
2.1.1 问题的引入 (1)生产安排问题 如何合理使用有限的人力、物力和资金, 使得收到最好的经济效益。
例1:某工厂可生产甲、乙两种产品,需消耗煤、 电、油三种资源。现将有关数据列表如下:
资源单耗 资源 产品
甲 9 4 3 7
乙 4 5 10 12
•约束条件的类型与非负条件对偶 •非标准的约束条件类型对应非正常的非负规划:
min z 5 x x 3 x
1 2
3
2x 2x x 1
1 2 3
x 3 x 4 x 10
1 2 3
2x 2x x 5
2.3.2 灵敏度分析
一、定义:
灵敏度分析讨论建模时的系数及有关变量变化时对 解的影响。 反映在两个方面
最优性: j C j C B B 1 Pj 1 可行性:X B B b
二、目的:
(1)参数在何范围内变化最优解(基)不变。 (2)参数变化,最优解有何变化。 1.资源向量b的变化分析
4.最优性
设X,分别是( P )与( D )问题的可行解, Y 且C X Y b,则 X, Y皆为最优解。
图示为:
CX Yb
z w CX Yb
* *
5.强对偶性 设 如果(P)问题有最优解,则(D)问题也有最 优解,且最优值相等。 证:对(P)增加松弛变量XS,化为标准型:
min w 2 y1 y2 y1 2 y2 1 y1 y 2 1 y1 y2 0 y , y 0 1 2
s.t.
s.t.
若原问题xj≤0,则对偶问题第j个约束
反号(与规定形式比)。同理,若原问题 第i个约束反号(与规定形式比),则对偶 问题yi≤0。

运筹学2对偶问题

运筹学2对偶问题

运筹学2对偶问题运筹学教程运筹学Operations Research Chapter 2 对偶问题Dual Problem1. 线性规划的对偶模型Dual Model of LP2.对偶性质对偶性质3.对偶单纯形法对偶单纯形法4.灵敏度分析灵敏度分析Dual property Dual Simplex Method Sensitivity Analysis 运筹学教程§2.1线性规划的对偶模型线性规划的对偶模型Dual model of LPCh2 Dual Problem2022年11月26日星期五Page 2 of 19在线性规划问题中,存在一个有趣的问题,即每一个线性规划问题都伴随有另一个线性规划问题,称它为对偶线性规划问题。

【例2.1】某企业用四种资源生产三种产品,工艺系数、例资源限量及价值系数如下表:产品资源Ⅰ Ⅱ Ⅲ Ⅳ 每件产品利润9 5 8 7 100 8 4 3 6 80 6 7 2 4 70 500 450 300 550 A B C 资源限量建立总收益最大的数学模型。

运筹学教程§2.1线性规划的对偶模型线性规划的对偶模型Dualmodel of LPCh2 Dual Problem2022年11月26日星期五Page 3 of 19 设x1,x2,x3分别为产品A,B,C的产量,则线性规划数学模解型为:m Z = 100x + 80x + 70x ax1 2 39x1 + 8x2 + 6x3 ≤ 500 5x + 4x + 7x ≤ 450 2 3 1 8x1 + 3x2 + 2x3 ≤ 300 7x + 6x + 4x ≤ 550 2 3 1 x1, x2, x3 ≥ 0 现在从另一个角度来考虑企业的决策问题。

假如企业自己不生产产品,而将现有的资源转让或出租给其它企业,那么资源的转让价格是多少才合理?价格太高对方不愿意接受,价格太低本单位收益又太少。

管理运筹学_单纯形法的灵敏度分析与对偶..

管理运筹学_单纯形法的灵敏度分析与对偶..

