2017年中考模拟考试数学试题

合集下载

浙江省湖州市中考数学4月模拟试卷(含解析)-人教版初中九年级全册数学试题

浙江省湖州市中考数学4月模拟试卷(含解析)-人教版初中九年级全册数学试题

2017年某某省某某市九校联合中考数学模拟试卷(4月份)一、选择题(共10小题,每小题3分,满分30分)1.|﹣2|=()A.2 B.﹣2 C.±2 D.2.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b23.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4730000000元,用科学记数法表示为()×108×109×1010×10114.如图,△ABC,∠B=90°,AB=3,BC=4,则cosA等于()A.B.C.D.5.不等式组的最小整数解是()A.1 B.2 C.3 D.46.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于()A.130°B.140°C.150°D.160°7.如图所示的支架是由两个长方体构成的组合体,则它的主视图是()A. B.C.D.8.某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩45 46 47 48 49 50人数 1 2 4 2 5 1这此测试成绩的中位数和众数分别为()A.47,49 B.48,49 C.47.5,49 D.48,509.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.10.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为()A.9 B.6 C.3 D.3二、填空题(本大题有6小题,每小题4分,共24分)第10题11.分解因式:x3﹣4x=.12.若二次根式有意义,则x的取值X围是.13.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.14如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为.15.如图,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是.16.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)将抛物线沿y轴平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值X围是.(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为.三、解答题(本大题有8小题,共66分)17.(6分)计算:|﹣2|﹣(1+)0+﹣cos30°.18.(6分)如图,▱ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F.请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)结论:AF=.证明:19.(6分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)20.(8分)李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将下面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=2,DE=2,求AD的长.(3)在(2)的条件下,求弧BD的长.22.(10分)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)n=50﹣x销售单价m(元/件)当1≤x≤20时,m=20+x当21≤x≤30时,m=10+(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?23.(10分)如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB上取一点D,过点D 作DE∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.(1)①求证:△ABD∽△ACE;②若CD=1,BD=,求AD的长.(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设==k,若CD=1,BD=2,AD=3,求k的值.(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若==,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)24.(12分)如图,在平面内直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC,点E是y轴上任意一点,记点E 为(0,n).(1)求点D的坐标及直线BC的解析式;(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n 的值,使正方形的顶点F落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.(3)作点E关于AC的对称点E′,当n为何值时,AE′分别与AC,BC,AB垂直?2017年某某省某某市九校联合中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.|﹣2|=()A.2 B.﹣2 C.±2 D.【考点】15:绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2,故选A.【点评】本题主要考查了绝对值的定义,掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b2【考点】47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式.【分析】根据幂的乘方,可判断A,根据同底数幂的除法,可判断B,根据积的乘方,可判断C,根据完全平方公式,可判断D.【解答】解:A、底数不变指数相乘,故A错误;B、底数不变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选:C.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4730000000元,用科学记数法表示为()×108×109×1010×1011【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,△ABC,∠B=90°,AB=3,BC=4,则cosA等于()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】由勾股定理求得AC=5,再根据余弦函数的定义可得答案.【解答】解:在Rt△ABC中,∠B=90°,∵AB=3,BC=4,∴AC===5,∴cosA==,故选:D.【点评】本题主要考查锐角三角函数的定义和勾股定理,熟练掌握勾股定理和余弦函数的定义是解题的关键.5.不等式组的最小整数解是()A.1 B.2 C.3 D.4【考点】CC:一元一次不等式组的整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式的解集,求出整数解即可.【解答】解:,由①得:x≥1,由②得:x>2,∴不等式组的解集为x>2,则不等式组的最小整数解是3.故选C.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.6.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于()A.130°B.140°C.150°D.160°【考点】JA:平行线的性质.【分析】根据平行线的性质可得∠GEB=∠1=60°,然后根据EF为∠GEB的平分线可得出∠FEB的度数,根据两直线平行,同旁内角互补即可得出∠2的度数.【解答】解:∵AB∥CD,∴∠GEB=∠1=60°,∵EF为∠GEB的平分线,∴∠FEB=∠GEB=30°,∴∠2=180°﹣∠FEB=150°.故选C.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.7.如图所示的支架是由两个长方体构成的组合体,则它的主视图是()A. B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从几何体的正面看可得此几何体的主视图是,故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩45 46 47 48 49 50人数 1 2 4 2 5 1这此测试成绩的中位数和众数分别为()A.47,49 B.48,49 C.47.5,49 D.48,50【考点】W5:众数;W4:中位数.【分析】根据众数与中位数的定义,众数是出现次数最多的一个,中位数是第8个数解答即可.【解答】解:第8个数是48,所以中位数为48,49出现的次数最多,出现了5次,所以众数为49.故选B.【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.9.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】连接DE,根据折叠的性质可得∠CPD=∠C′PD,再根据角平分线的定义可得∠BPE=∠C′PE,然后证明∠DPE=90°,从而得到△DPE是直角三角形,再分别表示出AE、CP的长度,然后利用勾股定理进行列式整理即可得到y与x的函数关系式,根据函数所对应的图象即可得解.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=﹣x2+x(0<x<5),纵观各选项,只有D选项符合.故选:D.【点评】本题考查了动点问题的函数图象,勾股定理的应用,作出辅助线并证明得到直角三角形,然后在多个直角三角形应用勾股定理是解题的关键.10.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为()A.9 B.6 C.3 D.3【考点】G6:反比例函数图象上点的坐标特征;KQ:勾股定理.【分析】先设点B坐标,再由等腰直角三角形的性质得出OA=AC,AB=AD,OC=AC,AD=BD,代入OA2﹣AB2=18,得到ab=9,即可求得反比例函数的解析式,然后联立方程,解方程即可求得P的横坐标.【解答】解:设点B(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD,∵OA2﹣AB2=18,∴2AC2﹣2AD2=18即AC2﹣AD2=9∴(AC+AD)(AC﹣AD)=9,∴(OC+BD)•CD=9,∴ab=9,∴k=9,∴反比例函数y=,∵△OAC是等腰直角三角形,∴直线OA的解析式为y=x,解得或,∴P(3,3),故选C.【点评】本题考查的是等腰三角形的性质和待定系数法求反比例函数的解析式,反比例函数图象上点点坐标特征,解答时,注意因式分解的运用.二、填空题(本大题有6小题,每小题4分,共24分)第10题11.分解因式:x3﹣4x= x(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.12.若二次根式有意义,则x的取值X围是x≤.【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质(被开方数大于等于0)列出关于x的不等式,然后解不等式即可.【解答】解:根据二次根式有意义,分式有意义得:1﹣2x≥0,解得:x≤.故答案是:x≤.【点评】本题考查了二次根式有意义的条件.二次根式的被开方数是非负数.13.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是20 .【考点】KH:等腰三角形的性质;16:非负数的性质:绝对值;23:非负数的性质:算术平方根;K6:三角形三边关系.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.14.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为π﹣9,.【考点】M2:垂径定理;MO:扇形面积的计算.【分析】连接OB,OA,根据圆周角定理得出∠AOD的度数,再根据弦AB⊥CD,得到OA,OE 的长,然后根据图形的面积公式即可得到结论.【解答】解:连接OA,OB,∵∠C=22.5°,∴∠AOD=45°,∵AB⊥CD,∴∠AOB=90°,∴OE=AB=3,OA=OB=AB=3,∴S阴影=S扇形﹣S△AOB=﹣6×3=π﹣9,故答案为:π﹣9.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.如图,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是.【考点】L8:菱形的性质.【分析】由在边长为2的菱形ABCD中,∠ABC=120°,易得△ABD、△CBD都是边长为2的正三角形,继而证得△BDE≌△BCF(SAS),继而证得△BEF是正三角形,继而可得当BE⊥AD,即E为AD的中点时,线段EF长最小.【解答】解:∵四边形ABCD是边长为2的菱形,∠ABC=120°,∴△ABD、△CBD都是边长为2的正三角形,∵AE+CF=2,∴CF=2﹣AE=AD﹣AE=DE,又∵BD=BC=2,∠BDE=∠C=60°,在△BDE和△BCF中,,∴△BDE≌△BCF(SAS),∴∠EBD=∠FBC,∴∠EBD+∠DBF=∠FBC+∠DBF,∴∠EBF=∠DBC=60°,又∵BE=BF,∴△BEF是正三角形,∴EF=BE=BF,当BE⊥AD,即E为AD的中点时,BE的最小值为,∵EF=BE,∴EF的最小值为.故答案为:.【点评】此题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.注意证得△BDE≌△BCF是解此题的关键.16.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)将抛物线沿y轴平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值X围是0<t<3或t=4 .(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为(,)或(﹣5,﹣32).