用放缩法证明不等式的方法与技巧
放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.1求的值;2求证:.解析:1因为,所以2因为,所以奇巧积累:1 2 34 5 6 7 8 9 10 11111213 14 15 15 例2.1求证: 2求证: 3求证: 4 求证:解析:1因为,所以2 3先运用分式放缩法证明出,再结合进行裂项,最后就可以得到答案4首先,所以容易经过裂项得到再证而由均值不等式知道这是显然成立的,所以例3.求证: 解析:一方面:因为,所以另一方面: 当时,,当时,,当时,,所以综上有例 4.2008年全国一卷设函数.数列满足..设,整数.证明:解析:由数学归纳法可以证明是递增数列,故存在正整数,使,则,否则若,则由知,,因为,于是例5.已知,求证: 解析:首先可以证明: 所以要证只要证:故只要证,即等价于,即等价于而正是成立的,所以原命题成立.例6.已知,,求证:.解析:所以从而例7.已知,,求证:证明: ,因为,所以所以二、函数放缩例8.求证: 解析:先构造函数有,从而因为所以例9.求证:1 解析:构造函数,得到,再进行裂项,求和后可以得到答案函数构造形式: ,例10.求证:解析:提示:函数构造形式:当然本题的证明还可以运用积分放缩如图,取函数,首先:,从而,取有,,所以有,,…,,,相加后可以得到:另一方面,从而有取有,,所以有,所以综上有例11.求证:和.解析:构造函数后即可证明例12.求证: 解析:,叠加之后就可以得到答案函数构造形式:加强命题例13.证明: 解析:构造函数,求导,可以得到:,令有,令有,所以,所以,令有,所以,所以例14. 已知证明.解析: ,然后两边取自然对数,可以得到然后运用和裂项可以得到答案放缩思路:。
利用放缩法证明数列型不等式

1 n(n 1)
1 n
-
1 n1
Sn
(1 1
1) 2
(1 2
1) 3
(1 n
1) n1
1
1 n
1
1
小结:可求和先求和,先裂项后放缩。
(2)先放缩后裂项
变式1.已知数列an 的通项公式为an
1 n2
, 且an 的前n项和为Sn,
求证 : Sn 2.
解析: an
1 n2
1 n(n 1)
(n 2)
3 2
.
解析 : 3n
-
2n
(1
2)n
2n
1
C
1 n
2
C
2 n
22
C
n n
2n
2n
C
2 n
22
2n(n
1)
(n 3)
1
1
1 1 1
3n
- 2n
2n(n 1)
2
(n
1)
n
(n 3)
当n
1时 ,S1
1
3 2
当n
2时 ,S 2
1
1 5
3 2
当n
3时 ,Sn
1
1 5
1 2
(1 2
1) 3
1 2
1
3 2
当n
2时 ,Sn
1
1 31
1 32
1 33
1 3n1
1
(1
1 3n
1 1
)
3 2
(1
1 3n
)
3 2
3
小结:先放缩构造成等比数列,再求和,最后二次放缩.