S3 0 -1 1 1 50 -50
b 50 50 250 27500
2
12
§1
单纯形表的灵敏度分析
我们对b1进行灵敏度分析,因为在第一个约束方程中含有松弛变量S1,
T 所以松弛变量在最终单 纯形表中的系数列( 1 , 2, 0) 就是B-1的第一列。
xBi 因为d'11 1 0, d' 21 2 0, X1 50, X 2 50, 可以Max | d 'i1 0 50 d i1 xBi 而Min | d 'i1 0 25, 故有当 50 b1 25,即250 b b 325第一个 d i1 约束条件的对偶价格不 变。





8
§1
约束条件 ≤ ≥
单纯形表的灵敏度分析
影子价格的取值
下表给出了一个由最终单纯形表对于不同约束类型的对偶价格的取值。
等于这个约束条件对应的松弛变量的 等于这个约束条件对应的剩余变量的
z j 值,即为 j 的相反数
=
z j 值,即为 j 的相反数 等于这个约束条件对应的人工变量的 z j 值,即为 j 的相反数





5
§1
迭代次数 基变量 X1 S2 X2 ZJ
单纯形表的灵敏度分析
CB C’1 0 100 X1 50 1 0 0 C’1 X2 100 0 0 1 100 S1 0 1 -2 0 C’1 S2 0 0 1 0 0 S3 0 -1 1 1 -C’1+100 b 50 50 250
2
CJ -ZJ
二、约束方程中常数项的灵敏度分析

运筹学课件第二章对偶问题

运筹学课件第二章对偶问题

第二章线性规划的对偶理论与灵敏度分析一、学习目的与要求 1、掌握对偶理论及其性质 2、掌握对偶单纯形法3、熟悉灵敏度分析的概念和内容4、掌握限制常数与价值系数、约束条件系数的变化对原最优解的影响5、掌握增加新变量和增加新的约束条件对原最优解的影响,并求出相应因素的灵敏度范围6、了解参数线性规划的解法 二、课时 6学时第一节 线性规划的对偶问题一、对偶问题的提出定义:一个线性规划问题常伴随着与之配对的、两者有密切联系的另一个线性规划问题,我们将其中一个称为原问题,另一个就称为对偶问题,在求出一个问题的解时,也同时给出了另一问题的解。

应用:在某些情况下,解对偶问题比解原问题更加容易;对偶变量有重要的经济解释(影子价格);作为灵敏度分析的工具;对偶单纯形法(从一个非可行基出发,得到线性规划问题的最优解);避免使用人工变量(人工变量带来很多麻烦,两阶段法则增加一倍的计算量)。

例:某家具厂木器车间生产木门与木窗;两种产品。

加工木门收入为56元/扇,加工木窗收入为30元/扇。

生产一扇木门需要木工4小时,油漆工2小时;生产一扇木窗需要木工3小时,油漆工1小时;该车间每日可用木工总共时为120小时,油漆工总工时为50小时。

问:(1)该车间应如何安排生产才能使每日收入最大?(2)假若有一个个体经营者,手中有一批木器家具生产订单。

他想利用该木器车间的木工与油漆工来加工完成他的订单。

他就要考虑付给该车间每个工时的价格。

他可以构造一个数学模型来研究如何定价才能既使木器车间觉得有利可图而愿意为他加工这批订单、又使自己所付的工时费用最少。

解(1):设该车间每日安排生产木门x1扇,木窗x2扇,则数学模型为⎪⎩⎪⎨⎧≥≤+≤++=-0502120343056max 21212121x x x x x x x zX*=(15,20)’ Z*=1440元解(2):设y 1为付给木工每个工时的价格,y 2为付给油工每个工时的价格⎪⎩⎪⎨⎧≥≥+≥++=-0303562450120min 21212121y y y y y y y wY*=(2,24)’ W*=1440元将上述问题1与问题2称为一对对偶问题,两者之间存在着紧密的联系与区别:它们都使用了木器生产车间相同的数据,只是数据在模型中所处的位置不同,反映所要表达的含义也不同。

运筹学对偶问题的直观描述

运筹学对偶问题的直观描述

运筹学对偶问题的直观描述
运筹学中的对偶问题是指原始线性规划问题和对应的对偶线性规划问题之间的关系。

直观描述对偶问题可以从几个方面来理解。

首先,可以从成本和效益的角度来理解。

原始线性规划问题通常涉及最小化成本或者最大化利润,而对偶线性规划问题则涉及最大化成本或者最小化利润。

这种对偶关系可以被解释为在资源有限的情况下,通过最小化成本来实现最大化效益,或者通过最大化效益来实现最小化成本。

其次,可以从约束条件的角度来理解。

原始线性规划问题的约束条件对应着对偶线性规划问题的变量,而对偶线性规划问题的约束条件对应着原始线性规划问题的变量。

这种对偶关系可以被理解为在资源分配和利用的过程中,对约束条件和变量之间的转换和对应关系。

另外,可以从几何图形的角度来理解。

原始线性规划问题的最优解和对偶线性规划问题的最优解之间存在着一种对偶关系,即原始问题的最优解和对偶问题的最优解分别对应着凸集的两个相对的极值点,它们之间的距离可以被理解为对偶问题的最优值和原始问
题的最优值之间的关系。

