导数应用于不等式证明之放缩法一例

导数应用于不等式证明之放缩法一例

导数应用于不等式证明之放缩法一例

的单调区间;

求轴垂直,处的切线与,在点(曲线是自然对数的底数),为常数,已知函数)()1())1(1)(...718.2(),2(ln )(.21x f y f x f y e k k x e x f x ==-=-

2)()1(,0)1(ln 1)(2-+<+>+-=x x x e e x g x x e x x x g 证明:,对任意)设( ()()()】式成立。证毕。恒成立,【所以所以)递增

,)递减,在(,在(划分单调区间如下:解得令】

【只需证再用放缩法

)即证明()(】,只需证

,要证【)()

(),所以(放缩,由于以下对】

【证明:结论20)(011132 ln 2)(0)(,,0ln 3)(,ln 31ln 2)(2),0(,0ln 2x )(,0ln 2x ln 1x 1 )]1(ln 1[)1(1)],

1(ln 1[1)1(11)1(1)1()(111),1()()]1(ln 1[1)0(,)1(ln 11323232332

3333min 33322222222222222222>>-=+-=+-=+-=++==∞+>>+='+=?

++='>>++=>+++?-->+++?+->+++-?+>++++≥++≥+≥+<+-?+?>+<+-?+?------------------------x h e

e e e e e e e e e e e e e h h e e x h e x x x h x x

x x x h x e x x x h x e e x x x

x x x e e x x e x x x x e x e x e e x e x e e e e x x x x e e e

x x x x x x x x x x x

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

2021年典型例题:用放缩法证明不等式

用放缩法证明不等式 欧阳光明(2021.03.07) 所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. “添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证 143 <+<a b 。 证明:由题设得a 2+ab +b 2=a +b ,于是(a +b )2>a 2+ab + b 2=a +b ,又a +b >0,得a +b >1,又ab <14 (a +b )2,而(a +b )2=a +b +ab <a +b +14 (a +b )2,即34(a +b )2<a +b ,所以a +b <43,故有1<a +b <43 。 例2. 已知a 、b 、c 不全为零,求证: 证明:因为 a a b b a b b a b a b a b 22222 2342 22++= +++=++()>()≥,同理b bc c b c 222 +++>,c ac a c a 222+++>。

所以 a a b b b b c c c ac a a b c 22222232 ++++++++++>() 二. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证: 12<++<a b c b a c c a b +++。 证明:由于a 、b 、c 为正数,所以a b c a a b c +++> ,b a c b a b c +++>,c a b c a b c +++>,所以 a b c b a c c a b a a b c b a b c c a b c +++++>++++++++=1,又a ,b ,c 为三角 形的边,故b +c >a ,则a b c +为真分数,则a b c a a b c +++<2,同理b a c b a b c +++<2,c a b c a b c +++<2, 故a b c b a c c a b a a b c b a b c c a b c +++++++++=++<++2222. 综合得12<++<a b c b a c c a b +++。 三. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 131211<…+ +++。 证明:因为,则11213+ ++