3.二项式定理放缩
不等式放缩法

利用放缩法证明数列型不等式一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。
裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。
例1设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =。
设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑。
点评: 关键是将12(21)(21)n n n +--裂项成1112121n n +---,然后再求和,即可达到目标。
(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。
例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 71112n +≥。
点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成1122112222n n n n S S S S S S S ----+-++-+的和,从而找到了解题的突破口。
2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。
用于解决积式问题。
例3 已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。
若3*3log 2(),n n c a n N =-∈证明对任意的*n ∈N,不等式12111(1)(1+)(1+)nc c c +⋅⋅>点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。
33131(1+)()32n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131()323231332n n n n n n n n n n --++>⋅⋅=----,而通项式为31{}32n n +-的数列在迭乘时刚好相消,从而达到目标。
用放缩法证明方法与技巧

二、常见的放缩法技巧 1、基本不等式、柯西不等式、排序不等式放缩
b bm (m 0, a b) . 2、糖水不等式放缩: a am
3、添(减)项放缩 4、先放缩,后裂项(或先裂项再放缩) 5、逐项放大或缩小:
三、常用公式
1 1 1 1. 2 k (k 1) k k (k 1)
0, a t a, a t a
n 1 n , 2 n n n 1 , n 1 1 n 1 , n(n 1) n 2 n 1 1 1 1 1 1 1 (3) 2 (n 1) n n 1 n(n 1) n n(n 1) n 1 n 2 2 1 2 (4) 2( n 1 n ) 2( n n 1) n 1 n n n n n n 1 a a a am , (5)若 a, b, m R ,则 b bm b b 1 1 1 1 1 1 1 2 n 1 (6) 1 2! 3! n! 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 (1 ) ( ) ( ) (7) (因为 ) 22 32 n2 2 2 3 n 1 n n 2 (n 1)n 1 1 1 1 1 1 1 n 1 (7) n 1 n 2 n 3 2n n 1 n 1 n 1 n 1 1 1 1 1 1 1 1 n 1 或 n 1 n 2 n 3 2n 2n 2n 2n 2n 2 1 1 1 1 1 1 n n 等等。 (8) 1 2 3 n n n n n
一、放缩法原理 为了证明不等式 A B , 我们可以找一个或多个中间变量 C 作比较, 即若能判定 A C, C B 同时成立, 那么 A B 显然正确。 所谓 “放” 即把 A 放大到 C,再把 C 放大到 B;反之,由 B 缩小经过 C 而变到 A, 则称为“缩” ,统称为放缩法。放缩是一种技巧性较强的不等变形,必 须时刻注意放缩的跨度,做到“放不能过头,缩不能不及” 。
恰当运用放缩法 巧证导数不等式

-
2 x3
x ∈[1,2],
,
因此只需证
3 x
+
1 x2
-
2 x3
≥
3 2
,x
∈ [1,2].
令 h( x)
=
3 x
+
1 x2
-
2 x3
,x
∈
[1
,2],则
h'( x)
=
- 3x2
- 2x x4
+
6.
设 φ( x) = - 3x2 - 2x + 6,则 φ( x) 在[1,
2]上单调递减,因为 φ( 1) = 1,φ( 2) = - 10,
区间上的符号很难确定,而通过对 槡x + 1 进
行放 缩 处 理,使 问 题 得 到 解 决. 上 面 的 解 法
中,难点在用基本不等式证明 槡x + 1
<
x 2
+
1,亦即是将抛物线弧 y = 槡x + 1 放大化简为
直线段 y =
x 2
+ 1,而该线段正是抛物线弧 y
= 槡x + 1 在左端点( 0,1) 处的切线. 这种“化 曲为直”的 方 法 是 我 们 用 放 缩 法 处 理 函 数 问
ln x ≤ x - 1( x > 0) .
它们源于高中教材( 人教 A 版选修 2 - 2,
P32 ) 的一组习题,曾多次出现在高考试题中.
