典型例题:用放缩法证明不等式

合集下载

(完整版)放缩法典型例题

(完整版)放缩法典型例题

放缩法典型例题数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.一.先求和后放缩例1.正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:解:(1)由已知得,时,,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以(2),所以注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和.二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列的前项和为,且.(1) 求证:;(2)求证:解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得∴所以,,所以(2)因为,所以,所以;2.放缩后成等比数列,再求和例3.(1)设a,n∈N*,a≥2,证明:;(2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<.解:(1)当n为奇数时,a n≥a,于是,.当n为偶数时,a-1≥1,且a n≥a2,于是.(2)∵,,,∴公比.∴..∴.3.放缩后为差比数列,再求和例4.已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.4.放缩后为裂项相消,再求和例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j(1)求a4、a5,并写出a n的表达式;(2)令,证明,n=1,2,….(2)因为,所以.又因为,所以=.综上,.注:常用放缩的结论:(1)(2).在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论、为等差数列求和结果的类型,则把通项放缩为等差数列,再求和即可;如例3要证明的结论为等比数列求和结果的类型,则把通项放缩为等比数列,再求和即可;如例4要证明的结论为差比数列求和结果的类型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论为裂项相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.。

利用放缩法证明数列型不等式

利用放缩法证明数列型不等式

1 n(n 1)
1 n
-
1 n1
Sn
(1 1
1) 2
(1 2
1) 3
(1 n
1) n1
1
1 n
1
1
小结:可求和先求和,先裂项后放缩。
(2)先放缩后裂项
变式1.已知数列an 的通项公式为an
1 n2
, 且an 的前n项和为Sn,
求证 : Sn 2.
解析: an
1 n2
1 n(n 1)
(n 2)
3 2
.
解析 : 3n
-
2n
(1
2)n
2n
1
C
1 n
2
C
2 n
22
C
n n
2n
2n
C
2 n
22
2n(n
1)
(n 3)
1
1
1 1 1
3n
- 2n
2n(n 1)
2
(n
1)
n
(n 3)
当n
1时 ,S1
1
3 2
当n
2时 ,S 2
1
1 5
3 2
当n
3时 ,Sn
1
1 5
1 2
(1 2
1) 3
1 2
1
3 2
当n
2时 ,Sn
1
1 31
1 32
1 33
1 3n1
1
(1
1 3n
1 1
)
3 2
(1
1 3n
)
3 2
3
小结:先放缩构造成等比数列,再求和,最后二次放缩.
3.二项式定理放缩

典型例题:用放缩法证明不等式

典型例题:用放缩法证明不等式

用放缩法证明不等式所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。

下面举例谈谈运用放缩法证题的常见题型。

一. “添舍”放缩通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。

例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143<+<a b 。

证明:由题设得a 2+ab +b 2=a +b ,于是(a +b )2>a 2+ab +b 2=a +b ,又a +b >0,得a +b >1,又ab <14(a +b )2,而(a +b )2=a +b +ab <a +b +14(a +b )2,即34(a +b )2<a +b ,所以a +b <43,故有1<a +b <43。

例2. 已知a 、b 、c 不全为零,求证:a ab b b bc c c ac a a b c 22222232++++++++++>() 证明:因为a ab b a b b a b a b a b 22222234222++=+++=++()>()≥,同理b bc c b c 222+++>,c ac a c a 222+++>。

所以a ab b b bc c c ac a a b c 22222232++++++++++>() 二. 分式放缩一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。

例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b+++。

证明:由于a 、b 、c 为正数,所以a b c a a b c +++>,b a c b a b c +++>,c a b c a b c+++>,所以a b c b a c c a b a a b c b a b c c a b c +++++>++++++++=1,又a ,b ,c 为三角形的边,故b +c >a ,则a b c +为真分数,则a b c a a b c +++<2,同理b a c b a b c +++<2,c a b c a b c+++<2, 故a b c b a c c a ba abc b a b c c a b c +++++++++=++<++2222. 综合得12<++<a b c b a c c a b+++。

