一次函数的图象的综合应用

合集下载

一次函数图像的应用

一次函数图像的应用
一次函数图象的应用
引例:由于持续的高温和连日无雨某水 库的储水量随着时间的增加而减少,干 旱持续了t(天)与储水量V(万立方 米 ) 的关系如下图所示:
V/万立 方米 1200 1000 800 600 400 200 O 10 20 30 40 50
t/天
V/万立方米
(1)干旱持续10天,储水 量约为多少?干旱30天呢?
y /元 26 20
5 O
30
x /千克
练习:一农民带了若干千克自产的土豆进城销售,为了方便,他 带了一些零钱备用,按照市场价售出一些后,又降价销售,售出 的土豆千克数x与他手中持有的钱数y(含备用零钱)的关系如图 所示,根据图象回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克土豆的售价是多少? (3)降价后他按每千克0.4元将剩余的土豆售完,这时他手中的钱(含 备用零钱)是26元,他一共带了多少千克土豆?
例2 L 如图, 1反映了某公司产品的销售收入与销售量的关系, L2 反映了该公司产品的销售量的关系,根据图象填空。 ①当销售量为2吨时,销售收入 3000 2000 =_______元,销售成本=_____元; ②当销售量为6吨时,销售收入 6000 5000 =________元,销售成本=_____元; 4吨 ③当销售量等于______时,销售收入 等于销售成本; 大于4吨 ④当销售量________时,该公司赢利 小于4吨 (收入大于成本);当销售量_______ 时,该公亏损(收入小于成本); ⑤ L1 对应的函数表达式是_______; L2 对应的函数表达式是_______.
1 -2 0 x
议一议 一元一次方程0.5x+1=0与一次函数y=0.5x+1有什 么联系? 当一次函数y=0.5x+1的函数值为0时,相应 的自变量的值即为方程0.5x+1=0的解。函 数y=0.5x+1与x轴交点的横坐标即为方程 0.5x+1=0的解。

一次函数及其应用

一次函数及其应用

一次函数的图形、性质、应用【学习目标】1. 掌握一次函数的性质图像;2.理解待定系数法;3. 能用待定系数法求一次函数,用一次函数表达式解决有关现实问题4.体会用"数形结合"思想解决数学问题.【知识梳理】知识点一.函数图象:画函数图像的一般步骤:列表,描点,连线;知识点二.正比例函数与一次函数的图像与性质1. 一次函数与坐标轴交点:一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0),正比例函数的图像都是过原点。

2.k>0k<0|k|的决定直线的倾斜程度:|k|越大直线越陡,越接近y轴;|k|越小直线越缓,越接近x 轴;b代表与y轴交点的纵坐标。

3. 一次函数 y=kx+b与正比例函数 y=kx的图像间的关系:一次函数y=kx+b的图像可由正比例函数y=kx的图像平移得到,b>0,向上平移|b|个单位;b<0,向下平移|b|个单位。

知识点三.确定一次函数的表达式1.(1)图像过原点函数为正比例函数,可设表达式为y=kx,再找图像上一点的坐标带入表达式,即可求出K;(2)图像不过原点函数为一般的一次函数,可设表达式为y=kx+b,再找图像上两点的坐标带入表达式,即可求出K,b;知识点四.一次函数与一元一次方程的关系1、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.2、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 【经典习题】题型一:函数图像例1、若正比例函数的图象经过点(2,-3),则这个图象必经过点()A.(-3,-2)B.(2,3)C.(3,-2)D.(-2,3)例2、直线y=2x+1经过点(0,a),则a= .例3、若直线y=kx+b经过A(1,0),B(0,1),则()A. k=-1, b=-1B. k=1, b=1C. k=1, b=-1D. k=-1, b=1练习:1、函数y=kx的图象经过点P(3,-1),则k的值为()A.3B.-3C. 13D.132、当x=5时一次函数y=2x+k和y=3kx-4的值相同,那么k和y的值分别为()A. 1, 11B. -1, 9C. 5, 11D. 3, 3题型二:函数图像及其性质例4、在平面直角坐标系中,一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限例5、设0<k<2,关于x的一次函数y=kx+2(1-x),当1≤x≤2时的最大值是()A.2k-2 B.k-1 C.k D.k+1例6、已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是()A.B.C.D.例7、对于函数1223y x=-, y的值随x值的________而增大。