例 3 ( 2014 年全国高考题) 设函数 f( x)
=
aex ln
x
+
bex x
-1
,曲线
y
=
f(
x)
在点 t 处的切
放缩法技巧全总结

放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析n35 (12) 11)1()1()1)(1(23--+⋅⎪⎪⎭ ⎝+--=+-<⋅=n n n n n n n n n n n n (13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ (4) 求证:)112(2131211)11(2-+<++++<-+n n n Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(21112131(211)12(112--+>+-+>-∑=n n i nin1+例解所以当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n.n++-m k 11]例例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明: nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ.解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n+++--<++++ΛΛ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ解析例-in i n -取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+Λ,所以综上有n n n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ.解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案题) 例13.证明:)1*,()1(ln 4ln 3ln 2ln >∈-<++++n N n n n n Λ 例解析即.2ln ln 21e a a a n n <⇒<-注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2≥->n n n n来放缩:.)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n111)1ln()1ln()1(1)]1ln()1ln([212112<-<+-+⇒-<+-+⇒∑∑-=+-=na a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-<⇒+<+例16.(2008年福州市质检)已知函数.ln )(x x x f =若).()(2ln )()(:,0,0b f b a f b a a f b a -+≥++>>证明解析:设函数()()(),(0)g x f x f k x k =+->∴函数k k x g ,2[)(在)上单调递增,在]2,0(k 上单调递减.∴)(x g 的最小值为)2(k g ,即总有).2()(kg x g ≥而,2ln )()2ln (ln 2ln )2()2()2(k k f k k kk k k f k f k g -=-==-+=即.2ln )()()(k k f x k f x f -≥-+令,,b x k a x=-=则.b a k +=例15.(2008年厦门市质检) 已知函数)(x f 是在),0(+∞上处处可导的函数,若)()('x f x f x >⋅在0>x)n x +令2)1(n x n +=,有 所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n nn n ∈++>++++++Λ(方法二)⎪⎭⎫ ⎝⎛+-+=++≥+++>++21114ln )2)(1(4ln )2)(1()1ln()1()1ln(222n n n n n n n n n 所以)2(24ln 21214ln )1ln()1(14ln 413ln 312ln 2122222222+=⎪⎭⎫ ⎝⎛+->++++++n n n n n Λ 又1114ln +>>n ,所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n n n n ∈++>++++++Λ 三、分式放缩姐妹不等式:)0,0(>>>++>m a b ma mb a b 和)0,0(>>>++<m b a m a mb a b记忆口诀”小者小,大者大”,解释:看b ,若b 小,则不等号是小于号,反之. 例19. 姐妹不等式:121211()511)(311)(11(+>-++++n n Λ和121211()611)(411)(211(+<+---n n Λ也可以表示成为12)12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n ΛΛ和1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得 ⇒例2)21n n > 例{}n B 满足OA . 解析:(1) 依题设有:(()10,,,0n n n n A B b b n ⎛⎫> ⎪⎝⎭,由1n OB n =得: 2*212,1,n n n b b b n N n +=∴=∈,又直线nnA B 在x 轴上的截距为n a 满足 显然,对于1101nn >>+,有*14,nn a a n N +>>∈(2)证明:设*11,n n nb c n N b +=-∈,则设*12,n n S c c c n N =+++∈L ,则当()*221k n k N =->∈时,212311112222222k k k -->⋅+⋅++⋅=L 。