用“放缩法”证明不等式的基本方法

2 3、先放缩,后裂项(或先裂项再放 缩) n a =n ,求证:k=1 例3、已知 a k n 证明:苕 1 V (k — 1)k(k + 1) _________ 二[+£莖壬匹 ^/(k — 1)(k + 1) ( >/k + 1 +寸 k — 1 ) k z2 (二 学习必备 欢迎下载 用放缩法”证明不等式的基本方法 近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生 逻辑思维能力以及分析问题和解决问题的能力。特别值得一提 的是,高考中可以用 放缩法”证明不等式的频率很高, ,对它的运用往往能体现出创造性。 放缩法”它可以和很 而且要恰到好处,目标往往要从证明的结论考察, 例谈 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的 需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩 k 时就舍去了 2 -2,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例 2、函数 f (x )= 一,求证:f (1) +f (2) + …+f (n ) 1 +4x f(n)=二=1--^A 1-丄 1 +4n 1+4 2 *2 1 1 1 +f (2) + …+f (n ) >1—+1屮"+1— 2 21 2 22 2 2n +1 +1 +…=n + 丄一1 (n 迂 N *). 2 4 2n 2n '1 2 此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数, 再对分母进行放缩,从而对左边可以进行 求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。女口 它是思考不等关系的朴素思想和基本出发点 ,有极大的迁移性 多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标, 放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题, 1、添加或舍弃一些正项(或负项) 放缩”的基本策略,期望对读者能有所帮助。 例1、已知 a n =2“ -1(n 亡 N ).求证: n 1 2—3 a 2 a 3 + a n 证明:,— a k + 2k -1 =2^ 1 2 "2(22-1) _ 1 "2"3.2k +2k -2 >1-1.l^,k=1,2,..., n, 2 3 2k 玉+更+ +旦 a 2 a 3 「-1(1 +-+...+丄)」-丄(1二)「-1 , 2 3 2 22 2n 2 3 2n 2 3 2 3 a 2 a 3 + <-(n 迂 N *). a n + 2 证明:由 需放大,则只要把分子放大或分母缩小即可; 如需缩小,则只要把分子缩小或分母放大即可。

放缩法证明不等式的基本策略

放缩法”证明不等式的基本策略 近年来在高考解答题中, 常渗透不等式证明的内容, 而不等式的证明是高中数学中的一个难点, 以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一 提的是,高考中可以用 证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点 能体现出创造性。 放缩法”它可以和很多知识内容结合, 而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度, 些高考试题,例谈 放缩”的基本策略,期望对读者能有所帮助。 1、添加或舍弃一些正项(或负项) 2、先放缩再求和(或先求和再放缩) 子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或 分母放大即可。 3、先放缩,后裂项(或先裂项再放缩) n J k 例 3、已知 a n =n ,求证:k=1 a k V 3- 它可 放缩法” ,有极大的迁移性,对它的运 用往往 对应变能力有较高的要求。 因为放缩必须有目标, 否则就不能同向传递。下面结合一 例1、已知 a n 2n 1(n N ).求证: a 1 a ^ a 2 a 3 丑(n N a n 1 ). 证明:Q 皀 a k 1 2k 1 2k 1 2(2k1 1) 1 3.2k 2k 2 1,2,..., n. a_ a 2 a 2 a 3 a n a n 1 1 ( 1 1 二(二 二 1 a_ 3 a 2 a 2 a 3 多项式的值变小。由于证 若多项式中加上一些正的值,多项式的值变大, 多项式中加上一些负的值, 明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证 明的目的。本题在放缩时就舍去了 2k 2,从而是使和式得到化简 例2、函数f (x ) =±- 1 4x ,求证: (1)+f ( 2) +…+f (n ) 证明:由 f(n)= 羊7=1-- 1 4n 1 得 f (1) +f (2) + …+f (n ) n 2(1 4 1 1 丄 2 21 2 22 1 1 * 芦 >1 此题不等式左边不易求和 ,此时根据不等式右边特征 ,先将分子变为常数,再对分母进行放缩,从而对 左边可以进行求和.若分子, 分母如果同时存在变量时 ,要设法使其中之一变为常量,分式的放缩对于分

导数中证明不等式技巧:构造、切线放缩、二元变量、凹凸反转,唯手熟尔!

