放缩法证明数列不等式经典例题
放缩法证明不等式

高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n knk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn n n 21121)12(21--=- (6) n n n -+<+221 (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (15))2(1)1(1≥--<+n n n n n说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境.例如证明4712111222<+++n .由k k k11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2.当放缩方式不同,结果也在变化.2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和.例18 求证2131211222<++++n . 分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项.注意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从21n 下手考查即可. 证明:∵)2(111)1(11112≥--=-<⋅=n nn n n n n n , ∴ +⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+<++++312121111131211222n 212111<-=⎪⎭⎫ ⎝⎛--+n n n201417. (12分)已知数列{}n a 满足111,31n n a a a +==+.(I)证明{12}n a +是等比数列,并求{}n a 的通项公式;(II)证明2111132n a a a +++<.【答案解析】解析:(I)∵131n n a a +=+11331111)223(22n n n n a a a a ++∴⇒+=+++=+ 1112132a a =+⇒= ∴{12}n a +是首项为32,公比为3的等比数列∴1*131333,2222n n n n n a a n N --⋅+==∈=⇒ (II)由(I)知,*13,2n n a n N -=∈,故 121213*********(13)n n a a a +++=++-+-- 12110331112()3333n n --+-≤+-+12111()11131331(1()).133323213nn n --=++++==⋅-<- 例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先n n n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以 35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n。
证明数列不等式之放缩技巧及缩放在数列中的应用大全甄选.

证明数列不等式之放缩技巧及缩放在数列中的应用大全[精选.]证明数列不等式之放缩技巧以及不等式缩放在数列中应用大全证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩.一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时,(2)12nn n +<. 证法一:令)6(2)2(≥+=n n n c n n ,则0232)2(2)3)(1(1211<-=+-++=-+++n nn n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,66831.644n c c ⨯≤==< 于是当6n ≥时,2(2)1.2n n +< 证法二:可用数学归纳法证.(1)当n = 6时,66(62)48312644⨯+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2)1.2kk k +< 则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3)1.222(2)(2)2k kk k k k k k k k k k k k++++++++=⨯<<++ 由(1)、(2)所述,当n ≥6时,2(1)12n n +<. 二、借助数列递推关系 例 2.已知12-=n n a .证明:()23111123n n N a a a *++++<∈. 证明:nn n n n a a 121121************⋅=-⋅=-<-=+++, ∴32])21(1[321)21(...12111112122132<-⋅=⋅++⋅+<+++=-+n n n a a a a a a S . 例3. 已知函数f(x)=52168xx+-,设正项数列{}n a 满足1a =l ,()1n n a f a +=.(1) 试比较n a 与54的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1ni i b =∑.证明:当n ≥2时,S n <14(2n-1).分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。
用放缩法证明数列中的不等式

用放缩法证明数列中的不等式数列的放缩法是一种通过递推关系以及寻找合适的不等式对数列进行估计的方法。
该方法在不失一般性的情况下,常常可以将原数列与一个已知数列进行比较,从而推导得出数列的性质。
本文将通过数学归纳法,对给定的数列进行放缩法证明,并给出详细推导过程。
假设我们有一个数列${a_n}$,其中$n \geq 1$。
我们要证明数列中的不等式,即要证明对于任意的$n \geq 1$,有$a_n \leq b_n$,其中${b_n}$是一个已知的数列。
我们将使用数学归纳法来证明这个结论。
首先,我们对$n=1$进行证明,即证明$a_1 \leq b_1$。
因为$n=1$是最小的情况,所以我们直接检验$a_1$和$b_1$的大小关系即可。
接下来,我们假设当$n=k$时,不等式$a_k \leq b_k$成立,即数列前$k$项满足不等式。
然后,我们要证明当$n=k+1$时,不等式$a_{k+1} \leq b_{k+1}$也成立。
根据数列的递推关系,我们可以推导出数列前$k+1$项的关系式:$$a_{k+1}=f(a_k)$$其中$f(x)$是一个函数,表示数列的递推关系。
由于我们已经假设在$n=k$时$a_k \leq b_k$成立,因此我们可以得到:$$a_{k+1} = f(a_k) \leq f(b_k)$$这是因为$f$是一个单调递增的函数,所以不等式保持不变。
根据已知数列${b_n}$的性质,我们可以得到:$$f(b_k) \leq b_{k+1}$$这里的不等式是基于对已知数列的假设,即已知数列${b_n}$满足这个不等式。
综合以上的不等式关系$$a_{k+1} \leq f(b_k) \leq b_{k+1}$$因此,当$n=k+1$时不等式$a_{k+1} \leq b_{k+1}$也成立。
根据数学归纳法原理,我们可以得出结论:对于任意的$n \geq 1$,数列${a_n}$满足不等式$a_n \leq b_n$。
放缩法典型例题