总的来说,对偶问题在运筹学中具有重要的意义,它不仅可以帮助我们理解原始问题和对偶问题之间的关系,还可以为我们寻找最优解提供了一种新的视角和方法。

通过对偶问题的研究和理解,我们可以更好地解决实际生产和管理中的复杂问题。

运筹学第3章 对偶问题

运筹学第3章 对偶问题
y1 + 2 y2 + 4 y3 = 3 2 y1 + y2 + 3 y3 = 2
x1 > 0, x2 > 0
联立求解得: y1 = 0, y2 = 0.5, y3 = 0.5
三、影子价格
设 x* ( j = 1,L, n) 和 yi* (i = 1,L, n) 分别是原问题和 j 对偶问题的最优解,则由对偶性质,有
=b
BX B + NX N + IX S = b X ≥ 0, X ≥ 0 N B
S S
max z = C B X B + C N X N + 0 X s
将XB的系数 矩阵化为单 位矩阵
原来 BX B + NX N + IX IX B + B − 1 NX N + B − 1 X
= b = B
注 上表中我们将松弛变量与剩余变量统称为松弛变量
二、对偶问题的基本性质
1、对偶问题的对偶问题是原问题
max z=CX s.t. AX≤b X ≥0 对偶的定义 min w=b’Y s.t. A’Y≥C Y ≥0
min z’ = - CX s.t. -AX ≥-b X ≥0
对偶的定义
max w = -b’Y s.t. -A’Y≤-C Y ≥0
−1
b
项目
原问题变量
原问题松弛变量
原问 题最 终单 纯形 表
x1
x3 15/2 x1 7/2 x2 3/2 -σj 0 1 0 0
x2
0 0 1 0
x3
1 0 0 0
x4
5/4 1/4 -1/4 1/4
x5
15/2 -1/2 3/2 1/2

运筹学 ( 对偶问题及性质)

运筹学 ( 对偶问题及性质)
(2)竞争性原则。即在上述不吃亏原则下,尽量降低机时 总收费,以便争取更多用户。
设A、B、C、D设备的机时价分别为y1、y2、y3、y4,则新的 线性规划数学模型为:
min 12 y1 8 y2 16 y3 12 y4
2 y1 y2 4 y3 0 y4 2
s.t 2 y1 2 y2 0 y3 4 y4 3
Y≤0
对偶性质
性质2 (弱对偶性) 设X 0 Y 0和
的可行解,则必有
分别是问题(LP)和(DP)
CX 0 Y 0b
n
m
即: c j x j yibi
j1
i1
推论1: 原问题任一可行解的目标函数值是其对偶问题目标函数 值的下界;反之,对偶问题任意可行解的目标函数值是其原问题 目标函数值的上界。
n
yˆi 0 aij xˆ j bi j 1 n
aij xˆ j bi yˆi 0
j 1
对偶性质
例2.4
已知线性规划
max z 3 x1 4 x2 x3
2xx1 122xx2
x3 2x
10 3 16