导数中的不等式证明 导数中不等式的证明是历年的高考中是一个永恒的话题,由于不等式证明的灵活性,多样性,该考点也备受命题者的青睐。本文通过四个方面系统介绍了一些常规的不等式证明的手段 命题角度1 构造函数 命题角度2 放缩法 命题角度3 切线法 命题角度4 二元或多元不等式的证明思路 命题角度5 函数凹凸性的应用 命题角度1 构造函数 【典例1】(赣州市2018届高三摸底考试)已知函数()ln 11,()x x ae f x g x bx x e x =-=+-,若曲线()y f x =与曲线()y g x =的一个公共点是()1,1A ,且在点A 处的切线互相垂直. (1)求,a b 的值; (2)证明:当1x ≥时,()2()f x g x x +≥ . 【解析】(1)1a b ==-; (2)1()x e g x x e x =-++,()2ln 1()10x x e f x g x x x x e x +≥?---+≥, 令()()()2()1h x f x g x x x =+- ≥,则 ()ln 11x x e h x x x e x =- --+, ()2221ln 1ln 11x x x e x e h x x e x x e -'=-+++=++, 因为1x ≥,所以()2ln 10x x e h x x e '=++>, 所以()h x 在[)1.+∞单调递增,()()10h x h ≥=,即ln 110x x e x x e x - --+≥, 所以当1x ≥时,()2()f x g x x +≥. 【审题点津】待证不等式的两边都含有同一个变量,一般地,可以直接构造“左减右”的函数,应用导数研究其单调性,借助于所构造函数的单调性加以证明. 命题角度2 放缩法 【典例2】(石家庄市2018届高三下学期4月一模考试)已知函数()()()x f x x b e a =+-(0)b >,在

用放缩法证明不等式的方法与技巧

用放缩法证明不等式的方法与技巧 一.常用公式 1.)1(11)1(12-<<+k k k k k 2.12 112-+<<++k k k k k 3.22k k ≥()4≥k 4.1232k k ???????≥(2≥k ) 5. ?? ????--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ (待学) 二.放缩技巧 所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2) < > 11> ,n >= (3)21111111 (1)1(1)(1)1n n n n n n n n n n - =<<=->++-- (4 )= <=<= (5)若,,a b m R + ∈,则,a a a a m b b m b b +>< + (6)21111111 112!3!!222 n n -+++???+<+++???+ (7)22211111111 11(1)()()232231n n n +++???+<+-+-+???+--(因为211(1)n n n < -) (7)1111111112321111n n n n n n n n n +++???+≤++???+=<+++++++ 或11111111123222222 n n n n n n n n n +++???+≥++???+==+++ (8 )1+???+>???+== 三.常见题型 (一).先求和再放缩: 1.设1111 2612 (1) n S n n = ++++ +,求证:1n S < 2.设1n b n = (n N * ∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T < (二).先放缩再求和: 3.证明不等式:111 12112123 123n ++++

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5. 121122211(21)(21)(22)(21)(21)2121 n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ ++< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b = = ++++,证明:312n T <<

例4. 已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6. 数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

典型例题:用放缩法证明不等式

用放缩法证明不等式 所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. “添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143 <+<a b 。 证明:由题设得a 2+ab +b 2=a +b ,于是(a +b )2>a 2+ab +b 2=a +b ,又a +b >0,得a +b >1,又ab <14(a +b )2,而(a +b )2=a +b +ab <a +b +14(a +b )2,即34(a +b )2<a +b ,所以 a + b <43,故有1<a +b <43 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() 证明:因为a ab b a b b a b a b a b 222 22 234 2 22++=+++=++()>()≥,同理b bc c b c 222 +++>,c ac a c a 222+++>。 所以a ab b b bc c c ac a a b c 22222232 ++++++++++>() 二. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 证明:由于a 、b 、c 为正数,所以a b c a a b c +++>,b a c b a b c +++>,c a b c a b c +++>,所以

用放缩法证明不等式word版本

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法 主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3,n =L 。设2n n n T S =,1,2,3,n =L ,证明: 1 3 2 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--11 32311()2(21)(21)22121n n n n n n T ++==-----, 112231 11 3113111111 ()()221212212121212121n n i i i n n i i T ++===-=-+-++---------∑∑L = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例 2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S , 2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12 n +≥ 。 证明:(I )1111111 ()2322122n n T T n n n n n n +-=+++-++++++++L L 11121221n n n = +- +++10(21)(22) n n =>++ ∴1n n T T +>. (II )112211222222,n n n n n n S S S S S S S S ---≥∴=-+-++-+Q L 1221122n n T T T T S --=+++++L 由(I )可知n T 递增,从而12222n n T T T --≥≥≥L ,又11217,1,212T S T = ==, 12211222n n n S T T T T S --∴=+++++L 21171711 (1)(1)112212 n n T T S n +≥-++=-++= 即当2n ≥时,2n S 711 12 n +≥。 点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成1122112222n n n n S S S S S S S ----+-++-+L 的