【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)把函数化为顶点式y=a(x﹣h)2+k的形式,向下平移使抛物线与x轴只有一个交点,即把解析式中的k变成0即可.(2)取AC的中点M,过M作MN⊥AC交OC于N,连接AN则AN=,∠ACO=∠CAN,通过△M∽△OCA,求得的值,进而求得NO的值,从而得出tan∠NAO==;当P在BC的上方时,设为P1,过B作BD⊥BC交直线CP1于D,过D作DE⊥x轴于E,通过证明△BDE∽△CBO,进而求得tan∠BCP1=tan∠NAO=,从而确定D点的坐标,把D点代入直线CP1的解析式为y=k1x+3,求得P1点的坐标;当点P在BC下方时,设为P2(m,n),则∠BCP2=∠BCP1,延长DB交直线CP2于E,则点B是DE的中点,求得E点坐标,代入直线CP2的解析式为y=k2x+3,即可求得P2的坐标.【解答】解:(1)由题意,抛物线只能沿y轴向下平移,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴设平移后的抛物线的解析式为y=﹣(x﹣1)2+4﹣t(t>0),当原点O落在平移后的抛物线上时,把(0,0)代入得:0=﹣(0﹣1)2+4﹣t,解得t=3;当平移后的抛物线的顶点落在x轴上时,x=1,y=0即0=﹣(1﹣1)2+4﹣t,解得t=4,∵平移后的抛物线与线段OB有且只有一个交点∴0<t<3或t=4,故答案为:0<t<3或t=4;(2)当y=0时,﹣x2+2x+3=0,解得:x=﹣1或x=3,即A(﹣1,0)、B(3,0),取AC的中点M,过M作MN⊥AC交OC于N,连接AN,则AN=,∴∠ACO=∠CAN∵∠BCP=∠BAC﹣∠ACO,∴∠BCP=∠BAC﹣∠CAN=∠NAO∵∠ACO=∠NCM,∠AOC=∠CMN=90°,∴△M∽△OCA,∴=,∴====,∴NO=CO﹣=3﹣=,∴tan∠NAO==;当点P在BC上方时,设为P1,过B作BD⊥BC交直线CP1于D,过D作DE⊥x轴于E ∵∠OCB=∠DBE,∠BOC=∠BED=90°,∴△BDE∽△CBO,∴===tan∠BCP1=tan∠NAO=,∴BE=CO=4,DE=BO=4,OE=3+4=7∴D(7,4)设直线CP1的解析式为y=k1x+3,把(7,4)代入4=7k1+3,∴k1=,∴y=x+3令﹣x2+2x+3=x+3,解得x1=0(舍去),x2=∴P1(,),当点P在BC下方时,设为P2(m,n),则∠BCP2=∠BCP1延长DB交直线CP2于E,则点B是DE的中点∴解得,∴E(﹣1,﹣4)设直线CP2的解析式为y=k2x+3,把(﹣1,﹣4)代入﹣4=﹣k2+3,∴k2=7,∴y=7x+3令﹣x2+2x+3=7x+3,解得x1=0(舍去),x2=﹣5∴P2(﹣5,﹣32)综上所述,抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,P点坐标为(,)或(﹣5,﹣32),故答案为:(,)或(﹣5,﹣32).【点评】此题是二次函数的综合题,主要考查了相似三角形的判定和性质,对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.三、解答题(本大题有8小题,共66分)17.计算:|﹣2|﹣(1+)0+﹣cos30°.【考点】78:二次根式的加减法;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先分别计算绝对值、零次幂、二次根式和特殊角的三角函数,然后再计算乘法,后计算加减即可.【解答】解:原式=2﹣1+2﹣×,=2﹣1+2﹣,=.【点评】此题主要考查了实数的运算,关键是熟练掌握绝对值、零次幂、二次根式和特殊角的三角函数.18.如图,▱ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F.请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)结论:AF= CD或AB .证明:【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AB=CD,AB∥CD,又由E是AD的中点,易证得△AEF≌△DEC,继而证得结论.【解答】解:与AF相等的有CD或AB.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠F=∠ECD,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(ASA),∴AF=CD,∴AF=CD=AB.故答案为:AB或CD.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.19.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)【考点】T8:解直角三角形的应用.【分析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO•sin15°,AD=AO•cos15°,在Rt△BDO中根据∠OBC=45°可知BD=OD,再根据AB=AD+BD即可得出结论.【解答】解:过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO•sin15°=30×0.259=7.77(cm)AD=AO•cos15°=30×0.966=28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+≈37(cm).答:AB的长度为37cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有 3 名,D类男生有 1 名,将下面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)利用A类学生总数除以A类学生所占百分比可得调查学生总数;(2)用调查的学生总数乘以C类所占的百分比,再减去C类的男生数,从而求出C类的女生数;用调查的学生总数减去A、B、C类的学生数和D类的女生数,从而求出D类的男生数,即可补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【解答】解:(1)根据题意得:3÷15%=20(名),答:李老师一共调查了20名同学;故答案为:20;(2)C类女生:20×25%﹣2=3(名),D类男生有20﹣3﹣10﹣5﹣1=1(人),如图所示;故答案为:3,1;(3)根据题意画图如下:,由树状图可得共有6种可能的结果,其中恰好一名男同学和一名女同学的结果有3中,所以恰好是一名男同学和一名女同学的概率是=.【点评】此题主要考查了条形统计图,以及概率,关键是掌握概率=所求情况数与总情况数之比.21.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD 的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=2,DE=2,求AD的长.(3)在(2)的条件下,求弧BD的长.【考点】MC:切线的性质;MN:弧长的计算.【分析】(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到=,解方程即可得到结论;(3)利用三角函数求得∠DCE的度数,根据△AEC∽△CED,求得∠A的度数,则∠DIB即可求得,然后在直角△ABD中求得BD,从而求得半径,然后利用弧长公式求解.【解答】(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴=,∴EC2=DE•AE,∴(2)2=2(2+AD),∴AD=4.(3)∵直角△CDE中,tan∠DCE===,∴∠DCE=30°,又∵△AEC∽△CED,∴∠A=∠DCE=30°,∴∠DOB=2∠A=60°,BD=AD•tanA=4×=,∴△OBD是等边三角形,则OD=BD=,则弧BD的长是=.【点评】本题考查了切线的性质、相似三角形的判定与性质以及特殊角的三角函数值,正确证明△AEC∽△CED是关键.22.(10分)(2017•某某二模)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)n=50﹣x销售单价m(元/件)当1≤x≤20时,m=20+x当21≤x≤30时,m=10+(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?【考点】HE:二次函数的应用.【分析】(1)分两种情形分别代入解方程即可.(2)分两种情形写出所获利润y(元)关于x(天)的函数关系式即可.(3)分两种情形根据函数的性质解决问题即可.【解答】解:(1)分两种情况①当1≤x≤20时,将m=25代入m=20+x,解得x=10②当21≤x≤30时,25=10+,解得x=28经检验x=28是方程的解∴x=28答:第10天或第28天时该商品为25元/件.(2)分两种情况①当1≤x≤20时,y=(m﹣10)n=(20+x﹣10)(50﹣x)=﹣x2+15x+500,②当21≤x≤30时,y=(10+﹣10)(50﹣x)=综上所述:(3)①当1≤x≤20时由y=﹣x2+15x+500=﹣(x﹣15)2+,∵a=﹣<0,∴当x=15时,y最大值=,②当21≤x≤30时由y=﹣420,可知y随x的增大而减小∴当x=21时,y最大值=﹣420=580元∵∴第15天时获得利润最大,最大利润为612.5元.【点评】本题考查二次函数的应用、反比例函数的性质等知识,解题的关键是学会构建函数,利用二次函数的性质解决问题,属于中考常考题型.23.(10分)(2017•某某模拟)如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB 上取一点D,过点D作DE∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.(1)①求证:△ABD∽△ACE;②若CD=1,BD=,求AD的长.(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设==k,若CD=1,BD=2,AD=3,求k的值.(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若==,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)【考点】SO:相似形综合题.【分析】(1)①先利用平行线分线段成比例定理得,,进而得出结论;②利用①得出的比例式求出CE,再判断出∠DCE=90°,利用勾股定理即可得出结论;(2)同(1)的方法判断出△ABD∽△ACE,即可得出AE=3k,CE=2k,同(1)的方法得出∠DCE=90°,利用勾股定理得出DE的平方,用DE的平方建立方程求解即可;(3)同(2)的方法得出DE2=m2+n2,而DE=AE=p,即可得出结论;【解答】解:(1)①∵DE∥BC,∴,由旋转知,∠EAC=∠DAB,∴△ABD∽△ACE,②在Rt△ABC中,AC=BC,∴AB=AC,由①知,△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DCE=90°,∵△ABD∽△ACE,∴=,∴AD=AE,BD=CE,∵BD=,∴CE=,在Rt△CDE中,CD=1,CE=,根据勾股定理得,DE=2,在Rt△ADE中,AD=AE,∴AD=DE=2,(2)由旋转知,∠EAC=∠DAB,∵=∴△ABD∽△ACE,∴=k,∵AD=3,BD=2,∴AE=kAD=3k,CE=kBD=2k,∵△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DC E=90°,在Rt△CDE中,DE2=CD2+CE2=1+4k2,在Rt△ADE中,DE2=AD2﹣AE2=9﹣9k2,∴1+4k2=9﹣9k2,∴k=﹣(舍)或k=;(3)由旋转知,∠EAC=∠DAB,∵=∴△ABD∽△ACE,∴=∵AD=p,BD=n,∴AE=AD=p,CE=BD=n,∵△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DCE=90°,在Rt△CDE中,DE2=CD2+CE2=m2+n2,∵DE=AE=p,∴p2=m2+n2,∴9p2=25m2+9n2.【点评】此题是相似三角形综合题,主要考查了旋转的性质,相似三角形的判定和性质,勾股定理,直角三角形的判定,解本题的关键是得出∠DCE=90°和利用两边对应成比例夹角相等来判断两三角形相似的方法应用,还用到类比的方法解决问题.24.(12分)(2017•某某模拟)如图,在平面内直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC,点E是y轴上任意一点,记点E为(0,n).(1)求点D的坐标及直线BC的解析式;(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n 的值,使正方形的顶点F落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.(3)作点E关于AC的对称点E′,当n为何值时,AE′分别与AC,BC,AB垂直?【考点】FI:一次函数综合题.【分析】(1)利用待定系数法即可解决问题;(2)①如图1中,当点F在BC上时,作FH⊥y轴于H,作DM⊥y轴于M.由△EDM≌△FEH,推出DM=EH=1,EM=FH=n﹣2,推出F(n﹣2,n﹣1),把F点坐标代入y=﹣x+4,即可解决问题;②如图2中,当点F在AB上时,作DH⊥OC于H.由△DHE≌△EOF,可得DH=EO=1,即可解决问题;(3)分三种情形①如图3中,当AE′⊥AC时,②如图4中,当AE′⊥BC时,延长AE′交BC于G,③如图5中,当AE′⊥AB时,分别求解即可;【解答】解:(1)由题意A(﹣2,0),C(0,4),把D(m,2)代入y=2x+4解得m=﹣1,∴D(﹣1,2),∵OB=3OC,OC=4,∴OB=12,∴B(12,0),设直线BC的解析式为y=kx+b则有,解得,∴直线BC的解析式为y=﹣x+4.(2)①如图1中,当点F在BC上时,作FH⊥y轴于H,作DM⊥y轴于M.由△EDM≌△FEH,∴DM=EH=1,EM=FH=n﹣2,∴F(n﹣2,n﹣1),把F点坐标代入y=﹣x+4,得到n﹣1=﹣(n﹣2)+4,∴n=.②如图2中,当点F在AB上时,作DH⊥OC于H.由△DHE≌△EOF,可得DH=EO=1,∴n=1,综上所述,满足条件的n的值为或1.(3)①如图3中,当AE′⊥AC时,。