放缩法证明数列不等式

放缩法证明数列不等式

数列微专题——放缩法证明数列不等式一、常见的放缩变形: (1)()()211111n n n n n <<+-, ()()22111111111211n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭,()()22211411111412121221214n n n n n n n ⎛⎫<==- ⎪--+-+⎝⎭- (2=,从而有:22-=<<<(3)分子分母同加常数:()()0,0,0,0b b m b b m b a m a b m a a m a a m++>>>>>>>>++ (4)()()()()()()()121222221212122212121nn n n n n n n n n n--=<=------- ()1112,2121n nn n N *-=-≥∈-- 可推广为:()()()()()()()121111111nn n n n n n n n n n k k k k k k k k k k k k --=<=------- ()1112,2,,11n nn k k n N k k *-=-≥≥∈-- 二、典型例题:例1:已知数列{}n a 的前n 项和为n S ,若()14211n n S n a +=-+,且11a = (1)求证:数列{}n a 是等差数列,并求出{}n a 的通项公式 (2)设n b =,数列{}n b 的前n 项和为n T ,求证:32n T <例2:设数列{}n a 满足:111,3,n n a a a n N *+==∈,设n S 为数列{}n b 的前n 项和,已知10b ≠,112,n n b b S S n N *-=⋅∈(1)求数列{}{},n n a b 的通项公式 (2)求证:对任意的n N *∈且2n ≥,有223311132n n a b a b a b +++<---例3:已知正项数列{}n a 的前n 项和为n S ,且12,n n na S n N a *+=∈ (1)求证:数列{}2n S 是等差数列(2)记数列3121112,n n n n bS T b b b ==+++,证明:312n T <≤-例4:已知数列{}n a 满足21112,21,n n a a a n N n ++⎛⎫==+∈ ⎪⎝⎭(1)求证:数列2n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求出数列{}n a 的通项公式 (2)设n nnc a =,求证:121724n c c c +++<例5:已知数列{}n a 满足()()1111,2,412n n n n a a a n n N a --==≥∈-- (1)试判断数列()11n n a ⎧⎫+-⎨⎬⎩⎭是否为等比数列,并说明理由 (2)设()21sin 2n n n b a π-=,数列{}n b 的前n 项和为n T ,求证:对任意的4,7n n N T *∈<放缩法证明数列不等式教师版一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。

放缩法典型例题

放缩法典型例题

放缩法典型例题这类问题数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,本文介绍一类与数列和有关能有效地考查学生综合运用数列与不等式知识解决问题的能力.一是先求和再放缩,解决这类问题常常用到放缩法,而求解途径一般有两条:的不等式问题,二是先放缩再求和.一.先求和后放缩,满足1例项的和.正数数列,试求:的前(1的通项公式;)数列)设项的和为,数列,求证:的前(2,作差得:,)由已知得时,1解:(为正数数,,又因为所以的等差数列,由,即是公差为,得2,所列,所以以,所以(2)注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这满足条件里所谓的差比数列,即指数列)求和或者利用分组、裂项、倒序相加等方法来求和.二.先放缩再求和.放缩后成等差数列,再求和1项和为,.且2例.已知各项均为正数的数列的前求证:;(1)求证:(2).,)在条件中,令,又由条件解:(1,得得有,上述两式相减,注意到∴,所以,所以,所以,所以)因为(2;2.放缩后成等比数列,再求和*,证明:≥2Na,n∈;,a.例3(1)设设,A成等差数列.A,且A,,a(2)等比数列{}项的和为中,,前nA87nn9<.项的和为nB,证明:B数列{b}前nnnn,于是,.≥aa解:(1)当n为奇数时,2n a≥a,于是≥为偶数时,当na-11,且.公比.,,∴2()∵,..∴..∴.放缩后为差比数列,再求和34.求证:.已知数列,满足:例,与,所以证明:因为同号,又因为,所以,即为递增数列,所以.所以数列即,,累加得:即.,所以令,两式相减得:,所以,所以,故得..放缩后为裂项相消,再求和4(即前面某数大于后面><时中,若Pj≤m…m≥2)个不同数的排列PPPP1≤i(例5.在m i12n记排列构成一个逆序一个排列的全部逆序的总数称为该排列的逆序数某数),则称与. P.P ji的逆序数的逆序数,排列的逆序数为,如排列.a21321jn、1()求aa,并写出的表达式;a n54,证明,n2=1,2,)令….()因为,2(.所以.又因为,所以=.综上,.)注:常用放缩的结论:(1.2)(在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如、为等差数列求和结果的类型,例2要证明的结论则把通项放缩为等差数要证明的结论为等比数列求和结果的类型,则把通列,再求和即可;如例3要证明的结论为差比数列求和结果的类型,如例项放缩为等比数列,再求和即可;4要证明的结论为裂项5则把通项放缩为差比数列,再求和即可;如例相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.。