用用放缩法证明与数列和有关的不等式

用放缩法证明与数列和有关的不等 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 a a ,又由条

不等式放缩法

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 点评: 关键是将12(21)(21) n n n +--裂项成111 2121n n +---,然后再求和,即可达到目标。

(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12 n +≥。 点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成 1122 112222n n n n S S S S S S S ----+-+ +-+的和,从而找到了解题的突破口。

2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。用于解决积式问题。 例3 已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。 若 3 *3log 2(),n n c a n N =-∈证明对任意的* n ∈N ,不等 式 12111 (1)(1+)(1+)n c c c +??>恒成立. 点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。33 131(1+ )()32 n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131 ()323231332 n n n n n n n n n n --++>??=----,而通项式为31 { }32 n n +-的数列在迭乘时刚好相消,从而达到目标。

导数证明不等式的常用方法(3)

导数证明不等式的常用方法(3) 考法3放缩法 考向1已知条件放缩 1.(2018·全国卷Ⅲ·文科)已知函数21 ()x ax x f x e +-=. (Ⅰ)求曲线()y f x =在点(0,1)-处的切线方程; (Ⅱ)证明:当1a ≥时,()0f x e +≥. 解析:(Ⅰ)2(21)2 ()x ax a x f x e -+-+'=,(0)2f '=.因此曲线()y f x =在点(0,1) -处的切线方程是210x y --=. (Ⅱ)当1a ≥时,2221 111()x x x x ax x x x x x e f x e e e e e e ++-+-+-++=+≥+=(放缩法).令21()1x g x x x e +=+-+,则1()21x g x x e +'=++.令(1)220g '-=-+=,()g x '单调递增,当x 变化时,()g x '、()g x 变化情况如下表: 所以,()(1)0g x g ≥-=,因此()0f x e +≥. 考向2已有结论放缩的应用 结论1:ln 1x x ≤- 1.(2017·全国卷Ⅲ·理科)已知函数()1ln f x x a x =--. (Ⅰ)若()0f x ≥,求a 的值; (Ⅱ)设m 为整数,且对于任意正整数n ,2111 (1+)(1+)(+)222n m ??

所以不满足题意. 或者()1ln 1()ln f x x a x x a x =--=-+-在(0,)+∞上单调递增,(1)0f =,当 01x <<时,()0f x <,不满足要求. ②当0a >时,()1a x a f x x x -'=-= ,令0x a -=,x a =.当x 变化时,()f x '、()f x ()f x 在x a =处取得极小值,也是最小值,又(1)0f =,当且仅当1a =时,()0f x ≥, 所以,1a =. (Ⅱ)由(Ⅰ)知当1x >时,()1ln 0f x x x =-->,即ln 1x x <-.令1 12n x =+ 得11ln(1)22n n +<,从而2211111 ln(1)ln(1)ln(1)22222 n ++++++<++L L 1ln(1)2n ++ 2111222n <+++L 112n =-1<.故2111 (1)(1)(1)222n e +?+??+,所以m 最小值为3. 引申1:设1k x k +=,111ln 1k k k k k ++<-=,所以,111 ln(1)123n n +<++++L . 231111ln ln ln 11223n n n ++++<++++L L ,即111ln(1)123n n +<++++L . 结论2:ln(1)1x x x +>+. 1.已知函数()ln(1)1x f x x x =+-+. (Ⅰ)讨论()f x 的单调性; (Ⅱ)证明:111ln(1)231n n +> ++++L (n N +∈). 解析:(Ⅱ)令1x n =(n N +∈),则11ln 1n n n +>+,1ln 2ln12->,1 ln 3ln 23->L , 1ln(1)ln 1n n n +->+,上述各式相加,得111 ln(1)231 n n +>++++L .