福建省厦门市2017年中考数学试题(含答案)

福建省厦门市2017年中考数学试题(含答案)

2017年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1. 反比例函数y =1x的图象是A . 线段B .直线C .抛物线D .双曲线2. 一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有A.1种B. 2种C. 3种 D .6种3. 已知一个单项式的系数是2,次数是3,则这个单项式可以是A. -2xy 2B. 3x 2C. 2xy 3D. 2x 3 4. 如图1,△ABC 是锐角三角形,过点C 作CD ⊥AB ,垂足为D ,则点C 到直线AB 的距离是 图1 A. 线段CA 的长 B.线段CD 的长 C. 线段AD 的长 D.线段AB 的长 5. 2—3可以表示为A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2) 6.如图2,在△ABC 中,∠C =90°,点D ,E 分别在边AC ,AB 上,若∠B =∠ADE ,则下列结论正确的是 A .∠A 和∠B 互为补角B . ∠B 和∠ADE 互为补角C .∠A 和∠ADE 互为余角D .∠AED 和∠DEB 互为余角图27. 某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该商店促销方法的是A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元 8. 已知sin6°=a ,sin36°=b ,则sin 2 6°=A. a 2B. 2aC. b 2 D . b9.如图3,某个函数的图象由线段AB 和BC 组成,其中点 A (0,43),B (1,12),C (2,53),则此函数的最小值是A .0B .12C .1D .53图310.如图4,在△ABC 中,AB =AC ,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点 C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点图4二、填空题(本大题有6小题,每小题4分,共24分)11.不透明的袋子里装有1个红球、1个白球,这些球除颜色外无其他差别.从袋子中随机摸出一个球,则摸出红球的概率是 . 12.方程x 2+x =0的解是 .13.已知A ,B ,C 三地位置如图5所示,∠C =90°,A ,C 两地的距离是4 km ,B ,C 两地的距离是3 km ,则A ,B 两地的距离是 km ;若A 地在 C 地的正东方向,则B地在C 地的 方向.14.如图6,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是边AD 的中点, 图5若AC =10,DC =25,则BO = ,∠EBD 的大小约为度 分.(参考数据:tan26°34′≈12)15.已知(39+813)×(40+913)=a +b ,若a 是整数,1<b <2,则a = . 图616.已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类(用只含有k 的代数式表示).三、解答题(本大题有11小题,共86分) 17.(本题满分7分)计算:1-2+2×(-3)2 .18.(本题满分7分)在平面直角坐标系中,已知点A (-3,1),B (-2,0), C (0,1),请在图7中画出△ABC ,并画出与△ABC关于原点O 对称的图形. 图719.(本题满分7分)计算:x x +1+x +2x +1.20.(本题满分7分)如图8,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC , AD =3 ,AB =5,求DEBC的值.图821.(本题满分7分)解不等式组⎩⎨⎧2x >2,x +2≤6+3x .22.(本题满分7分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?如图9,在△ABC 中,AB =AC ,点E ,F 分别是边AB ,AC 的中点,点D 在边BC 上.若DE =DF ,AD =2,BC =6,求四边形AEDF 的周长.图924.(本题满分7分)已知实数a ,b 满足a -b =1,a 2-ab +2>0,当1≤x ≤2时,函数y =ax (a ≠0)的最大值与最小值之差是1,求a 的值.如图10,在平面直角坐标系中,点A (2,n ),B (m ,n )(m >2),D (p ,q )(q <n ),点B ,D 在直线y =12x +1上.四边形ABCD 的对角线AC ,BD 相交于点E ,且AB ∥CD ,CD =4,BE =DE ,△AEB 的面积是2.求证:四边形ABCD 是矩形.图1026.(本题满分11分)已知点A (-2,n )在抛物线y =x 2+bx +c 上. (1)若b =1,c =3,求n 的值;(2)若此抛物线经过点B (4,n ),且二次函数y =x 2+bx +c 的最小值是-4,请画出点P (x -1,x 2+bx +c )的纵坐标随横坐标变化的图象,并说明理由.已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相交于点E.(1)如图11,EB=AD,求证:△ABE是等腰直角三角形;(2)如图12,连接OE,过点E作直线EF,使得∠OEF=30°.当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.图112017年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11. 1212. 0,-1 13. 5;正北14. 5,18,26 15. 1611 16. 2k 2-k 三、解答题(本大题共9小题,共86分) 17.(本题满分7分)解: 1-2+2×(-3)2=-1+2×9=17. ……………………………7分 18.(本题满分7分) 解:……………………………7分19.(本题满分7分) 解:xx +1+x +2x +1=2x +2x +1……………………………5分 =2 ……………………………7分解:∵ DE ∥BC ,∴ △ADE ∽△ABC . ……………………………4分 ∴ DE BC =ADAB. ……………………………6分 ∵ AD AB =35, ∴DE BC =35. ……………………………7分 21.(本题满分7分)解:解不等式2x >2,得x >1. ……………………………3分 解不等式x +2≤6+3x ,得x ≥-2. ……………………………6分不等式组⎩⎨⎧2x >2,x +2≤6+3x的解集是x >1. ……………………………7分22.(本题满分7分)解:由题意得,甲应聘者的加权平均数是6×87+4×906+4=88.2. ……………………………3分乙应聘者的加权平均数是6×91+4×826+4=87.4. ……………………………6分∵88.2>87.4,∴甲应聘者被录取. ……………………………7分23.(本题满分7分)解:∵AB =AC ,E ,F 分别是边AB ,AC 的中点,∴AE =AF =12AB . ……………………………1分又∵DE =DF ,AD =AD ,∴△AED ≌△AFD . ……………………………2分 ∴∠EAD =∠F AD .∴AD ⊥BC , ……………………………3分 且D 是BC 的中点.在Rt △ABD 中,∵E 是斜边AB 的中点,∴DE =AE . ……………………………6分同理,DF =AF .∴四边形AEDF 的周长是2AB . ∵BC =6,∴BD =3.又AD =2, ∴AB =13.∴四边形AEDF 的周长是213. ……………………………7分24.(本题满分7分)解1:由a -b =1,a 2-ab +2>0得,a >-2. ……………………………2分 ∵a ≠0,(1)当-2<a <0时, ……………………………3分 在1≤x ≤2范围内y 随x 的增大而增大, ∴ a2-a =1. ∴ a =-2 ……………………………4分 不合题意,舍去.(2)当a >0时, ……………………………5分 在1≤x ≤2范围内y 随x 的增大而减小, ∴ a -a 2=1.∴ a =2. ……………………………6分 综上所述a =2. ……………………………7分解2:(1)当a <0时, ……………………………1分 在1≤x ≤2范围内y 随x 的增大而增大, ∴ a2-a =1. ∴ a =-2. ……………………………2分 ∴ b =-3.而a 2-ab +2=0,不合题意,∴a ≠-2. ……………………………3分(2)当a >0时, ……………………………4分 在1≤x ≤2范围内y 随x 的增大而减小,∴ a -a 2=1.∴ a =2. ……………………………5分 ∴ b =1. 而a 2-ab +2=4>0,符合题意,∴ a =2. ……………………………6分 综上所述, a =2. ……………………………7分25.(本题满分7分)解1:∵ AB ∥CD ,∴∠EAB =∠ECD ,∠EBA =∠EDC .∵ BE =DE ,∴ △AEB ≌△CED . ……………………………1分∴ AB =CD =4.∵AB ∥CD ,∴四边形ABCD 是平行四边形. ……………………………2分 A (2,n ),B (m ,n )(m >2),∴ AB ∥x 轴,且CD ∥x 轴.∵ m >2,∴m =6. ……………………………3分 ∴n =12×6+1=4.∴ B (6,4).∵△AEB 的面积是2,∴△AEB 的高是1. ……………………………4分 ∴平行四边形ABCD 的高是2.∵ q <n ,∴q =2.∴p =2, ……………………………5分 即D (2,2).∵点A (2,n ),∴DA ∥y 轴. ……………………………6分∴AD ⊥CD ,即∠ADC =90°.∴四边形ABCD 是矩形. ……………………………7分解2:∵AB ∥CD ,∴∠EAB =∠ECD ,∠EBA =∠EDC .∵ BE =DE ,∴ △AEB ≌△CED . ……………………………1分∴ AB =CD =4.∵AB ∥CD ,∴四边形ABCD 是平行四边形. ……………………………2分 ∵A (2,n ),B (m ,n )(m >2),∴ AB ∥x 轴,且CD ∥x 轴.∵ m >2,∴m =6. ……………………………3分 ∴n =12×6+1=4.∴ B (6,4).过点E 作EF ⊥AB ,垂足为F ,∵△AEB 的面积是2,∴EF =1. ……………………………4分 ∵ q <n ,∴点E 的纵坐标是3.∴点E 的横坐标是4.∴点F 的横坐标是4. ……………………………5分 ∴点F 是线段AB 的中点.∴直线EF 是线段AB 的中垂线.∴EA =EB . ……………………………6分 ∵四边形ABCD 是平行四边形,∴AE =EC ,BE =ED .∴AC =BD .∴四边形ABCD 是矩形. ……………………………7分26.(本题满分11分)(1)解:∵ b =1,c =3,∴ y =x 2+x +3. ……………………………2分 ∵点A (-2,n )在抛物线y =x 2+x +3上,∴n =4-2+3 ……………………………3分 =5. ……………………………4分(2)解:∵点A (-2,n ),B (4,n )在抛物线y =x 2+bx +c 上, ∴⎩⎨⎧4-2b +c =n ,16+4b +c =n .∴b =-2. ∴顶点的横坐标是-b 2=1.即顶点为(1,-4).∴-4=1-2+c .∴c =-3. ……………………………7分 ∴P (x -1,x 2-2x -3).∵将点(x ,x 2-2x -3)向左平移一个单位得点P (x -1,x 2-2x -3), ∴将点(x ,x 2-2x -3)的纵坐标随横坐标变化的函数的图象向左平移 一个单位后可得点P (x -1,x 2-2x -3)的纵坐标随横坐标变化的函 数的图象. ……………………………8分 设p =x -1,q =x 2-2x -3,则q =p 2-4.画出抛物线q =p 2-4的图象. ……………………………11分27.(本题满分12分)(1)证明:∵四边形ABCD 内接于⊙O ,∠ADC =90°,∴∠ABC =90°.∴∠ABE =90°. ……………………………1分 ∵AC 平分∠DCB , ∴∠ACB =∠ACD . ……………………………2分 ∴AB =AD . ……………………………3分 ∵EB =AD ,∴EB =AB . ……………………………4分∴△ABE 是等腰直角三角形. ……………………………5分(2)直线EF与⊙O相离.证明:过O作OG⊥EF,垂足为G.在Rt△OEG中,∵∠OEG=30°,∴OE=2OG. ……………………………6分∵∠ADC=90°,∴AC是直径.由(1)得∠DCE=2α,又∠ADC=90°,∴∠AEC=90°-2α.∵α≥30°,∴(90°-2α)-α≤0.……………………………8分∴∠AEC≤∠ACE.∴AC≤AE. ……………………………9分在△AEO中,∠EAO=90°+α,∴∠EAO>∠AOE.∴EO>AE. ……………………………10分∴EO-AE>0.由AC≤AE得AE-AC≥0.∴EO-AC=EO+AE-AE-AC=(EO-AE)+(AE-AC)>0.∴EO>AC.即2OG≥2r.∴OG>r. ……………………………11分∴直线EF与⊙O相离. ……………………………12分。

中考数学模拟测试题 (17)

中考数学模拟测试题 (17)

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A. B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB 在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(1,) D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP 的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN 所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b= ,m= ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A. B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(1,) D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣= 6 .【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2 .【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为m<n .【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12 .【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM 的长为+或1 .【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B (3,1).(1)填空:一次函数的解析式为y=﹣x+4 ,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活m的函数关系式.动二关于22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN ,位置关系是PM⊥PN ;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);。