放缩法典型例题第一篇:放缩法典型例题放缩法典型例题数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.一.先求和后放缩例1.正数数列(1)数列的前项的和的通项公式;,满足,试求:(2)设解:(1)由已知得,数列的前项的和为,所以时,求证:,作差得:,又因为,得为正数数,所列,所以以,即是公差为2的等差数列,由(2),所以注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列倒序相加等方法来求和.二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列的前项和为,且.满足条件)求和或者利用分组、裂项、(1)求证:;(2)求证:解:(1)在条件中,令有,得,上述两式相减,注意到∴,又由条件得所以,所以(2)因为,所以,所以;2.放缩后成等比数列,再求和例3.(1)设a,n∈N*,a≥2,证明:;(2)等比数列{an}中,前n项的和为An,且A7,A9,A8成等差数列.设,数列{bn}前n项的和为Bn,证明:Bn<.解:(1)当n为奇数时,an≥a,于是,当n为偶数时,a-1≥1,且an≥a2,于是..(2)∵,,∴公比.∴..∴3.放缩后为差比数列,再求和.例4.已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.4.放缩后为裂项相消,再求和例5.在m(m≥2)个不同数的排列P1P2…Pn中,若1≤i<j≤m 时Pi>P(即前面某数大于后面某数),则称Pi与Pj构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列.j(1)求a4、a5,并写出an的表达式;的逆序数为an,如排列21的逆序数,排列321的逆序数(2)令,证明,n=1,2,….(2)因为,所以.又因为,所以=综上,..注:常用放缩的结论:(1)(2).在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论、为等差数列求和结果的类型,则把通项放缩为等差数列,再求和即可;如例3要证明的结论为等比数列求和结果的类型,则把通项放缩为等比数列,再求和即可;如例4要证明的结论为差比数列求和结果的类型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.为裂项第二篇:放缩法证明数列不等式经典例题放缩法证明数列不等式主要放缩技能: 1.1111111-=<2<=- nn+1n(n+1)nn(n-1)n-1n114411<===2(-)22n4n-1(2n+1)(2n-1)2n-12n+1n2-42.==>===<=2)=<====<== 4.2n2n2n-1115.n <==-(2-1)2(2n-1)(2n-2)(2n-1)(2n-1-1)2n-1-12n-16.n+22(n+1)-n11==- n(n+1)⋅2n+1n(n+1)⋅2n+1n⋅2n(n+1)⋅2n+1x2-x+n*c=(n∈N)例1.设函数y=的最小值为,最大值为,且abnnn2x+1(1)求cn;(2)证明:例2.证明:16<1+例3.已知正项数列{an}的前n项的和为sn,且an+2(1)求证:数列sn是等差数列;11117+++Λ+< 444c14c2c3cn4+Λ+<17 1=2sn,n∈N*; an{}(2)解关于数列n的不等式:an+1⋅(sn+1+sn)>4n-8(3)记bn=2sn,Tn=331111<Tn<-+++Λ+,证明:1 2b1b2b3bn例4.已知数列{an}满足:⎨n+2⎧an⎫an+1;⎬是公差为1的等差数列,且an+1=nn⎩⎭(1)求an;(2++Λ<2 例5.在数列{an}中,已知a1=2,an+1an=2an-an+1;(1)求an;(2)证明:a1(a1-1)+a2(a2-1)+a3(a3-1)+Λ+an(an-1)<32n+1an例6.数列{an}满足:a1=2,an+1=; n(n+)an+225112n(1)设bn=,求bn;(2)记cn=,求证:≤c1+c2+c3+Λ+cn< 162n(n+1)an+1an例7.已知正项数列{an}的前n项的和为sn满足:sn>1,6sn=(an+1)(an+2);(1)求an;(2)设数列{bn}满足an(2n-1)=1,并记Tn=b1+b2+b3+Λ+bn,b求证:3Tn+1>log2n(a+3)(函数的单调性,贝努力不等式,构造,数学归纳法)例8.已知正项数列{an}满足:a1=1,nan+1(n+1)an=+1,anan+1 记b1=a1,bn=n[a1+(1)求an;(2)证明:(1+2111++Λ+](n≥2)。
利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。
裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。
例1设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n = 。
设2n n n T S =,1,2,3,n = ,证明:132ni i T =<∑。
点评:此题的关键是将12(21)(21)n n n+--裂项成1112121n n +---,然后再求和,即可达到目标。
(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。
例2已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-;(I )求证:1n n T T +>;(II )求证:当2n ≥时,2n S 71112n +≥。
点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成1122112222n n n n S S S S S S S ----+-++-+ 的和,从而找到了解题的突破口。
2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。
用于解决积式问题。
例3已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。
若3*3log 2(),n n c a n N =-∈证明对任意的*n ∈N,不等式312111(1)(1+)(1+)31nn c c c +⋅⋅>+ 恒成立.点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。
33131(1+)()32n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131()323231332n n n n n n n n n n --++>⋅⋅=----,而通项式为31{}32n n +-的数列在迭乘时刚好相消,从而达到目标。
"放缩法"在不等式证明中的应用