不等式证明 之 放缩法

不等式证明 之 放缩法

不等式证明 之 放缩法放缩法的定义所谓放缩法,即要证明不等式A<B 成立,有时可以将它的一边放大或缩小,寻找一个中间量,如将A 放大成C ,即A<C ,后证C<B ,这种证法便称为放缩法。

使用放缩法的注意事项(1)放缩的方向要一致。

(2)放与缩要适度。

(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。

(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。

典例分析:例1、 设x>y>z ,n *N ∈,且z x n z y y x -≥-+-11恒成立,求n 的最大值.例2、 已知:x>0,y>0,z>0,求证:z y x z yz y y xy x ++>+++++2222.例3、 求证:n n n 21...31211112<++++<-+)(, n *N ∈.例4、 求证:21...31211222<++++n ,n *N ∈.变式:求证:471...31211222<++++n,n *N ∈.例5、 已知:)()1(...433221+∈+⨯++⨯+⨯+⨯=N n n n a n ,, 求证:2)2(2)1(+<<+n n a n n n .例6、{}n b 满足:2111,(2)3n n n b b b n b +≥=--+(1) 用数学归纳法证明:n b n ≥(2) 1231111...3333n n T b b b b =++++++++,求证:12n T < 解:(1)略(2) 13()2(3)n n n n b b b n b ++=-++又 n b n ≥132(3)n n b b +∴+≥+ , *n N ∈ 迭乘得:11132(3)2n n n b b -++≥+≥ *111,32n n n N b +∴≤∈+ 234111111111 (2222222)n n n T ++∴≤++++=-< 点评:把握“3n b +”这一特征对“21(2)3n n n b b n b +=--+”进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。

放缩法证明导数不等式

放缩法证明导数不等式

放缩法证明导数不等式在用导数证明的不等式中,有时采用适当的放缩,会使解题过程事半功倍。

下面先介绍几个不等式。

①1+≥x e x (当且仅当x=0时取等号)对①式两边同时取以e 为底的对数得到②式②x x ≤+)1ln(,()+∞-∈,1x (当且仅当x=0时取等号) ②式中用x-1替换x ,得到③式③1ln -≤x x ,()+∞∈,0x (当且仅当x=1时取等号) ③式中用x 1替换x , 得到x x x -≤11ln 即 ④xx x 1ln -≥ , ()+∞∈,0x (当且仅当x=1时取等号) 由③④式可得 ⑤1ln 1-≤≤-x x xx ,两边等号成立的条件均为x=1 ⑤式中用x+1替换x 得到 ⑥()x x x x ≤+≤+1ln 1,两边等号成立的条件均为x=0 ①式中用x-1替换x ,得到x e x ≥-1,所以x ee x≥,即 ⑦ex e x ≥,(当且仅当x=1时取等号)令()x x x f ln =,则令()0ln 1'=+=x x f ,得e x 1=。