放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤a n n a )2111(⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
高数放缩法技巧全总结

高数放缩法技巧全总结
高等数学中的放缩法是一种常用的求极限、证明不等式等问题的方法,它在解
题过程中具有非常重要的作用。
放缩法的核心思想是通过适当的变形和估计,将原问题转化为一个更容易处理的形式,从而简化解题过程。
下面我们就来总结一下高数放缩法的一些技巧和方法。
首先,对于一些复杂的不等式问题,我们可以尝试使用放缩法来简化证明过程。
例如,对于一些涉及三角函数的不等式,我们可以尝试将其转化为一个更简单的形式,然后再进行证明。
在这个过程中,我们需要灵活运用三角函数的性质和不等式的性质,找到合适的放缩方法,从而达到简化证明的目的。
其次,对于一些涉及极限的问题,放缩法同样可以发挥作用。
在求解极限的过
程中,我们可以通过放缩的方式,将原极限转化为一个更容易处理的形式,然后再进行求解。
这种方法在一些复杂的极限问题中尤其有效,可以大大简化求解过程,提高解题效率。
另外,放缩法还可以应用于一些数学建模和物理问题中。
在实际问题中,我们
经常会遇到一些复杂的模型和方程,通过放缩法,我们可以将原问题简化,从而更好地理解和解决实际问题。
总的来说,高数放缩法是一种非常重要的解题方法,它可以在不等式证明、极
限求解、数学建模等方面发挥重要作用。
在使用放缩法时,我们需要灵活运用数学知识,找到合适的放缩方法,从而简化解题过程,提高解题效率。
希望以上总结的放缩法技巧能够帮助大家更好地掌握这一解题方法,提升数学解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用放缩法证明不等式的方法与技巧一.常用公式1.)1(11)1(12-<<+k k k k k 2.12112-+<<++k k k k k3.22k k ≥()4≥k 4.1232kk ⨯⨯⨯⋅⋅⋅⨯≥(2≥k )5.⎥⎦⎤⎢⎣⎡--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ (待学) 二.放缩技巧所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”.常用的放缩技巧 (1)若0,,t a t a a t a >+>-<(2)<>11>,n >= (3)21111111(1)1(1)(1)1n n n n n n n n n n-=<<=->++-- (4)=<=<= (5)若,,a b m R +∈,则,a a a a m b b m b b+><+ (6)21111111112!3!!222n n -+++⋅⋅⋅+<+++⋅⋅⋅+(7)2221111111111(1)()()232231n n n+++⋅⋅⋅+<+-+-+⋅⋅⋅+--(因为211(1)n n n <-) (7)1111111112321111n n n n n n n n n +++⋅⋅⋅+≤++⋅⋅⋅+=<+++++++或11111111123222222n n n n n n n n n +++⋅⋅⋅+≥++⋅⋅⋅+==+++(8)1+⋅⋅⋅+>⋅⋅⋅+== 三.常见题型(一).先求和再放缩: 1.设11112612(1)n S n n =+++++,求证:1n S <2.设1nb n =(n N *∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T <(二).先放缩再求和: 3.证明不等式:11112112123123n++++<⨯⨯⨯⨯⨯⨯⨯4.设222111123nS n =++++(1)求证:当2n ≥时,21n nS n <<+; (2)试探究:当2n ≥时,是否有65(1)(21)3n n S n n <<++?说明理由.5.设135212462n n b n -=⋅⋅⋅⋅,求证: (1)n b <(2)1231n b b b b ++++<6.设na n =,212()n n nb a a +=+求证(1)12n n a a +<+(2)*123()1n nb b b b n N n ++++<∈+7. 设2(1)nb n =+,(1)n a n n =+, 求证:1122111512n n a b a b a b +++<+++…8. 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 个图的蜂巢总数.(4),(5)f f 的值,并求()f n 的表达式(不要求证(1)试给出明); (2)证明:11114(1)(2)(3)()3f f f f n ++++<.9.(10广州)设n S 为数列}{na 的前n 项和,对任意的∈n N*,都有()1nn S m ma =+-m (为常数,且0)m >.(1)求证:数列}{na 是等比数列;(2)设数列}{na 的公比()m f q =,数列{}nb 满足()1112,nn b a bf b -== (2n ≥,∈n N *),求数列{}n b 的通项公式;(3)在满足(2)的条件下,求证:数列{}2nb 的前n 项和8918nT<.10.(010深圳)在单调递增数列{}n a 中,11a =,22a =,且21221,,n n n a a a -+成等差数列,22122,,n n n a a a ++成等比数列,1,2,3,n =.(1)分别计算3a ,5a 和4a ,6a 的值;(2)求数列{}n a 的通项公式(将n a 用n 表示); (3)设数列1{}n a 的前n 项和为n S ,证明:42n nS n <+,n *∈N .2.证:1nb n=21111()(2)22n b b b n n n n +==-++1324352n n n T b b b b b b b b +=+++11111111111[()()()()()]2132435462n n =-+-+-+-++-+11113(1)22124n n =+--<++ . 3.