一次函数图象与性质

一次函数图象与性质

一次函数可以用于找到最佳拟 合线,以更好地描述数据的趋 势。
线性回归
一次函数可以用于进行线性回 归分析,以预测未来的数据趋 势。
结论和要点
• 一次函数是数学中最基本的函数之一,具有稳定的线性关系。 • 斜率和截距是一次函数图象的重要特征。 • 平移和缩放操作可以改变一次函数图象的位置和形状。 • 一次函数在实际问题中有广泛的应用,可以帮助解决各种实际情况。
一次函数图象的平移和缩放
通过平移和缩放操作,可以改变一次函数的图象及其性质。
1
平移
平移操作可以改变一次函数图象的位置,例如向左或向右平移。
2
缩放
缩放操作可以改变一Байду номын сангаас函数图象的形状和大小,例如拉伸或收缩。
3
组合操作
平移和缩放操作可以组合使用,以实现更灵活的一次函数图象变换。
一次函数图象的应用
一次函数的图象和性质在实际问题中有许多应用,例如经济学、物理学和工程学等领域。
一次函数图象与性质
一次函数是数学中最基本的函数之一,它具有许多重要的性质和应用。本次 演示将介绍一次函数的定义、图象特点以及与实际问题的关系。
一次函数的定义和表达式
一次函数是指一个自变量的整数次数都是1的函数。通常以y = ax + b的形式表示,其中a和b是常 数。
1 自变量
一次函数的自变量通常表示为x,它可以是任意实数。
经济学
一次函数可以描述供需关 系、市场价格等经济现象。
物理学
一次函数可以描述速度、 位移等物理量与时间的关 系。
工程学
一次函数可以描述电路、 力学系统等工程问题。
一次函数与实际问题的关系
一次函数是解决实际问题的重要工具,它可以帮助我们理解和解决各种实际情况。

一次函数几何综合题解题技巧

一次函数几何综合题解题技巧

一次函数几何综合题解题技巧一次函数是初中数学的重点知识之一,同时也是中考的热点。

它与几何知识的综合应用在中考中主要体现在:利用一次函数求待定系数、一次函数图象与几何图形相结合、一次函数图象的应用等几个方面。

本文将结合实例谈谈一次函数与几何图形综合题的解题技巧。

一、利用一次函数求待定系数解决这类问题的关键是利用已知条件建立方程组,求出待定系数。

具体来说,一般先设出一次函数解析式,利用已知条件得到解析式中的系数,再得到一次函数解析式。

【例1】已知:如图1,在平面直角坐标系中,直线AB与两坐标轴分别交于A、B两点,且与反比例函数的图象在第一象限交于点C。

(1)求该反比例函数的解析式;(2)求直线AB的解析式;(3)根据图像,当C的横坐标在哪个取值范围内时,线段AB不经过第四象限?分析:(1)由点C在反比例函数图象上,可直接求得解析式;(2)由于点C在直线AB上,可设直线AB的解析式为,将点C 的坐标分别代入解析式,可求得A、B两点的坐标,进而可求得直线AB 的解析式;(3)由图象可知,当C点的横坐标小于时,线段AB不经过第四象限。

解:(1)设反比例函数的解析式为,将点C(3,4)代入得,所以该反比例函数的解析式为;(2)设直线AB的解析式为,因为点C(3,4)在直线AB上,所以,解得,所以直线AB与轴交于点D(6,0),又因为点A(-3,-4),所以直线AB的解析式为;(3)由图象可知,当C点的横坐标小于时,线段AB不经过第四象限。

二、一次函数图象与几何图形相结合此类问题主要利用了待定系数法、数形结合的思想以及分类讨论的思想。

解题时要注意数形结合,根据已知条件建立方程或不等式,结合图形加以分析。

【例2】如图2,在平面直角坐标系中,四边形OABC为矩形,点A、C的坐标分别为(4,0)、(0,2),点D是边BC上的一个动点(点D与B、C不重合),过点D的抛物线经过点A、C、E。

(1)求该抛物线的解析式;(2)当AC为何值时,四边形DEOB为平行四边形?请说明理由;(3)设点D的坐标为(x,y),①试求该抛物线的对称轴及点D 到直线AC的距离;②试探究在抛物线上是否存在点M,使四边形AMDE 的面积最大?若存在,请求出点M的坐标;若不存在,请说明理由。

中考数学总复习 专题提升四 一次函数图象与性质的综合应用(含答案)

中考数学总复习 专题提升四 一次函数图象与性质的综合应用(含答案)