⎪⎭⎫ ⎝⎛∈e x 1,0时,()0'<x f ,()x f 单调递减;⎪⎭⎫ ⎝⎛+∞∈,1e x 时,()0'>x f ,()x f 单调递增,所以()x f 的最小值为e e f 11-=⎪⎭⎫ ⎝⎛,即e x x 1ln -≥,所以得到⑧ex x 1ln -≥,(当且仅当ex 1=时取等号) 以上的不等式应用在在证明过程中时需要先证明,下面用几个例题说明一下例1, 求证02ln 2≤+--ex e ex x ex x证明:先证ex e x ≥令()ex e x f x -=,则()()11'-=-=-x x e e e e x f ,则()1,0∈x 时,()0'<x f ,()x f 单调递减,()+∞∈,1x 时,()0'>x f ,()x f 单调递增。

放缩法证明数列不等式

放缩法证明数列不等式

似,只不过放缩后的 bn 是可求积的模型,能求积的常见的数列
模型是 bn

cn1 cn
(分式型),累乘后约简为
n i 1
bi

cn1 c1
.
n
(三)形如 a f (n) i
i 1
例6
求证:1 3 5 2n 1 1 (n N)
246
2n 2n 1
1 3 5 2n 1 1
对 1 放缩方法不同,得到的结果也不同. 显然 5 7 2 ,
n2
34
故后一个结论比前一个结论更强,也就是说如果证明了变式 3,
那么变式 1 和变式 2 就显然成立.
对1 n2
的 3 种放缩方法体现了
三种不同“境界”,得到
n k 1
1 k2
的三个“上界”.
【方法总结之二】
放缩法证明与数列求和有关的不等式的过程 中,很多时候要“留一手”, 即采用“有所保留” 的方法,保留数列的第一项或前两项,从数列的第 二项或第三项开始放缩,这样才不致使结果放得过 大或缩得过小.
求证:(11)(1 1)(1 1) (1 1 ) 3 3n 1 (n N*)
47
3n 2
课堂小结
本节课我们一起研究了利用放缩法证明数列不等 式,从中我们可以感受到在平时的学习中有意识地去 积累总结一些常用的放缩模型和放缩方法非常必要, 厚积薄发,“量变引起质变”
例如:我们可以这样总结本节课学到的放缩模型:
23
100
分析 不能直接求和式 S ,须将通项 1 放缩为裂项相消模型后求和. n
思路 为了确定S的整数部分,必须将S的值放缩在相邻的两个
整数之间.
例4 (2012广东理19第(3)问) 求证: 1 1 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用放缩法证明不等式
所谓放缩法就是利用不等式的传递性, 对照证题目标进行合情合理的放大和缩小的过程,
在使用
放缩法证题时要注意放和缩的 度”否则就不能同向传递了,此法既可以单独用来证明不等式,也可 以是其他方法证题时的一个重要步骤。

下面举例谈谈运用放缩法证题的常见题型。

一. 添舍”放缩
通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。

例1.设a ,b 为不相等的两正数,且a 3— b 3 = a 4 5 — b 2,求证1<a + b v 63 O
3
证明:由题设得 a 2+ ab + b 2= a + b ,于是(a + b ) 2>a 2+ ab + b 2= a + b ,又 a + b >0,得 a + b > 1,又 ab < 4 (a + b ) 2,而(a + b ) 2 = a + b + ab <a + b + 4 (a + b ) 2,即 4 (a + b ) 2<a + b ,所以 a + b < 3 ,故有 1<a + b < 4。