边每 一项 进 行放 大 变 形 , 后 再 求 和. 考 虑 到左 边 然 但 通项 中含 有符 号 因子 ( ) , 以为 了既 便 于 确定 一1 一 所
a 、 8’
探 究 1 这 是 一 道 涉 及 探 求 递 推 数 列 的 通 项 公
不等 式成 立.
,
所 以
a 一2 n+2 一 1 一 × ( 1 + 一 )
2 一 × ( 1 + … + 2× ( 1 一 一 。 一 ) 一 )
2 + ( 1 r 一 2 一 + ( ) 一 ) ( ) 一2 一 + … +
能求 和 了. 当 >4且 为偶 数 时 , + +… + : +
i
i
+ ( + ) +
‘
◇
江西
李 清 泰
“ 缩法 ” 放 是不 等 式证 明的 重要 思 想 方 法. 在证 明
不等 式 的过 程 中 , 要 我 们 抓 住 不 等 式 的 结 构 特 征 , 需 选择 恰 当的 策 略 进 行 放 缩 变 形 , 以达 到证 明 的 目的.
符号 , 易于 放缩 , 又 我们 要对 m 的奇偶性 进行 讨论 , 同
时对 相邻 两项 之 和 + —L 进 行 放 大 变 形. 实 上 , 事 当 m( m≥ 3 为奇数 时 , )
式, 特殊 数列 求和 , 缩法 证 明 不等 式 的题 目 , 放 有较 强
的综 合性 . ( )由 口 一 S — 2 1 1 得 a — 1 1 1 1 a— , 1 . 由 a +n 一 S — 2 2 ( 1 得 a — 0 1 2 2 a + 一 ), 2 . 由 a + a +a 一 S = 2 3 ( 1 。 得 a — 2 1 2 3 3= a + 一 ) , 3 . = ( )当 ≥ 2时 , 2 有
证明不等式稿——放缩技巧(网上搜集)

放缩技巧一 直接放缩例题1已知数列a 1=3,a n *N ∈a 1+n =(a n -1)2+1,求证:a 1a 2∙…∙a n <2n2例题2数列{a n }满足S n =2n a n ,(n *N ∈),S n 是数列{a n }的前n 项和,a 2=1, (1)求S n ; (2)证明:23<(1+1a 21+n )n <2例题3已知数列{a n }满足a n 》0,且对一切的n *N ∈有∑=ni i 13a=S 2n,其中S n =∑=n i i 1a ,∑=ni i13a=a 31+a 32+…+a 3n(1) 求证:对一切的n *N ∈,都有a 21n +-a 1+n =2 S n ;(2)求数列{a n }的通项公式;(3)求证:∑+=11k 2n kak<3二 裂项放缩常见裂项公式:111)1(1+-=+n n n n)121121(21)12)(12(1+--=+-n n n n)211(21)2(1+-=+n n n n ])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n!)!1(!n n n n -+=⋅)!1(1!1)!1(+-=+n n n n in i n i n C C C 111----=n n n-+=++11n 1例题4已知数列{a n }满足a 0=21, a n =a 1n -+21na 21n -, n *N ∈,求证:21n ++n < a n <n例题5数列{a n }为等差数列,a n 为正整数,其前n 项和为S n ,数列{b n }为等比数列,且a 1=3, b 1=1, 数列{b n a }是公比为64的等比数列,b 2S 2=64, (1)求a n ,b n (2) 求证:+1S 1+2S 1…+n S 1<43,例题6在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a 1+n 成等差数列,b n ,a 1+n ,b 1n +成等比数列 (n *N ∈)(1)a 2, a 3, a 4及b 2, b 3, b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论; (2)证明++++22111a 1b a b …+n n b a +1<125,例题7设函数f(x)=(1+n 1)n (n *N ∈且n ≥I, x N ∈), (1)当x=6时,求(1+n1)x 的展开式中二项式系数最大的项; (2)对任意的实数x ,证明:)((),(2)2()2(''x f x f f x f >+是f(x)的导函数); (3)是否存在a N ∈,使得an<k nk )11(1k ∑=+<(a+1)n 恒成立?若存在,证明你的结论,并求出a 的值;若不存在,说明理由。
“放缩法”解不等式的8个例子,难题轻松解决!