放缩法在导数压轴题中的应用郑州第四十四中学

恰当采用放缩法 巧证导数不等式 郑州市第四十四中学 苏明亮 放缩法是高中数学中一种重要的数学方法,尤其在证明不等式中经常用到.由于近几年数列在高考中的难度要求降低,放缩法的应用重点也逐渐从证明数列不等式转移到导数压轴题中,尤其是在导数不等式证明中更是大放异彩.下面试举几例,以供大家参考. 一、利用基本不等式放缩,化曲为直 例1(2012年高考辽宁卷理科第21题(Ⅱ))设()ln(1)1f x x =++ .证明:当 02x <<时,9()6 x f x x < +. 证明:由基本不等式,当0x >时,2x <+12 x < +. ()ln(1)1ln(1)2 x f x x x ∴=+<++ 记9()ln(1)26 x x h x x x =++ - +, 则222 1154(1536)'()12(6)2(1)(6)x x x h x x x x x +-=+-=++++. 当02x <<时,'()0h x <,所以()h x 在(0,2)内是减函数.故又由()(0)0h x h <=, 所以9ln(1)26x x x x ++ < +,即9ln(1)16 x x x +<+, 故当02x <<时,9()6 x f x x <+. 评注:本题第(Ⅱ)问若直接构造函数9()()6 x h x f x x =-+,对()h x 进行求导,由于 '()h x 中既有根式又有分式,因此'()h x 的零点及相应区间上的符号很难确定,而通过对 进行放缩处理,使问题得到解决.上面的解法中,难点在用基本不等式证明 12 x < +,亦即是将抛物线弧y =12x y =+,而该线段正是 抛物线弧y = (0,1)处的切线,这种“化曲为直”的方法是我们用放缩法处 理函数问题的常用方法. 二、利用单调性放缩,化动为静 例2(2013年新课标全国Ⅱ卷第21题(Ⅱ))已知函数()ln()x f x e x m =-+.当2m ≤时,证明()0f x >.

高中数学 经典资料 第121课--导数中的不等式放缩

第121课 导数中不等式放缩 基础知识:(1)在不等式放缩中,常见的函数不等式有①e 1x x ≥+;②1ln x x -≥. 特别地,要注意在具体题目中灵活变形应用这些不等式.如利用上面①、②易得1ln 2x x +≥+,e ln 2x x >+,e sin 1x x ≥+等不等式. (2)与隐零点相关的放缩问题 常用方法:利用隐零点问题中常用的代换技巧表达出()f x 的最大值(最小值)0()f x ,再由0x 的取值范围求出0()f x 的最大值(最小值),即得到0()()f x f x M ≤≤(0()()f x f x M ≥≥),进而证得题目中所证不等式. 一、典型例题 1.已知函数()23e x f x x =+,()91g x x =-.比较()f x 与()g x 的大小,并加以证明.答案:()() f x g x >解析:设()()() h x f x g x =-23e 91x x x =+-+, ∵()3e 29x h x x ¢=+-为增函数,∴可设()00h x ¢=, ∵()060h ¢=-<,()13e 70h ¢=->,∴()00,1x ?. 当0x x >时,()0h x ¢>;当0x x <时,()0h x ¢<. ∴()()0min h x h x =02003e 91x x x =+-+, 又003e 290x x +-=,∴003e 29x x =-+, ∴()2000min 2991h x x x x =-++-+2001110x x =-+()()00110x x =--. ∵()00,1x ?,∴()()001100x x -->,∴()min 0h x >,()()f x g x >. 2.已知函数()2e x f x x =-. (1)求曲线()f x 在1x =处的切线方程; (2)求证:当0x >时,()e 2e 1 ln 1x x x x +--3+. 答案:(1)()e 21y x =-+;(2)见解析 解析:(1)()e 2x f x x ¢=-,由题设得()1e 2f ¢=-,()1e 1f =-, ()f x 在1x =处的切线方程为()e 2 1. y x =-+(2)()e 2x f x x ¢=-,()e 2x f x =-,∴()f x ¢在()0,ln2上单调递减,在()ln2,+¥上单调递增,

证明数列不等式的常用放缩方法技巧(含答案)