陕西省中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题

陕西省中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题

2017年某某省中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b24.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.47.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+98.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物米(结果保留整数,测角仪高度忽略不计)13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为.三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.16.解方程﹣2.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有人,该班女生一周内收看“两会”新闻次数的中位数是次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.2017年某某省中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣的相反数是,故选:D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.【考点】U1:简单几何体的三视图.【分析】根据主视图、左视图、俯视图的定义,可得答案.【解答】解:矩形的主视图、左视图、俯视图都是矩形,故选:B.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2【考点】4I:整式的混合运算.【分析】各项中化简得到结果,即可作出判断.【解答】解:A、原式=a5,符合题意;B、原式=﹣8a6,不符合题意;C、原式=3a2,不符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选A4.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠ABC=∠1,再根据角平分线的定义求出∠ABD,然后根据平角等于180°求出∠3,再利用两直线平行,同位角相等求解.【解答】解:∵AB∥CD,∴∠ABC=∠1=63°,∵BC平分∠ABD,∴∠ABD=2∠ABC=2×63°=126°,∴∠3=180°﹣∠ABD=180°﹣126°=54°,∵AB∥CD,∴∠2=∠3=54°.故选:C.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三【考点】F7:一次函数图象与系数的关系.【分析】先根据正比例函数y=kx的函数值y随x的增大而减小判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而减小,∴k<0,∵b=k<0,∴一次函数y=kx+k的图象经过二、三、四象限,故选A.6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.4【考点】K5:三角形的重心.【分析】根据题意画出图形,连接AG并延长交BC于点D,由等腰三角形的性质可得出AD ⊥BC,再根据勾股定理求出AD的长,由三角形重心的性质即可得出AG的长.【解答】解:如图所示:连接AG并延长交BC于点D,∵G是△ABC的重心,AB=AC=5,BC=8,∴AD⊥BC,BD=BC=×8=4,∴AD===3,∴AG=AD=×3=2.故选B.7.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+9【考点】F9:一次函数图象与几何变换.【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:将直线y=﹣3x﹣2的图象向左平移1个单位,再向上平移3个单位,得到的直线的解析式是:y=﹣3(x+1)﹣2+3=﹣3x﹣2,即y=﹣3x﹣2.故选B.8.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对【考点】LB:矩形的性质;KB:全等三角形的判定.【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,易证△ABC≌△DCB,△ABC≌△CDA,△ABC≌△BAD,△BCD≌△ADC,△BCD≌△DAB,△ADC ≌△DAB,△AOF≌△COE,△DOF≌△BOE,△DOC≌△AOB,△AOD≌△BOC故图中的全等三角形共有10对.故选D.9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°【考点】M1:圆的认识.【分析】先求得∠B,再由等腰三角形的性质求出∠BCD,则∠ACD与∠BCD互余.【解答】解:∵∠ACB=90°,∠A=40°,∴∠B=50°,∵CD=CB,∴∠BCD=180°﹣2×50°=80°,∴∠ACD=90°﹣80°=10°;故选:A.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7【考点】H3:二次函数的性质.【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选D.二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是x>9 .【考点】C6:解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣x<﹣2﹣1,合并同类项,得:﹣x<﹣3,系数化为1,得:x>9,故答案为:x>9.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为720 度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物119 米(结果保留整数,测角仪高度忽略不计)【考点】TA:解直角三角形的应用﹣仰角俯角问题;L3:多边形内角与外角.【分析】A.根据多边形的内角和公式可得答案;B.由正切函数的定义可得BC=,即可知答案.【解答】解:A.正六边形的内角和为(6﹣2)×180°=720°,故答案为:720;B、由题意知,Rt△ABC中,AC=137米,∠ABC=49°,∵tan∠ABC=,∴BC==≈119(米),故答案为:119.13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是y1<y2.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据k=6>0,得出反比例函数过第一三象限,再由x1<0<x2,得出(x1,y1)在第三象限,(x2,y2)在第一象限,即可得出答案.【解答】解:∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2,故答案为y1<y2.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(,).【考点】PA:轴对称﹣最短路线问题;D5:坐标与图形性质;L8:菱形的性质.【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===,∴AC=2,∵OA•BK=•AC•OB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,由解得,∴点P坐标(,).故答案为:(,).三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+1+2﹣4=0.16.解方程﹣2.【考点】B3:解分式方程.【分析】观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.则原方程无解.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】利用线段垂直平分线的作法作图即可.【解答】解:如图,直线DE即所求.18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有 3 人,该班女生一周内收看“两会”新闻次数的中位数是 3 次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.【考点】VC:条形统计图;W4:中位数.【分析】(1)将各观看次数的人数相加得到女生总数,观看次数最多的为众数,从小到大排列后,最中间或中间两数的平均为中位数;(2)根据题意,求出女生的关注指数,进而得到男生的关注指数,设男生人数为x,列出方程,解之可得.【解答】解:(1)该班级女生人数为:2+5+6+5+2=20(人),该班级女生收看次数的中位数是从小到大排列的第10、11个数的平均数,均为3,故中位数是3;故答案为:3,3;(2)由题意:该班女生对“两会”新闻的“关注指数”为×100%=65%,所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则=60%,解得:x=25,答:该班级男生有25人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.【考点】L9:菱形的判定;KD:全等三角形的判定与性质.【分析】(1)由平行线的性质得出∠D=∠ECF,由ASA证明△ADF≌△ECF,得出AD=CE,即可得出结论;(2)首先四边形ABCD是平行四边形,由直角三角形斜边上的中线性质得出CD=BE=BC,即可得出四边形ABCD是菱形.【解答】(1)证明:∵AD∥BC,∴∠D=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(ASA),∴AD=CE,∵CE=BC,∴AD=BC;(2)证明:∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵BD⊥DE,∴∠BDE=90°,∵CE=BC,∴CD=BE=BC,∴四边形ABCD是菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?【考点】SA:相似三角形的应用.【分析】过点C作CE⊥AB于E,根据同时同地物高与影长成正比列比例式求出AE的长度,再根据矩形的对边相等可得BE=CD,然后根据AB=AE+BE计算即可得解.【解答】解:如图,过点C作CE⊥AB于E,则四边形BDCE是矩形,所以,CE=BD=,BE=CD=,由题意得,=,所以,AE==3米,树高AB=AE+BE=3+1.2=.21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?【考点】FH:一次函数的应用.【分析】(1)根据表格中的数据可以分别求得在各个阶段的函数解析式;(2)根据(1)中的函数解析式,可以求得小华家1月份的用水量.【解答】解:(1)由题意可得,当0≤x≤13.5时,y=3.8x,<x≤×+4.65(x﹣13.5)=4.65x﹣11.475,当x>×+×(23﹣13.5)+×(x﹣23)=7.18x﹣69.665;(2)∵×<×+(23﹣13.5)×>79.2,∴79.2=4.65x﹣11.475,解得,x=19.5,即小华家1月份的用水量是19.5度.22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.【考点】X6:列表法与树状图法.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有16种等可能的结果数,再找出X辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解.【解答】解:(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率==;故答案为;(2)画树状图为:共有16种等可能的结果数,X辉和夏明恰好都选择田赛的结果数为4,所以他们恰好都选择田赛的概率==.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.【考点】MD:切线的判定.【分析】(1)连接OD,由BD=CD,OB=OA,得到OD为三角形ABC的中位线,得到OD与AC 平行,根据DF垂直于AC,得到DF垂直于OD,即可得证;(2)由直角三角形两锐角互余求出∠C的度数,利用两直线平行同位角相等求出∠ODB的度数,再由OB=OD,利用等边对等角求出∠B的度数,设BD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出圆的半径.【解答】解:(1)连接OD,∵BD=CD,OB=OA,∴OD为△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,则DF为圆O的切线;(2)∵DF⊥AC,∠CDF=30°,∴∠C=60°,∵OD∥AC,∴∠ODB=∠C=60°,∵OB=OD,∴∠B=∠ODB=60°,∵AB为圆的直径,∴∠ADB=90°,∴∠BAD=30°,设BD=x,则有AB=2x,根据勾股定理得:x2+75=4x2,解得:x=5,∴AB=2x=10,则圆的半径为5.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.【考点】HF:二次函数综合题.【分析】(1)把A、B两点坐标代入,可求得a、b的值,可求得抛物线的函数表达式;(2)根据(1)中所求抛物线的解析式可求得C点的坐标,及对称轴;(3)由A、C点的坐标可判定△COA为等腰直角三角形,若△COA∽△APB,可知△APB为等腰直角三角形,利用直角三角形的性质可求得P到x轴的距离,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点,∴,解得,∴抛物线的函数表达式为y=x2﹣x+1;(2)在y=x2﹣x+1中,令x=0可得y=1,∴C点坐标为(0,1),又y=x2﹣x+1=(x﹣3)2﹣,∴抛物线对称轴为直线x=3;(3)∵A(1,0),C(0,1),∴OA=OC=1,∴△COA为等腰直角三角形,且∠COA=90°,∵△COA∽△APB,∴△APB为等腰直角三角形,∠APB=90°,∵P在抛物线对称轴上,∴P到AB的距离=AB=×(5﹣1)=2,∴P点坐标为(3,2)或(3,﹣2).25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.【考点】KY:三角形综合题.【分析】(1)若直线CD平分△ABC的面积,那么S△ADC=S△DBC,得出AC≠BC,进而得出答案;(2)根据勾股定理可得出:AB2+BE2=CE2+DC2,进而得出BE=5,CE=3,进而得出周长与面积分别相等得出答案即可;(3)在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,结合全等三角形的判定与性质得出答案.【解答】解:(1)不能,理由:如答图1,若直线CD平分△ABC的面积,那么S△ADC=S△DBC,∴AD=BD,∵AC≠BC,∴AD+AC≠BD+BC,∴过点C不能画出一条“等分积周线”(2)如答图2,连接AE、DE,设BE=x,∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF,∵∠B=∠C=90°,AB=3,BC=8,CD=5,∴Rt△ABE和Rt△DCE中,根据勾股定理可得出:AB2+BE2=CE2+DC2,即32+x2=(8﹣x)2+52,解得:x=5,所以BE=5,CE=3,∴AB+BE=CE+DC,S△ABE=S△DCE,∴S四边形ABEF=S△ABE+S△AEF,S四边形DCEF=S△DEF+S△DCE,∴S四边形ABEF=S四边形DCEF,AF+AB+BE=DF+EC+DC,∴直线EF为四边形ABCD的“等分积周线”;(3)如答图3,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,理由:由作图可得:AF=AC﹣FC=8﹣6=2,在CB上取一点G,使得CG=AF=2,则有AB+AF=CF+CG,∵AB=BC,∴∠A=∠C,在△ABF和△CFG中,,∴△ABF≌△CFG(SAS),∴S△ABF=S△CFG,又易得BE=EG=2,∴S△BFE=S△EFG,∴S△EFC=S四边形ABEF,AF+AB+BE=CE+CF=10,∴EF是△ABC的等分积周线,若如答图4,当BM=2cm,AN=6cm时,直线MN也是△ABC的等分积周线.(其实是同一条),另外本问的说理也可以通过作高,进行相关计算说明).。

2017年数学中考模拟试题(含答案)

2017年数学中考模拟试题(含答案)