“放缩法”解不等式的8个例⼦,难题轻松解决!添加或舍弃⼀些正项(或负项)若多项式中加上⼀些正的值,多项式的值变⼤,多项式中加上⼀些负的值,多项式的值变⼩。
由于证明不等式的需要,有时需要舍去或添加⼀些项,使不等式⼀边放⼤或缩⼩,利⽤不等式的传递性,达到证明的⽬的。
本题在放缩时就舍去了,从⽽是使和式得到化简.先放缩再求和(或先求和再放缩)此题不等式左边不易求和,此时根据不等式右边特征, 先将分⼦变为常数,再对分母进⾏放缩,从⽽对左边可以进⾏求和. 若分⼦, 分母如果同时存在变量时, 要设法使其中之⼀变为常量,分式的放缩对于分⼦分母均取正值的分式。
如需放⼤,则只要把分⼦放⼤或分母缩⼩即可;如需缩⼩,则只要把分⼦缩⼩或分母放⼤即可。
先放缩,后裂项(或先裂项再放缩)本题先采⽤减⼩分母的两次放缩,再裂项,最后⼜放缩,有的放⽮,直达⽬标.放⼤或缩⼩“因式”本题通过对因式放⼤,⽽得到⼀个容易求和的式⼦,最终得出证明.逐项放⼤或缩⼩本题利⽤,对中每项都进⾏了放缩,从⽽得到可以求和的数列,达到化简的⽬的。
固定⼀部分项,放缩另外的项此题采⽤了从第三项开始拆项放缩的技巧,放缩拆项时,不⼀定从第⼀项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
利⽤基本不等式放缩本题通过化简整理之后,再利⽤基本不等式由放⼤即可.先适当组合, 排序, 再逐项⽐较或放缩以上介绍了⽤“放缩法”证明不等式的⼏种常⽤策略,解题的关键在于根据问题的特征选择恰当的⽅法,有时还需要⼏种⽅法融为⼀体。
在证明过程中,适当地进⾏放缩,可以化繁为简、化难为易,达到事半功倍的效果。
但放缩的范围较难把握,常常出现放缩后得不出结论或得到相反的现象。
因此,使⽤放缩法时,如何确定放缩⽬标尤为重要。
要想正确确定放缩⽬标,就必须根据欲证结论,抓住题⽬的特点。
掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题⽬的类型,采⽤恰到好处的放缩⽅法,才能把题解活,从⽽培养和提⾼⾃⼰的思维和逻辑推理能⼒,分析问题和解决问题的能⼒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放缩法证明数列不等式
主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n
-=<<=-++-- 2221144112()141(21)(21)21214
n n n n n n n <===--+--+-
2. ==>=
==<=
=<=
=
= |
4.
=<
=
= 5. 121122211(21)(21)(22)(21)(21)2121n n n n n n n n n n ---<==-------- 6.
111
22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+⋅+⋅⋅+⋅
|
例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b ,
且n c =(1)求n c ;(2)证明:
4444123111174
n c c c c ++++
<
!
例2.证明:1611780
<+
+<
. 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a +
=,*n N ∈; (1)求证:数列{}
2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++⋅+>-
(3)记312311112,n n n n b
s T b b b b =
=
++++,证明:312n T <<
(
例4. 已知数列{}n a 满足:n a n ⎧⎫⎨⎬⎩⎭
是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2
12n na +++<
@
例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-;
(1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-<
,
例6. 数列{}n a 满足:11122,1()22
n n n n n a a a n a ++==++; (1)设2n
n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162
n c c c c ≤++++<
|
例7. 已知正项数列{}n a 的前n 项的和为n s 满足:1,6(1)(2)n n n n s s a a >=++; —
(1)求n a ;
(2)设数列{}n b 满足(21)1,n b n a -=并记123n n T b b b b =++++,
求证:(3)231log n a n T ++>(函数的单调性,贝努力不等式,构造,数学归纳法)
`
例8. 已知正项数列{}n a 满足:111
(1)1,1n n n n na n a a a a +++==+ , 记2111222231111,[](2)n n b a b n a n a a a -==+
+++≥。
(1)求n a ;
(2)证明:1231111(1)(1)(1)(1)4n
b b b b ++++<。