x
jபைடு நூலகம்

0,
j

1,2,3
3
x1 x1

x2 4x2
7x3 6x3

3 5
x1 , x2 , x3 0
解:首先将原问题变形为对称形式
max Z 2x1 3 x2 4 x3
2 x 3 x2 5 x3 2

3
x1

x2
7x3
3

x1 4 x2 6 x3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

写出下列线性规划的对偶问题
minZ= 9x1 +6x2 -3x3
2x1 + x2 -4 x3 4
-3x1 -x2 +x3 =-2
2x 1
+2x2 +x3 6
x1, x2 ,x3 0
解:上述问题的对偶规划:
maxW=4y1-2y2 +6y3
2y1 -3 y2+2y3 9
y1 -y2
+2y3 6
一、对偶问题的提出
例:某家电厂家利用现有资源生产 两种产品, 有关数据如下表:
产品Ⅰ 产品Ⅱ
D
设备A
0
设备B
6
调试工序
1
5
15时
2
24时
1
5时
利润(元) 2
1
x 设 Ⅰ产量––––– 1
x Ⅱ产量––––– 2
如何安排生产, 使获利最多?
max z 2x1 x2
s.t.
5x2 15
6x1 2x2 24
2个约束 3个变量
Y (y1,y2,y3 )
A (aij )
X
x1 x2
b1
b
b2 b3
特点:
1. max min
2.限定向量b 价值向量C
其它形式 的对偶
?
(资源向量)
3.一个约束 一个变量。
4. max z 的LP约束“ ” min z 的
LP是“ ”的约束。
5.变量都是非负限制。
min w 15 y 24 y 5y
1
2
3
s.t
6y y 2
2
3
对 偶

5y 2y y 1 问
1
2
3

y ,y ,y 0
1
2
3
厂题

原问题
对偶问题
max
s.t
.
z CX AX b
ms.itn.
w Yb YA C
X 0
Y0
一 般
3个约束 2个变量
规 律
C (c1, c2 )
原问题(或对偶问题) 对偶问题(或原问题)
约束条件右端项
目标函数变量的系数
目标函数变量的系数
约束条件右端项
目标函数 max
目标函数 min

m个


条 件

=
m个
≥0

≤0

无约束
n个

≥0

≤0
无约束
n个




条 件
=
例:
max z 5x1 3x2 2x3 4x4
5x1 x2 x3 8x4 8 s.t2x1 4x2 3x3 2x4 10
原问题与对偶问题可能出现的情况 (1)两者都有最优解,且最优值相等; (2)一个有可行解,但无界,则另一个无可 行解; (3)两者都无可行解。
15
CX 0 Y 0b
n
m
即: c j x j yibi
j1
i1
推论1: 原问题任一可行解的目标函数值是其对偶问题目标函数值 的下届;反之,对偶问题任意可行解的目标函数值是其原问题目 标函数值的上界。
推论2: 在一对对偶问题(P)和(D)中,若其中一个问题可行但 目标函数无界,则另一个问题无可行解;反之不成立。这也是对 偶问题的无界性。
+2x
2
+ x3 +x3
3 -5
x1 -x2 +x3 =1
x1
0,x 2
0,x
无约束
3
解:对偶规划: minW=2y1+3y2 -5y3+y4
y1 + y2 -3y3 +y4 5
2y1 +2y3 -y4 4
y2 +y3 +y4 6
y1 0, y2 0, y3 0, y4无约束
11
收购方的意愿:
单位产品Ⅰ出租 收入不低于2元
单位产品Ⅱ出租 收入不低于1元
min w 15 y 24 y 5 y
1
2
3


D
设备A
0
5
15时
设备B
6
2
24时
调试工序
1
1
5时
利润(元) 2
1
max z 2x1 x2
s.t.
5x2 15

6x1 2x2 24
问 题
x1 x2 5 x1, x2 0
-4y1+ y2 +y3 -3
y1 0, y2自由变量, y3 0
12
性质1 对称性定理:对偶问题的对偶是原问题
max Z=C X
s.t. AX≥b
X ≥0
min W= Y b s.t. YA ≥ C
Y≤0
性质2 弱对偶原理(弱对偶性):设 和X 0 分别Y是0 问题(P)和
(D)的可行解,则必有
x1,x2 0 x3,x4无约束
对偶问题为
min w 8y1 10 y2
5 y1 2 y2 5
s.t.
y1 4 y2 3 y1 3y2 2
8 y1 2 y2 4
y1
0,
y2无约束
写出下列线性规划的对偶问题
maxZ= 5x1+4x2 +6x3
x1 +2x2 2
-3xx11

x1 x2 5

x1, x2 0
设:设备A ——y1元/时 设备B ––––y 2元/时
调试工序 ––––y3元/时
付出的代价最小, 且对方能接受。
出让代价应不低于
用同等数量的资源

自己生产的利润。

厂家能接受的条件:
出 用同让等代6 y数价2量应的不y资低3 源于 2 5 y自1己生2产y的2 利润y3。 1
相关文档
最新文档