AB2017年安徽省中考数学模拟试题一、选择题(本题共12小题,共36分.在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分.) 1.下列运算正确的是( ).A .a b a b 11+-=+-B .()2222b ab a b a ++=-- C .12316+=+a a D .()222-=- 2.某地区水能资源丰富,理论蕴藏量达221.21万千瓦,己开发156万千瓦,把己开发水能资源用四舍五入法保留两个有效数字并且用科学计数法表示应记为( )千瓦.A.51016⨯ B.6106.1⨯ C.610160⨯ D.71016.0⨯ 3.如图在数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( ).A .0>b a + B .0>ab C .0>b a - D .0>b a -4.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( ). A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠55.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是( ).6.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的BC横坐标逐渐增大时,OAB △的面积将会( ). A .逐渐增大 B .不变C .逐渐减小D .先增大后减小7.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论一定正确的个数有①CE =DE ;②BE =OE ;③C B ⌒=BD ⌒;④∠CAB =∠DAB ;⑤AC =AD ( ).A .4个B .3个C .2个D .1个 8.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为( ). A .18%)201(400160=++x x B .18%)201(160400160=+-+x x C .18%20160400160=-+x x D .18%)201(160400400=+-+xx 9.2010年因干旱影响,凉山州政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是( ). A .中位数是6 B .平均数是5.8 C .众数是6 D .极差是410.如图,在△ABC 中,AB =AC =10,CB =16, 分别以AB 、AC 为直径作半圆,则图中阴影部 分面积是( ).A .4850-πB .4825-πC .2450-πD .24225-πCEBAFD 第11题图11.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④ 四边形CDFE 的面积保持不变;⑤△CDE 面积 的最大值为8.其中正确的结论是( ). A .①②③ B .①④⑤ C .①③④D .③④⑤12.已知二次函数2y ax bx c =++(a ≠0)的图象如图所 示,则下列结论:① ac >0; ② a –b +c <0; ③当 x <0时,y <0;④方程20ax bx c ++=(a ≠0)有两个大于-1的实数根.其中错误的结论有( ).A .②③B .②④C .①③D .①④二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.分解因式:x 2-2xy +y 2-9= . 14.若关于x 的分式方程311x a x x--=-无解,则a = . 15.如图,ABC △的顶点坐标分别为(36)(13)A B ,,,,(42)C ,.若将ABC △绕C 点顺时针旋转90,得到A B C '''△,则点A 的对应点A '的坐标为 .16.若关于x 、y 的二元一次方程组⎩⎨⎧=++=+3313y x ay x的解满足2<y x +,则a 的取值范围是 .17.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为()22,;②当2x >时,• •第12题x4 21y y >;③当1x =时,3BC =;④当x逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号 是 .三、解答题(本大题共7小题,共69分.解答应写出必要的文字说明、证明过程或演算步骤.)18.(本题满分8分)如图,一个被等分成4个扇形的圆形转盘,其中3个扇形分别标有数字2,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)求当转动这个转盘,转盘自由停止后,指针指向没有标数字的扇形的概率; (2)请在4,7,8,9这4个数字中选出一个数字填写在没有标数字的扇形内,使得分别转动转盘2次,转盘自由停止后指针所指扇形的数字和分别为奇数与为偶数的概率相等,并说明理由.19.(本题满分9分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)20.(本题满分9分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.21.(本题满分10分)如图,已知在梯形ABCD 中,AD ∥BC ,AB =CD ,E 、F 分别是AB 和BC 的边上的点.(1)如图①,以EF 为对称轴翻折梯形ABCD ,使点B 与点D 重合,且DF ⊥BC .若AD =4,BC =8,求梯形ABCD 的面积ABCD S 梯形的值.(2)如图②,连接EF 并延长与DC 的延长线交于点G ,如果EF k FG ∙=(k为正数),试猜想BE 与CG 有何数量关系?写出你的结论并证明之.22.(本题满分10分)某县响应“建设环保节约型社会”的号召,决定资助部分乡镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A 型、B 型沼气池共政府相关部门批给该村沼气池修建用地708m .设修建A 型沼气池x 个,修建两种型号沼气池共需费用y 万元. (1)求y 与x 之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.AB E DF C ① AB E DG C ②F23.(本题满分11分)如图,已知在Rt ABC △中,90C ∠= ,点O 在AB 上,以O为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O 圆的位置关系,并证明你的结论; (2)若:8:5AD AO =,2BC =,求BD 的长.24.(本题满分12分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.xA2017年安徽省中考数学模拟试题参考答案一、选择题(本题共12小题,共36分.在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分.)二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.)13.)3)(3(+---y x y x 14.21-==a a 或15.(8,3) 16. a <4 17.①③④ 三、解答题(本大题共7小题,共69分.解答应写出必要的文字说明、证明过程或演算步骤.)18. 解答:解:(1)∵没有标数字扇形的面积为整个圆盘面积的41,∴指针指向没有标数字扇形的概率为p=41.(3分)(2)填入的数字为9时,两数和分别为奇数与为偶数的概率相等.理由如下:设填入的数字为x ,则有下表: 和 x 2 5 6x 2x (偶) 2+x 5+x 6+x 2 2+x 偶 奇 偶 5 5+x 奇 偶 奇 6 6+x 偶 奇 偶从上表可看出,为使和分别为奇数与偶数的概率相等,则x 应满足2+x ,5+x ,6+x 三个数中有2个是奇数,一个是偶数.将所给的数字代入验算知,x=9满足条件.∴填入的数字为9.(8分) (注:本题答案不惟一,填入数字7也满足条件;只填数字不说理由的不给分.) 19.(1)如图,作AD ⊥BC 于点D …………………1分Rt △ABD 中,AD =AB sin 45°=22224=⨯……2分 在Rt △ACD 中,∵∠ACD =30°∴AC =2AD =24≈6.5…………………3分 即新传送带AC 的长度约为6.5米.……4分 (2)结论:货物MNQP 应挪走.……………5分 解:在Rt △ABD 中,BD =ABcos 45=22224=⨯……………………6分 在Rt △ACD 中,CD =AC cos30°=622324=⨯∴CB =CD —BD =)26(22262-=-≈2.1∵PC =PB —CB ≈4—2.1=1.9<2∴货物MNQP 应挪走. ……………………………9分 20.解⑴①10+7x ②12+6x ……………………………….2分 ⑵y =(12+6x )-(10+7x )y =2-x ………………………………………………….5分 ⑶∵w =2(1+x )(2-x )=-2x 2+2x +4 ∴w =-2(x -0.5)2+4.5 ∵-2<0,0<x ≤11, ∴w 有最大值,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.…..9分21. 解:(1)如图,连接AC 交BD 于点O ,作DP ∥AC 交BC 的延长线于点P.∵AD ∥BP ,AC ∥DP∴四边形ACPD 是平行四边形∴AC=DP ,∠BOC=∠BDP=90°,AD=CP=4 ∵AB=DC ∴AC=BD ∴BD=DP∴DF=21BP=21(BC+CP)=6 ∴DF BP S BPD ∙=21三角形=36………………5分(2)KCG BE 1=……………………………..6分 过点E 作EQ ∥DG ,交BC 于点Q , ∴△EQF ∽△GCF∴KFG EF CG EQ 1==…….8分 ∵AB=CD, ∴∠B=∠DCB ∵EQ ∥DG ∴∠EQB=∠DCB ∴∠EQB=∠B ∴EQ=BE ∴KCG BE 1=……………………10分 22. 解:(1)40)20(23+=-+=x x x y ………………………3分(2)由题意可得⎩⎨⎧≤-+≥-+②②②①①708)20(648264)20(320x x x x 解得:12≤x ≤14 ∵x 是正整数∴x 的取值为12、13、14即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个;……………………………………………………………7分(3)∵y=x+40,y 随x 的增加而增加,要使费用最少,则x=12 ∴最少费用为y=x+40=52(万元)村民每户集资700元与政府补助共计700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案………………………10分23.解 ⑴ 直线BD 与O 相切.1分证明:如图1,连结OD . OA OD = , A ADO ∴∠=∠.90C ∠= , 90CBD CDB ∴∠+∠= . 又CBD A ∠=∠ ,90ADO CDB ∴∠+∠= . 90ODB ∴∠= .∴直线BD 与O 相切.…………………….5分 ⑵ 如图,连结DE .AA BED FC①A B EDGC ②F P QOx (第24题)AE 是O 的直径, 90ADE ∴∠= .:8:5AD AO = , 4cos 5AD A AE ∴==.………………………7分 90C ∠= ,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==.……………………..9分 2BC = , 52BD ∴=.………………11分 24.(1)解:设抛物线为2(4)1y a x =--. ∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =∴抛物线为2211(4)12344y x x x =--=-+. …3 (2) 答:l 与⊙C 相交. …………………………4分 证明:当21(4)104x --=时,12x =,26x =.∴B 为(2,0),C 为(6,0).∴AB =设⊙C 与BD 相切于点E ,连接CE ,则90BEC AOB ∠=︒=∠.∵90ABD ∠=︒,∴90CBE ABO ∠=︒-∠.又∵90BAO ABO ∠=︒-∠,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BC OB AB =.∴2CE =.∴2CE =>.…………………………7 ∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2.∴抛物线的对称轴l 与⊙C 相交. (8)(3) 解:如图,过点P 作平行于y 轴的直线交AC 于点Q .可求出AC 的解析式为132y x =-+ (10)设P 点的坐标为(m ,21234m m -+),则Q 点的坐标为(m ,132m -+). ∴2211133(23)2442PQ m m m m m =-+--+=-+. ∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+, ∴当3m =时,PAC ∆的面积最大为274. 此时,P 点的坐标为(3,34-). (12)。