证明:1111112123123n++++⨯⨯⨯⨯⨯⨯⨯<211111222n -++++1122n -=-<2 4.解:(1)∵当2n ≥时,21111(1)1n n n n n<=--- ∴2221111111111[(1)()()]2322311n n n ++++<+-+-++--+=121n -+2< 又∵21111(1)1n n n n n >=-++ ∴11111(1)()()2231nS n n >-+-++-+1111n n n =-=++ ∴当2n ≥时,21n nS n <<+. (2)∵22144112()4(21)(21)2121n n n n n n =<=--+-+ ∴222111111111112[()()()]2335572121n n n ++++<+-+-++--+=52321n -+53< 当2n ≥时,要6(1)(21)nn S n n >++只需61(1)(21)n nn n n >+++即需216n +>,显然这在3n ≥时成立 而215144S =+=,当2n ≥时6624(1)(21)(21)(41)5n n n ⨯==++++ 显然5445> 即当2n ≥时6(1)(21)nnS n n >++也成立综上所述:当2n ≥时,有65(1)(21)3n n S n n <<++.5.证法一:∵22414,n n -<∴222(21)(21)4(21)(21)4(21).n n n n n n n -+<⇒-+<-∴212n n -< ∴13521352124623572121n n n n n --⋅⋅⋅⋅<⋅⋅⋅⋅=++.………………10分证法二:212n n -<=,下同证法一. …………10分证法三:(利用对偶式)设135212462n n A n -=⋅⋅,246235721n nB n =⋅⋅+, 则121n n A B n =+.又22414n n -<,也即212221n n n n -<+,所以n n A B <,也即2121n n n A A B n <=+, 又因为0n A >,所以n A <.即13521.246221n n n -⋅⋅⋅⋅<+ ………………10分 证法四:(数学归纳法)①当1n =时, 1123x =<,命题成立;②假设n k =时,命题成立,即135********k k k -⋅⋅<+,则当1n k =+时,135********24622(1)2(1)2(2)21k k k k k k k k k -+++⋅⋅⋅<⋅=++++ 2222222211(21)(23)4(1)4(1)234(23)(1)(483)(484)104(23)(1)4(23)(1)k k k k k k k k k k k k k k k k +++-+-=++++++-++-==<++++22114(1)23k k k +∴<++ 即212223k k k +<++ 即135212124622(1)23k k k k k -+⋅⋅⋅<++故当1n k =+时,命题成立.综上可知,对一切非零自然数n ,不等式②成立. ………………10分②由于2121212121k k k k k <<+--+++-, 所以212121k b k k k <<+--+, 从而12(31)(53)(2121)211n b b b n n n ++<-+-+++--=+-.也即12211n n b b b a ++<+………………14分6. 证明:(法一)1112112322(1)211(),9(1)(1)1111223(1)n n n n n n n nn n n n a a a a a a a a n n b a a n n n n b b b n n +++++>⋅∴<=+⋅+∴<<+++∴++++<+++⋅⋅+即分b11111111223111nn n n n =-+-++-=-=+++ ………………12分 (法二)(1)当212411,(),21192n b =====⨯+时右右,显然成立 …………5分(2)假设n k =时,21212()123k k b b b k k ++++<+++ ………………7分22222222221()1232(2)(23)4(1)(2)(1)(23)(1)(23)(2)(23)[(2)(1)]4(32)(1)(23)(2)k k k k k k k k k k k k k k k k k k k k k k k k ++-++++++++-++=++⋅+++-++++=++⋅+2212110(1)(23)(2)21()123211112(1)1k k k k k k k k k k k b b b k k +-=<++⋅++∴+<+++++∴+++<=+++分即当1n k =+时,不等式成立,由(1)(2)可得原不等成立。
…………12分 6. 证明:(法一)1112112322(1)211(),9(1)(1)1111223(1)n n n n n n n nn n n n a a a a a a a a n n b a a n n n n b b b n n +++++>⋅∴<=+⋅+∴<<+++∴++++<+++⋅⋅+即分b11111111223111nn n n n =-+-++-=-=+++ ………………12分 (法二)(1)当212411,(),21192n b =====⨯+时右右,显然成立 …………5分(2)假设n k =时,21212()123k k b b b k k ++++<+++ ………………7分22222222221()1232(2)(23)4(1)(2)(1)(23)(1)(23)(2)(23)[(2)(1)]4(32)(1)(23)(2)k k k k k k k k k k k k k k k k k k k k k k k k ++-++++++++-++=++⋅+++-++++=++⋅+2212110(1)(23)(2)21()123211112(1)1k k kk k k k k k k k b b b k k +-=<++⋅++∴+<+++++∴+++<=+++分即当1n k =+时,不等式成立,由(1)(2)可得原不等成立。