3
3
例2.已知a 、b 、C 不全为零,求证:
a
2
ab
b
2
b 2 b
c C
ac a 2
> 2 (a b C )
一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加 上同一个正数则分式值变大,禾U 用这些性质,可达到证题目的。

b 2
bc c 2
> b C

∙. c 2
ac a 2
> C a。

5 2
所以 a 2 ab b 2
b
2
bc
C 2
心 ac a 2
> 2

a b
C

二. 分式放缩
例3.已知a b 、C 为三角形的三边,求证:1< L + L + J < 2 o
b C a C a b
证明:由于a b 、C 为正数,所以严> —,4 > J ,七 > —,所以
b C a b
c a C a b c a b a b C
证明:因为叫―ab b21(a 2)2∣b2> J (a号)a b ≥ a号,同理
b⅜ +
出+
0⅜ >靑五+
^+⅛+C +
希C =1 ,又a ,b ,C
为三角形的边,故b+c >a,则代 为真分数,则斗V 罕,同理旦V J ,化V J ,
b C a b C a C ab C ab ab C
综合得1V J + L + -
b CaCa
三. 裂项放缩
都成立。

利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。

X
例6.已知函数f(x)
,证明:对于n N *且n 3都有f(n) —。

2x 1
n 1
证明:由题意知
n(n 1) 3 2 2
2n
(n 1)2
2
,综合知结论成立。

故b⅜ ÷丧÷缶V 备÷石
2b __ , 2c 2
^b ―C 十 a ―b ―C .
若欲证不等式含有与自然数 n 有关的 n 项和,可采用数列中裂项求和等方法来解题。

例4.已知n ∈ N* ,求1
1
V 2、
n 。

证明:因为, 则1
1
2
2 ( .2 1)
2 ( 、
3 、2)
…2 ( . n In 1) 2.. n 1V 2∙- n ,证毕。

例5.已知n
.n(n 1),求证:
n(n 1) 2
(n I)
2
对所有正整数n
2
证明:因为...n(n 1)
n 2
n ,所以
a n
n(n 1)

对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目的
III
例8.已知a b c ,求证」 ——0
a b b CCa
证明:因为a b c ,所以可设a C t , b C u(t
1
1
1 IIIItU
be CatUUtUt tu
例9.已知a, b ,CABC 的三条边,且有a 2
b 2 C 2 ,当n N *且n 3时,求证:a n
b n
C n 。

证明:由于 a 2 b 2 c 2 ,可设 a=csina, b=ccosa (a 为锐角),因为 0 Sina 1, 0 CQSa 1 ,则 当 n 3时,
Sin rι a Sin 2 a , CQS n a CQS 2 a ,
所以 a n b n C n (Sin n a CQS n a) C n (Sin 2 a CQS 2 a) C n 。

六.单调函数放缩
根据题目特征,通过构造特殊的单调函数,利用其单调性质进行放缩求解。

证明:构造函数f(x) -(X 0),首先判断其单调性,设0 X 1 X 2 ,因为
1 X
X 1
X 2
X 1 X 2
十、
例10.已知a, b ∈ R ,求证
a b ∣ 1 a b
f(n)
n 2n 1 n n 1
2n 1 n 1
(I
H
(1
2n
- 卑卫又因为n N *且
(n 1)(2
1)
2n
所以只须证2n 2n 1,
又因为
(1 1)
n
c
n 0
C
n 1
C
n 2 C
n n1
n(n 1) n 2
2n 1 所以 f(n)
7.已知 f (x) , 1 X 2 ,求证:当a (a ) f (b )
证明:f (a ) f (b )
a 2
. 1 b 2
a 2
b 2 1 a 2
、、1 b
2
a b ∣∣a
1 a
2 . 1 b 2
a ba b
a I b
(a b
∣)a
a b 证毕。

U 0),所以t U
1 1 b C Ca
f X 2 ,所以 f(X)在[0, ]上是增函数,取
f (X I ) f (X 2)
Γ7 r (1 X 1
)(1 X 2
)
,所以
fX 1
x ι a b , X 2 a b , 显然满足 0 X i
X 2 ,
又、.n(n 1)
所以 f(a b) f(∣a ∣ ∣b ∣), 即 ∣a b| |a| |b|
1 ∣a b| 1 |a| |b|
|a| 1 |a| |b|
|b| 1 |a| |b|
旦 JbL
∏Γ∣ ∏b ∣
证毕。

相关文档
最新文档