四川中考考前模拟考试《数学卷》含答案解析

四川中考考前模拟考试《数学卷》含答案解析

四川数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.31-+=( ) A. 4B. -4C. 2D. -22.下列计算中,正确的是( ) A. 2a+3a=5B. 325a a a ⋅=C. 321a a ÷=D. (-a)33a =3.某企业2017年总收入约为7380000元,这一数据用科学记数法表示为( ) A. 7.38410元B. 73.8510元C. 7.38610元D. 0.738610元4. 下列图形中,既是中心对称图形又是轴对称图形的是( ) A. 等边三角形B. 平行四边形C. 等腰梯形D. 矩形5.在一次歌唱比赛中,10名评委给某一歌手打分如下表: 成绩(分) 8.9 9.3 9.4 9.5 97 9.8 评委(名) 121411则这名歌手成绩的中位数和众数分别是( ) A. 9.3, 2B. 9.5 ,4C. 9.5,9.5D. 9.4 ,9.56.一个底面直径为2,高为3的圆锥的体积是( ) A.B. 2C. 3D. 47.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是( )A. B. C. D.8.一个菱形的四个内角度数之比依次为1:2:3:4,这个事件是( )A. 必然事件B. 随机事件C. 不可能事件D. 以上都不是9.关于x的分式方程55ax x=-有解,则字母a的取值范围是( )A. a=5或a=0B. a≠0C. a≠5D. a≠5且a≠010.将矩形ABCD沿对角线BD折叠,使得与'C重合,若2DC'=,则AB=( )A. 1B. 2C. 3D. 411.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A. 13B.23C.34D.4512.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回.点P在运动过程中速度大小不变.则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为A. B. C. D.第Ⅱ卷非选择题(84分)二、填空题(本大题共5个小题,每小题3分,满分15分)请把答案直接填在题中的横线上.13.分解因式:4a2﹣16=_____.14.一个不透明的袋子里装有除颜色不同外其他都相同的5个小球,其中红球3个、白球2个,一次从中摸出两个小球,全是红球的概率为________________.15.如图,⊙O半径为1cm,正六边形内接于⊙O,则图中阴影部分面积为_____.16.对于反比例函数2y x=,下列说法:①点()2,1--在它的图象上;②它的图象在第一、三象限;③当x 0)>时,随的增大而增大;④当x 0<时,随的增大而减小.上述说法中,正确的序号是________.(填上所有你认为正确的序号) 17.观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …………………….以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为”数字对称等式”.根据上述规律填空:27×_________=_______×_________.三、解答题(第18题6分,第19题7分,第20题11分,本大题满分24分)18.计算:()1131tan 601222π-⎛⎫+-︒--︒+÷ ⎪⎝⎭.19. 如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,连接BE 、DF ,DF 交对角线AC 于点G ,且DE=DG . (1)求证:AE=CG;(2)试判断BE 和DF 的位置关系,并说明理由.20.学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以”我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生;(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍学生人数;(5)学校若在喜爱艺术、文学、科普、体育四类中任意抽取两类建立兴趣小组,求出恰好选中是体育和科普两类的概率.四、解答题(第21题9分,第22题10分,本大题满分19分)21.如图,点D在双曲线上,AD垂直轴,垂足为A,点C在AD上,CB平行于轴交双曲线于点B,直线AB与轴交于点F,已知AC:AD=1:3,点C的坐标为(3,2).(1)求该双曲线的解析式;(2)求△OFA的面积.22.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.五、解答题(本大题满分12分)23. 如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.六、解答题(本大题满分14分)24.如图,经过原点的抛物线y=﹣x2﹣2mx(m>1)与x轴的另一个交点为A.过点P(﹣1,m)作直线PD⊥x 轴于点D,交抛物线于点B,BC∥x轴交抛物线于点C.(1)当m=2时.①求线段BC的长及直线AB所对应的函数关系式;②若动点Q在直线AB上方的抛物线上运动,求点Q在何处时,△QAB的面积最大?③若点F在坐标轴上,且PF=PC,请直接写出符合条件的点F在坐标;(2)当m>1时,连接CA、CP,问m何值时,CA⊥CP.答案与解析第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.31-+=( ) A. 4 B. -4C. 2D. -2【答案】C 【解析】【详解】解:根据正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数可知:3122-+=-=.故选C.2.下列计算中,正确的是( ) A. 2a+3a=5B. 325a a a ⋅=C. 321a a ÷=D. (-a)33a =【答案】B 【解析】A.合并同类项字母及字母的指数不变,系数相加,2a +3a =5a ,则2235a a a +=错误;B. 同底数幂相乘,底数不变,指数相加,33522a a a a +⋅==,正确;C.同底数幂相除,底数不变,指数相减,3232a a a a -÷==,则321a a ÷=错误;D.根据乘方的意义()33a a -=-,则()33a a -=错误. 故选B.3.某企业2017年总收入约为7380000元,这一数据用科学记数法表示为( ) A. 7.38410元 B. 73.8510元C. 7.38610元D. 0.738610元【答案】C 【解析】 【分析】将一个数字表示成10n a ⨯的形式,其中1≤|a |<10,n 为整数,这种表示方法叫做科学记数法.当原数较大时,n 等于原数的整数位数减去1.【详解】解:则673800007.3810=⨯.故选C.4. 下列图形中,既是中心对称图形又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 等腰梯形D. 矩形【答案】D【解析】【详解】根据轴对称图形的概念和中心对称图形的定义针对每一个选项进行分析,即可选出答案D.考点:1.中心对称图形;2.轴对称图形5.在一次歌唱比赛中,10名评委给某一歌手打分如下表:则这名歌手成绩的中位数和众数分别是( )A. 9.3,2B. 9.5 ,4C. 9.5,9.5D. 9.4 ,9.5【答案】C【解析】【分析】根据众数与中位数的定义分别进行解答即可.【详解】解:由于共有10个数据,则中位数为第5、6个数据的平均数,即中位数为9.5+9.52=9.5(分),这组数据中出现次数最多的是9.5分,一共出现了4次,则众数为9.5分,故选:C.【点睛】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.一个底面直径为2,高为3的圆锥的体积是( )A. B. 2 C. 3 D. 4【答案】A【解析】【分析】圆锥的体积等于底面积乘以高的三分之一.【详解】解:212332ππ⎛⎫⨯⨯=⎪⎝⎭故选A.7.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是( )A. B. C. D.【答案】A【解析】【详解】解:这个几何体的主视图有两层,从左起上一层有两列,下一层有三列所以其主视图为故选A.8.一个菱形的四个内角度数之比依次为1:2:3:4,这个事件是( )A. 必然事件B. 随机事件C. 不可能事件D. 以上都不是【答案】C【解析】【分析】根据必然事件、不可能事件、随机事件的概念解答即可.【详解】解:菱形的对角相等,不可能出现菱形的四个内角度数之比依次为1:2:3:4,所以这个事件是不可能事件,故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.关于x的分式方程55ax x=-有解,则字母a的取值范围是( )A. a=5或a=0B. a≠0C. a≠5D. a≠5且a≠0【答案】D 【解析】【详解】55ax x=-,去分母得:5(x﹣5)=ax,去括号得:5x﹣25=ax,移项,合并同类项得:(5﹣a)x=25,∵关于x的分式方程55ax x=-有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:255xa =-,∴255a-≠0且255a-≠5,即a≠5,a≠0,综上所述:关于x的分式方程55ax x=-有解,则字母a的取值范围是a≠5,a≠0;故选D.点睛:此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.10.将矩形ABCD沿对角线BD折叠,使得与'C重合,若2DC'=,则AB=( )A. 1B. 2C. 3D. 4【答案】B【解析】【详解】解:因为折叠前后对应线段相等,所以DC=DC′,而DC=AB,所以AB=2.故选B.11.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A. 13B. 23C. 34D. 45 【答案】C 【解析】 【分析】易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB = DF DB ,EF CD =BF BD,从而可得EF AB +EF CD =DF DB +BF BD=1.然后把AB=1,CD=3代入即可求出EF 的值. 【详解】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB,△BEF ∽△BCD ,∴EF AB = DF DB ,EF CD =BF BD, ∴EF AB +EF CD =DF DB +BF BD =BD BD =1. ∵AB=1,CD=3,∴1EF +3EF =1, ∴EF=34. 故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.12.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度大小不变.则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为A. B. C. D.2·S AP π=(是AP 二次函数),点P 从A –B 时,AP 变长,点P 从B –A 时,AP 变短,故选A第Ⅱ卷 非选择题(84分)二、填空题(本大题共5个小题,每小题3分,满分15分)请把答案直接填在题中的横线上. 13.分解因式:4a 2﹣16=_____.【答案】4(a +2)(a ﹣2)【解析】【分析】首先提取公因式4,进而利用平方差公式进行分解即可.【详解】解:4a 2﹣16=4(a 2﹣4)=4(a+2)(a ﹣2).故答案为:4(a+2)(a ﹣2).【点睛】本题是对因式分解的考查,熟练掌握因式分解的提公因式法和公式法是解决本题的关键. 14.一个不透明的袋子里装有除颜色不同外其他都相同的5个小球,其中红球3个、白球2个,一次从中摸出两个小球,全是红球的概率为________________. 【答案】310 【解析】【详解】解:这是一个等可能事件,一次从中摸出两个小球共有20种可能性,其中全是红球的可能性有6种,所以P (一次从中摸出两个小球,全是红球)=632010=. 故答案为:310. 15.如图,⊙O 的半径为1cm ,正六边形内接于⊙O ,则图中阴影部分面积为_____.【答案】6π根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【详解】解:如图,连接BO,CO,OA.由题意得,△OBC,△AOB都是等边三角形,∴∠AOB=∠OBC=60°,∴OA∥BC,∴△OBC的面积=△ABC的面积,∴图中阴影部分的面积等于扇形OBC的面积=2601= 3606ππ⨯.故答案为6π【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出阴影部分面积=S扇形OBC,属于中考常考题型.16.对于反比例函数2yx=,下列说法:①点()2,1--在它的图象上;②它的图象在第一、三象限;③当x0)>时,随的增大而增大;④当x0<时,随的增大而减小.上述说法中,正确的序号是________.(填上所有你认为正确的序号)【答案】①②④【解析】【详解】解:①因为(-2)×(-1)=2,所以点(﹣2,﹣1)在它的图象上,正确;②因为k=2>0,所以它的图象在第一、三象限,正确;③k=2>0,所以在每一个象限内,y随x的增大而减小,所以当x>0时,y随x的增大而增大,错误;④k=2>0,所以在每一个象限内,y随x的增大而减小,所以当x<0时,y随x的增大而减小,正确.故答案为①②④.17.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…………………….以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为”数字对称等式”.