证明数列不等式的常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如: a a >+12; n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )2 5lg 3lg ( 5lg 3lg 2 =<=+n n n n (5)利用常用结论: Ⅰ. 的放缩 Ⅱ. 2 1k 的放缩(1) : 2111(1)(1) k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):2 2 111111()1(1)(1)211 k k k k k k < ==+-+--+(程度小) Ⅳ. 2 1k 的放缩(3):2214112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

导数应用于不等式证明之放缩法一例

导数应用于不等式证明之放缩法一例 的单调区间; 求轴垂直,处的切线与,在点(曲线是自然对数的底数),为常数,已知函数)()1())1(1)(...718.2(),2(ln )(.21x f y f x f y e k k x e x f x ==-=- 2)()1(,0)1(ln 1)(2-+<+>+-=x x x e e x g x x e x x x g 证明:,对任意)设( ()()()】式成立。证毕。恒成立,【所以所以)递增 ,)递减,在(,在(划分单调区间如下:解得令】 【只需证再用放缩法 , )即证明()(】,只需证 ,要证【)() (),所以(放缩,由于以下对】 【证明:结论20)(011132 ln 2)(0)(,,0ln 3)(,ln 31ln 2)(2),0(,0ln 2x )(,0ln 2x ln 1x 1 )]1(ln 1[)1(1)], 1(ln 1[1)1(11)1(1)1()(111),1()()]1(ln 1[1)0(,)1(ln 11323232332 3333min 33322222222222222222>>-=+-=+-=+-=++==∞+>>+='+=? ++='>>++=>+++?-->+++?+->+++-?+>++++≥++≥+≥+<+-?+?>+<+-?+?------------------------x h e e e e e e e e e e e e e e h h e e x h e x x x h x x x x x h x e x x x h x e e x x x x x x e e x x e x x x x e x e x e e x e x e e e e x x x x e e e x x x x x x x x x x x

用放缩法证明不等式

用放缩法证明不等式 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明:1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--11 32311()2(21)(21)22121n n n n n n T ++==-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ =113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为 n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12 n +≥ 。 证明:(I )111111 1()23 2212 2n n T T n n n n n n +-= +++ -+++ +++++ 111 21221n n n = +- +++10(21)(22) n n =>++ ∴1n n T T +>. (II )112211222222,n n n n n n S S S S S S S S ---≥∴=-+-+ +-+1221122n n T T T T S --=++ +++

导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转专题

导数中的不等式证明 命题角度1 构造函数 【典例1】 已知函数()ln 1 1,()x x ae f x g x bx x e x =- =+-,若曲线()y f x =与曲线()y g x =的一个公共点是()1,1A ,且在点A 处的切线互相垂直. (1)求,a b 的值; (2)证明:当1x ≥时,()2 ()f x g x x +≥. 命题角度2 放缩法 【典例2】 已知函数()()()x f x x b e a =+-(0)b >,在(1,(1))f --处的切线方程为(1)10e x ey e -++-=. (1)求,a b ; (2)若0m ≤,证明:2()f x mx x ≥+. 【典例3】 已知函数()ln 1,f x x x ax a R =++∈. (1)当0x >时,若关于x 的不等式()0f x ≥恒成立,求a 的取值范围; (2)当*n N ∈时,证明:22231ln 2ln ln 2421 n n n n n n +<+++<++L

【典例4】 已知函数()2ln 2 x x f x e += . (1)求函数()f x 的单调区间; (2)证明:当0x >时,都有()()222ln 1x x f x x e e +'+<+. 命题角度3 切线法 【典例5】 已知函数()2x f x e x =-. (1)求曲线()f x 在1x =处的切线方程; (2)求证:当0x >时,()21 ln 1x e e x x x +--≥+. 命题角度4 二元或多元不等式的解证思路 【典例6】 若,,x a b 均为任意实数,且()()2 2 231a b ++-=,则()()2 2 ln x a x b -+-的最小值为 .A .18B .1C .19D - 【变式训练】 设2D a = +,其中 2.71828e ≈,则D 的最小值为 .A .B .1C .1A

相关文档
最新文档