根据上述规律填空:27×_________=_______×_________.【答案】 (1). 792 (2). 297 (3). 72【解析】【详解】解:等式的第二个数的百位数是第一个数的个位数,第二个数的个位数是第一个数的十位数,第二个数的十位数是第一个数的数位上数字的和,等式右边的两个数分别是左边两个数的对称数.故答案为:27×792=297×72. 【点睛】本题考查的是有理数的乘法,其本质是探索规律,探索规律型问题也是归纳猜想型问题,其特点是:给出一组具有某种特定关系的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.三、解答题(第18题6分,第19题7分,第20题11分,本大题满分24分)18.计算:()1131tan 6022π-⎛⎫+-︒--︒+ ⎪⎝⎭. 【答案】4【解析】试题分析:理解负整数指数,零指数,绝对值的意义,二次根式的化简,并记住60°角的正切值.试题解析:原式=)211+-=4. 19.如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,连接BE 、DF ,DF 交对角线AC 于点G ,且D E=DG .(1)求证:AE=CG;(2)试判断BE 和DF 的位置关系,并说明理由.【答案】(1)证明见解析;(2)BE ∥DF ,理由见解析.【解析】试题分析:(1)先证∠AED=∠CGD ,再证明△ADE ≌△CDG ,根据全等三角形的对应边相等即可得出结论;(2)先证明△AEB ≌△CGD ,得出对应角相等∠AEB=∠CGD ,得出∠AEB=∠EGF ,即可证出平行线. 试题解析:(1)在正方形ABCD 中,∵AD=CD ,∴∠DAE=∠DCG ,∵DE=DG ,∴∠DEG=∠DGE ,∴∠AED=∠CGD .在△AED 和△CGD 中,{DAE DCGAED CGD DE DG∠=∠∠=∠=∴△AED ≌△CGD(AAS),∴AE=CG .(2)BE ∥DF ,理由如下:在正方形ABCD 中,AB ∥CD ,∴∠BAE=∠DCG .在△AEB 和△CGD 中,{AE CGBAE DCG AB CD=∠=∠=∴△AEB ≌△CGD(SAS),∴∠AEB=∠CGD .∵∠CGD=∠EGF ,∴∠AEB=∠EGF ,∴BE∥DF.考点:1.正方形的性质;2.全等三角形的判定与性质.20.学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以”我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生;(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数;(5)学校若在喜爱艺术、文学、科普、体育四类中任意抽取两类建立兴趣小组,求出恰好选中是体育和科普两类的概率.【答案】(1)300人;(2)补图见解析;(3)48 ;(4)480人;(5)16.【解析】【分析】(1)由折线图知喜爱文学的人数,由扇形统计图可知喜爱文学学生所占的百分比,则此则可求出参加调查学生的总数;(2)结合折线图与扇形图计算出喜爱艺术的人数和其他的人数;(3)用喜爱体育学生点总人数的百分比乘以360°;(4)用样本估计总体,通过300个中喜爱科普类书籍估计结果;(5)这是一个等可能事件,画出树状图,列出所有可能的结果,是科普和体育的结果,从而计算出是体育和科普两类的概率.【详解】解:(1)调查的学生人数为:90÷30%=300人;(2)如图(3)喜爱体育书籍的学生人数为:300―80―90―60―30=40体育部分所对的圆心角为:40100%36048 300︒︒⨯⨯=;(4)在抽样调查中,喜欢科普类书籍所占比例为:80430015=,可以估计,在全校同学中,喜欢科普类书籍人数大约占了415,人数约为1800×415=480人;(5)画出树状图:∴P(选中恰是体育和科普)=16.四、解答题(第21题9分,第22题10分,本大题满分19分)21.如图,点D在双曲线上,AD垂直轴,垂足为A,点C在AD上,CB平行于轴交双曲线于点B,直线AB与轴交于点F,已知AC:AD=1:3,点C的坐标为(3,2).(1)求该双曲线的解析式;(2)求△OFA的面积.【答案】(1)该双曲线解析式为18yx;(2)32【解析】【分析】(1)由点C的坐标为(3,2)得AC=2,而AC:AD=1:3,得到AD=6,则D点坐标为(3,6),然后利用待定系数法确定双曲线的解析式;(2)已知A(3,0)和B(9,2),利用待定系数法确定直线AB解析式,得到F点的坐标,然后利用三角形的面积公式计算即可【详解】(1)∵点C的坐标为(3,2),AD垂直x轴,∴AC=2,又∵AC:AD=1:3,∴AD=6,∴D点坐标为(3,6),设双曲线的解析式为y=k x把D(3,6)代入y=kx得,k=3×6=18,所以双曲线解析式为y=18x;(2)设直线AB的解析式为y=kx+b,∵CB平行于x轴交曲线于点B,∵双曲线的解析式为y=18x,∴B(9,2)把A(3,0)和B(9,2)代入y=kx+b得,3k+b=0,9k+b=2,解得k=13,b=-1,∴直线AB的解析式为y=13x-1,令x=0,得y=-1,∴F点的坐标为(0,-1),∴S△OFA=12×OA×OF=12×3×1=32.【点睛】本题考查了利用待定系数法确定反比例函数和一次函数解析式的方法:把求解析式的问题转化为解方程或方程组.也考查了坐标与线段之间的关系以及三角形面积公式.22.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.【答案】(1)每个篮球和每个排球的销售利润分别为25元,20元(2)购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【解析】【分析】(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意列方程组,解方程即可得到结果;(2)设购进篮球m个,排球(100﹣m)个,根据题意得不等式组即可得到结果.【详解】解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:79355 1020650 x yx y+=+=⎧⎨⎩,解得:2520 xy⎧⎨⎩==.答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m个,排球(100﹣m)个,根据题意得:200160(100)17400 1002m mmm⎪+-≤-⎧⎪⎨⎩≥,解得:10035 3m≤≤,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【点睛】本题考查一元一次不等式的应用;二元一次方程组的应用;方案型.五、解答题(本大题满分12分)23. 如图,在Rt△ABC 中,∠ABC=90°,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F ,且BF=BC ,⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G ,交于点H ,连接BD 、FH .(1)求证:△ABC≌△EBF ;(2)试判断BD 与⊙O 的位置关系,并说明理由;(3)若AB=1,求HG•HB 的值.【答案】(1)证明见试题解析;(2)相切,理由见试题解析;(3)22【解析】【分析】(1)由∠ABC=90°和FD ⊥AC ,得到∠ABF=∠EBF ,由∠DEC=∠BEF ,得到∠DCE=∠EFB ,从而得到△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.连接OB ,只需证明∠DBE+∠OBE=90°,即可得到OB ⊥BD ,从而有BD 与⊙O 相切;(3)连接EA ,EH ,由DF 为线段AC 的垂直平分线,得到AE=CE ,由△ABC ≌△EBF ,得到AB=BE=1,进而得到22AB =12BF BC ==+2422EF =+BH 为角平分线,易证△EHF 为等腰直角三角形,故222EF HF =,得到221222HF EF ==,再由△GHF ∽△FHB ,得到2HG HB HF ⋅=.【详解】解:(1)∵∠ABC=90°,∴∠CBF=90°,∵FD ⊥AC ,∴∠CDE=90°,∴∠ABF=∠EBF ,∵∠DEC=∠BEF ,∴∠DCE=∠EFB ,∵BC=BF ,∴△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.理由:连接OB ,∵DF 是AC 的垂直平分线,∴AD=DC ,∴BD=CD ,∴∠DCE=∠DBE ,∵OB=OF ,∴∠OBF=∠OFB ,∵∠DCE=∠EFB ,∴∠DBE=∠OBF ,∵∠OBF+∠OBE=90°,∴∠DBE+∠OBE=90°,∴OB ⊥BD ,∴BD 与⊙O 相切;(3)连接EA ,EH ,∵DF 为线段AC 的垂直平分线,∴AE=CE ,∵△ABC ≌△EBF ,∴AB=BE=1,∴=∴1BF BC ==+∴(2222114EF BE BF =+=++=+ 又∵BH 为角平分线,∴∠EBH=∠EFH=45°,∴∠HEF=∠HBF=45°,∠HFG=∠EBG=45°,∴△EHF 为等腰直角三角形,∴222EF HF =,∴22122HF EF ==,∵∠HFG=∠FBG=45°,∠GHF=∠GHF,∴△GHF∽△FHB,∴HF HG HB HF=,∴2HG HB HF⋅=,∴222HG HB HF⋅==+.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键.六、解答题(本大题满分14分)24.如图,经过原点的抛物线y=﹣x2﹣2mx(m>1)与x轴的另一个交点为A.过点P(﹣1,m)作直线PD⊥x 轴于点D,交抛物线于点B,BC∥x轴交抛物线于点C.(1)当m=2时.①求线段BC的长及直线AB所对应的函数关系式;②若动点Q在直线AB上方的抛物线上运动,求点Q在何处时,△QAB的面积最大?③若点F在坐标轴上,且PF=PC,请直接写出符合条件的点F在坐标;(2)当m>1时,连接CA、CP,问m为何值时,CA⊥CP.【答案】(1)BC=2;①直线AB所对应的函数关系式为y=x+4;②当a=-52时,△QAB的面积最大,此时Q的坐标为(-52,154);③符合条件的点F坐标为F1(﹣2,0),F2(0,0),F3(0,4);(2)m=32.【解析】【分析】(1)①将m=2代入y=﹣x2﹣2mx,得出y=﹣x2﹣4x,求出A(﹣4,0),B(﹣1,3),由B、C两点关于抛物线y=﹣x2﹣4x的对称轴x=﹣2对称,得出BC=2,运用待定系数法求出直线AB所对应的函数关系式;②过点Q作QE∥y轴,交AB于点E,设Q(a,﹣a2﹣4a),则E(a,a+4),QE=(﹣a2﹣4a)﹣(a+4)=﹣a2﹣5a﹣4,由S△QAB=12QE•AD求出S△QAB=﹣32(a+52)2+278,根据二次函数的性质即可求解;③分两种情况进行讨论:若点Fx轴上,设F(x,0).根据PF=PC列出方程,解方程得到F1(﹣2,0),F2(0,0);若点F在y轴上,设F(0,y),根据PF=PC列出方程,解方程得到F3(0,4),F4(0,0)与F2(0,0)重合;(2)过点C作CH⊥x轴于点H.先求出PB=m﹣1,BC=2(m﹣1),CH=2m﹣1,AH=1,再证明△ACH∽△PCB,根据相似三角形对应边成比例得出AH CHPB BC=,即12112(1)mm m-=--,解方程可求出m的值.【详解】解:(1)①当m=2时,y=﹣x2﹣4x,令y=0,得﹣x2﹣4x=0,解得x1=0,x2=﹣4,则A(﹣4,0).当x=﹣1时,y=3,则B(﹣1,3).∵抛物线y=﹣x2﹣4x的对称轴为直线x=﹣2,∴B、C两点关于对称轴x=﹣2对称,∴C(﹣3,3),BC=2.设直线AB所对应的函数关系式为y=kx+b.∵A(﹣4,0)、B(﹣1,3)在直线AB上,∴043k bk b⎧⎨⎩=-+=-+,解得14kb=⎧⎨=⎩∴直线AB所对应的函数关系式为y=x+4;②过点Q作QE∥y轴,交AB于点E(如图1).由题意可设Q(a,﹣a2﹣4a),则E(a,a+4),∴QE=(﹣a2﹣4a)﹣(a+4)=﹣a2﹣5a﹣4.∴S△QAB=12QE•AD=12×(﹣a2﹣5a﹣4)×3=﹣32(a+52)2+278,∴当a=-52时,△QAB的面积最大,此时Q的坐标为(-52,154);③分两种情况:若点F在x轴上,设F(x,0).∵PF=PC,P(﹣1,2),C(﹣3,3),∴(x+1)2+(2﹣0)2=(﹣3+1)2+(3﹣2)2,整理,得x2+2x=0,解得x1=﹣2,x2=0,∴F1(﹣2,0),F2(0,0);若点F在y轴上,设F(0,y).∵PF=PC,P(﹣1,2),C(﹣3,3),∴(0+1)2+(y﹣2)2=(﹣3+1)2+(3﹣2)2,整理,得y2﹣4y=0,解得y1=4,y2=0,∴F3(0,4),F4(0,0)与F2(0,0)重合;综上所述,符合条件的点F坐标为F1(﹣2,0),F2(0,0),F3(0,4);(2)过点C作CH⊥x轴于点H(如图2).∵P(﹣1,m),B(﹣1,2m﹣1),∴PB=m﹣1.∵抛物线y=﹣x2﹣2mx的对称轴为直线x=﹣m,其中m>1,∴B、C两点关于对称轴x=﹣m对称,∴BC=2(m﹣1),∴C(1﹣2m,2m﹣1),H(1﹣2m,0),∴CH=2m﹣1,∵A(﹣2m,0),∴AH=1.由已知,得∠ACP=∠BCH=90°,∴∠ACH=∠PCB.又∵∠AHC=∠PBC=90°,∴△ACH∽△PCB,∴AH CHPB BC=,即12112(1)mm m-=--,∴m=32.【点睛】本题考查二次函数综合题.其中涉及到运用待定系数法求一次函数解析式,二次函数的性质,三角形的面积,两点间的距离公式,相似三角形的判定与性质等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。

中考数学综合模拟测试题(附答案解析)

中考数学综合模拟测试题(附答案解析)
18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,Pn.若点P1的坐标为(2,0),则点P2 017的坐标为____________.
三、解答题(本大题共9小题,共90分)
19.计算:(π﹣3.14)0+|1﹣2 |﹣ +( )﹣1
20.先化简,再求值: ﹣ ÷ ,其中x=2.
21.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
A. 102°B. 54°C. 48°D. 78°
5.一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是
A. 100元B. 105元C. 108元D. 118元
6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),
23.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
【答案】D
【解析】
【详解】试题分析:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,

2017年数学中考模拟试题及答案

2017年数学中考模拟试题及答案

2017年数学中考模拟试题及答案A级基础题1.要使分式1x-1有意义,则x的取值范围应满足( )A.x=1B.x≠0C.x≠1D.x=02.(2013年贵州黔西南州)分式x2-1x+1的值为零,则x的值为( )A.-1B.0C.±1D.13.(2013年山东滨州)化简a3a,正确结果为( )A.aB.a2C.a-1D.a-24.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.5.已知a-ba+b=15,则ab=__________.6.当x=______时,分式x2-2x-3x-3的值为零.7.(2013年广东汕头模拟)化简:1x-4+1x+4÷2x2-16.8.(2012年浙江衢州)先化简x2x-1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:m2-4m+4m2-1÷m-2m-1+2m-1,其中m=2.2017年数学中考模拟试题及答案B级中等题10.(2012年山东泰安)化简:2mm+2-mm-2÷mm2-4=________.11.(2013年河北)若x+y=1,且x≠0,则x+2xy+y2x÷x+yx的值为________.12.(2013年贵州遵义)已知实数a满足a2+2a-15=0,求1a+1-a+2a2-1÷(a+1)(a+2)a2-2a+1的值.2017年数学中考模拟试题及答案C级拔尖题13.(2012年四川内江)已知三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,则xyzxy+yz+zx的值为________.14.先化简再求值:ab+ab2-1+b-1b2-2b+1,其中b-2+36a2+b2-12ab=0.2017年数学中考模拟试题答案1.C2.D3.B4.7z36x2y x+3x+15.326.-17.解:原式=(x+4)+(x-4)(x+4)(x-4)•(x+4)(x-4)2=x+4+x-42=x.8.解:原式=x2-1x-1=x+1,当x=2时,原式=3(除x=1外的任何实数都可以).9.解:原式=(m-2)2(m+1)(m-1)•m-1m-2+2m-1=m-2m+1+2m-1=(m-2)(m-1)+2(m+1)(m+1)(m-1)=m2-m+4(m+1)(m-1),当m=2时,原式=4-2+43=2.10.m-6 11.112.解:原式=1a+1-a+2(a+1)(a-1)•(a-1)2(a+1)(a+2)=1a+1-a-1(a+1)2=2(a+1)2,∵a2+2a-15=0,∴(a+1)2=16.∴原式=216=18.13.-4 解析:由xyx+y=-2,得x+yxy=-12,裂项得1y+1x=-12.同理1z+1y=43,1x+1z=-43.所以1y+1x+1z+1y+1x+1z=-12+43-43=-12,1z+1y+1x=-14.于是xy+yz+zxxyz=1z+1y+1x=-14,所以xyzxy+yz+zx=-4.14.解:原式=a(b+1)(b+1)(b-1)+b-1(b-1)2=ab-1+1b-1=a+1b-1.由b-2+36a2+b2-12ab=0,得b-2+(6a-b)2=0,∴b=2,6a=b,即a=13,b=2.∴原式=13+12-1=43.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 01-2017年中考模拟考试试卷数学请将答案写在答题卷相应的位置上总分120分时间100分钟一、选择题(本大题共10小题,每小题3分,共30分)1.a是3的倒数,那么a的值等于( )A.-13B.-3 C.3 D.132.国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260000平方米,将260000用科学记数法表示应为( )A.2.6×105B.26×104C.0.26×102 D.2.6×1063.某校初三参加体育测试,一组10人的引体向上成绩如下表:完成引体向上的个数7 8 9 10人数 1 1 3 5这组同学引体向上个数的众数与中位数依次是A.9.5和10B.9和10C.10和9.5 D.10和94.某不等式组的解集在数轴上表示如图所示,则这个不等式组可能是( )A.41xx>⎧⎨-⎩,≤B.41xx<⎧⎨-⎩,≥C.41xx>⎧⎨>-⎩,D.41 xx⎧⎨>-⎩≤,5.下列图形中,既是轴对称图形又是中心对称图形的是 ( )A. B.C.D.6.下列计算正确的是()A .a 5+a 4=a 9B .a 5-a 4=aC .a 5·a 4=a 20D .a 5÷a 4=a7.下列一元二次方程中,有两个不相等的实数根的是( ) A .2210x x ++=B .220x +=C .230x -=D .2230x x ++=8.如图,直线 l 1∥l 2,l 3⊥l 4,∠1=44°,那么∠2的度数( )A .46°B .44°C .36°D .22°9.已知圆心角为120°的扇形面积为12π,那么扇形的弧长为( )A .4B .2C .4πD .2π第8题图10.如图,正方形的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )二、填空题(每小题4分,共24分)11.分解因式:-24ax a = .12.如图,AB 是⊙O 的弦,⊙O 的半径OC ⊥AB 于点D ,若AB=6cm ,OD=4cm ,则⊙O 的半径为 cm .13.点(2,-3)关于原点对称的点的坐标是 .第12题图14.如图,已知∠AOB=30°,M 为OB 边上一点,以M 为圆心,2cm 为半径作一个⊙M. 若点M 在OB 边上运动,则当OM = cm 时,⊙M 与OA 相切. 第14题图15.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:32,33和34分别可以如ABOM图所示的方式“分裂”成2个,3个和4个连续奇数的和.若36也按照此规律进行“分裂”。

则36分裂出的最大的那个奇数是 .第15题图 第16题图16.如图,正方形ABCD 的边长为2cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:6tan30°+(3.14-π)0-12.18.先化简,后求值:1)111(2-÷-+x xx ,其中x = -3.19.如图,BD 为□ABCD 的对角线,按要求完成下列各题.(1)用直尺和圆规作出对角线BD 的垂直平分线交AD 于点E ,交BC 于点F ,垂足为O .(保留作图痕迹,不要求写作法)(2)在(1)的基础上,连接BE 和DF .求证:四边形BFDE 是菱形.四、解答题(本大题共3小题,每小题7分,共21分)20.自开展“学生每天锻炼1小时”活动后,某中学根据学校实际情况,决定开设A :毽子,B :篮球,C :跑步,D :跳绳四种运动项目.为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请结合图中信息解答下列问题:A B CDCE(1)该校本次调查中,共调查了多少名学生? (2)请将条形统计图补充完整;(3)在这次调查中,甲、乙、丙、丁四名学生都选择“篮球” 项目,现准备从这四人中随机抽取两人参加学校篮球队,试用列表或树状图的方法求抽取的两人恰好是甲和乙的概率.21.如图,要测量旗杆AB 的高度,在地面C 点处测得旗杆顶部A 点的仰角为45°,从C 点向外走2米到D 点处,(B 、C 、D 三点在同一直线上)测得旗杆顶部A 点的仰角为37°,求旗杆AB 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) 22.如图所示,直线AB 与反比例函数xky的图像 相交于A ,B 两点,已知A(1,4). (1)求反比例函数的解析式;(2)直线AB 交x 轴于点C ,连结OA ,当△AOC 的面 积为6时,求直线AB 的解析式.五、解答题(本大题共3小题,每小题9分,共27分)23.某童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装每天可售出20件.为了迎接“六一”节,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么每天就可多售出2件.(1)如果童装店想每天销售这种童装盈利1200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?(2)每件童装降价多少元时童装店每天可获得最大利润?最大利润是多少元?24.如图,AB 是⊙O 的直径,C 、G 是⊙O 上两点,且C 是弧AG 的中点,过点C 的直线CD ⊥BG 的延长线于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F .DCBA(1)求证:CD 是⊙O 的切线;(2)若OF FD 23=,求证:AE=AO ; (3)连接AD ,在(2)的条件下,若CD=23,求AD 的长.25. 如图(1),在平面直角坐标系中,抛物线a bx ax y 32-+=经过A(-1,0)、B(0,3)两点,与x 轴交于另一点C ,顶点为D . (1)求该抛物线的解析式及点C 、D 的坐标;(2)经过点B 、D 两点的直线与x 轴交于点E ,若点F 是抛物线上一点,以A 、B 、E 、F 为顶点的四边形是平行四边形,求点F 的坐标;(3)如图(2)P(2,3)是抛物线上的点,Q 是直线AP 上方的抛物线上一动点,求△APQ 的最大面积和此时Q 点的坐标.图(1) 图(2)2017年中考模拟考试数学答题卷题号一二三四五总分20 21 22 23 24 25得分说明:数学科考试时间为100分钟,满分为120分。

二、填空题(每小题4分,共24分,请将下列各题的正确答案填写在下面相应的位置上。

) 11. 12. 13.14. 15. 16.三、解答题(本大题共3小题,每小题6分,共18分)17.解:18.解:19.(1)(2)证明:四、解答题(本大题共3小题,每小题7分,共21分) 20.解: (1)该校本次调查中,共调查了名学生.(2)(3)解:AB CD21.解:22.(1)解:(2)解:D C BA五、解答题(本大题共3小题,每小题9分,共27分) 23.(1)解:(2)解:24.(1)(3)25.(1)图(1)(3)图2参考答案及评分标准一、选择题(本大题共10小题, 每小题3分, 共30分。

)1~5: D A C B B 6~10: D C A C B 二、填空题(每小题4分,共24分)11. )2)(2(-+x x a ; 12. 5 ; 13. (-2,3); 14. 4 ; 15. 41; 16.38三、 解答题 (本大题共3小题,每小题6分,共18分;本解答题参考答案只提供一种解法,考生选择其它解法只要解答正确,相应给分。

) 17.解:原式=32-1336+⨯………………3分 =32-132+ ………………4分=1 ………………6分18.解:原式=x x x x x x )1)(1(1111-+⨯⎪⎭⎫⎝⎛-+-- ………………2分 =xx x x x )1)(1(1-+⨯- ………………3分 = 1+x ………………4分 当3-=x 时原式2-13=+-=………………6分19.(1):作图略,(注:作图正确得2分,结论得1分,第(1)小题共3分)(2)证明:在□ABCD 中,AD ∥BC ∴∠ADB=∠CBD又∵ EF 垂直平分BD∴BO=DO ∠EOD=∠FOB=90° ∴△DOE ≌△BOF (ASA)………4分∴EO=FO∴ 四边形BFDE 是平行四边形 ………5分又∵ EF ⊥BD ∴□BFDE 为菱形………6分四、 解答题(本大题共3小题,每小题7分,共21分;本解答题参考答案只提供一种解法,考生选择其它解法只要解答正确,相应给分。

) 20.解:(1)100……1分 (2) 补全条形图略,(注:条形图C 项目的人数为20)DCBA……2分(3)树状图如下:……5分∵所有出现的结果共有12种情况,并且每种情况出现的可能性相等的,其中出现甲和乙的情况共有2种。

………6分 ∴ 恰好选到甲和乙的概率 P 21126==………7分21.解: 在Rt △ABC 中,∠ABC=90°,∠ACB=45°.∴AB=BC………1分 设AB=x 米,则BD=)2(+x 米,………2分在Rt △ABD 中,∠ABD=90°,∠ADB=37° ∴BD AB tanD =,即275.0+=x x………4分 解得6=x ………6分答:旗杆AB 的高度为6米. ………7分 22.解:(1)由已知得反比例函数解析式为y = kx ,∵点A (1,4)在反比例函数的图象上,∴4=1k,∴k =4, …………1分 ∴反比例函数的解析式为y =4x. …………2分(2)设C 的坐标为(-a ,0)()0>a ∵6=∆AOC S∴6421421=⨯⨯=⋅=∆a OC S AOC …………3分解得:3=a ∴)0,3(-C …………4分设直线AB 的解析式为:b x y +=m ∵)0,3(-C ,A (1,4)在直线AB 上 ∴bm bm +=+-=430 …………5分解得:1=m ,3=b …………6分 ∴直线AB 的解析式为:3+=x y . …………7分乙 丙 丁 甲甲 丙 丁 乙 甲 乙 丁 丙 甲 乙 丙丁五、 解答题(本大题共3小题,每小题9分,共27分,本解答题参考答案只提供一种解法,考生选择其它解法只要解答正确,相应给分。

相关文档
最新文档