一次函数图象与性质的综合应用1.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是(C )2.如图,在Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能够反映y 与x 之间函数关系的图象大致是(A ),(第2题图))(第14题图)3.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应为点为直线y =34x 上一点,则点B 与其对应点B ′间的距离为 (C )A. 94B. 3C. 4D. 54.汽车以60 km/h 的速度在公路上匀速行驶,1 h 后进入高速路,继续以100 km/h 的速度匀速行驶,则汽车行驶的路程s (km)与行驶的时间t (h)的函数关系的大致图象是(C )5.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是(C )A. 1<m <7B. 3<m <4C. m >1D. m <46.如图,已知一条直线经过点A (0,2),B (1,0),将这条直线向左平移,使其与x 轴、y 轴分别交与点C ,D .若DB =DC ,则直线CD 的函数表达式为y =-2x -2.,(第6题图))7.已知直线y =-(n +1)n +2x +1n +2(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=__5032014__.解:令x =0,则y =1n +2; 令y =0,则-n +1n +2x +1n +2=0, 解得x =1n +1. ∴S n =12·1n +1·1n +2=12⎝ ⎛⎭⎪⎫1n +1-1n +2,∴S 1+S 2+S 3+…+S 2012=12×⎝ ⎛12-13+13-14+14-15+…+12013-⎭⎪⎫12014=12×⎝ ⎛⎭⎪⎫12-12014=5032014. 8.已知直线y =kx +b ,若k +b =5,kb =6,那么该直线不经过第__四__象限.9.如图,点A ,B 的坐标分别为(0,2),(3,4),点P 为x 轴上的一点.若点B 关于直线AP 的对称点B ′恰好落在x 轴上,则点P 的坐标为__(43,0)__.(第9题图)10.已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(第10题图水银柱的长度x (cm) 4.2 … 8.2 9.8 体温计的读数y (℃)35.0…40.042.0(1)求y 关于的函数关系式(不需要写出函数自变量的取值范围).(2)用该体温计测体温时,水银柱的长度为6.2 cm ,求此时体温计的读数.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35=4.2k +b ,40=8.2k +b ,解得⎩⎪⎨⎪⎧k =54,b =29.75.∴y =54x +29.75.∴y 关于x 的函数关系式为y =54x +29.75.(2)当x =6.2时,y =×6.2+29.75=37.5.答:此时体温计的读数为37.5 ℃.(第11题图)11.如图,一次函数y =ax +b 与反比例函数y =k x的图象交于A ,B 两点,点A 坐标为(m ,2),点B 坐标为(-4,n ),OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C作y 轴的垂线,交反比例函数图象于点D ,连结OD ,BD . (1)求一次函数与反比例函数的表达式. (2)求四边形OCBD 的面积.解:(1)如解图,过点A 作AE ⊥x 轴于点E .(第11题图解)∵点A (m ,2),tan∠AOE =13,∴tan ∠AOE =AE OE =2m =13,∴m =6,∴点A (6,2).∵y =k x 的图象过点A (6,2), ∴2=k6,∴k =12,∴反比例函数的表达式为 y =12x.∵点B (-4,n )在 y =12x的图象上,∴n =12-4=-3,∴点B (-4,-3).∵一次函数y =ax +b 过A ,B 两点,∴⎩⎪⎨⎪⎧6k +b =2,-4k +b =-3,解得⎩⎪⎨⎪⎧k =12,b =-1.∴一次函数的表达式为y =12x -1.(2)对于y =12x -1,当x =0时,y =-1,∴点C (0,-1). 当y =-1时,-1=12x,∴x =-12,∴点D (-12,-1), ∴S 四边形OCDB =S △ODC +S △BDC=12×|-12|×|-1|+12×|-12|×|(-3)-(-1)| =6+12 =18.12.甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h ,并且甲车途中休息了0.5 h ,如图是甲、乙两车行驶的距离y (km)与时间x (h)的函数图象.(第12题图)(1)求出图中m ,a 的值.(2)求出甲车行驶路程y (km)与时间x (h)的函数表达式,并写出相应的x 的取值范围. (3)当乙车行驶多长时间时,两车恰好相距50 km? 解:(1)由题意,得 m =1.5-0.5=1.120÷(3.5-0.5)=40, ∴a =40×1=40. ∴a =40,m =1.(2)∵260÷40=6.5,6.5+0.5=7,∴0≤x ≤7.当0≤x ≤1时,设y 与x 之间的函数表达式为y =k 1x ,由题意,得 40=k 1, ∴y =40x ;当1<x ≤1.5时, y =40;当1.5<x ≤7时,设y 与x 之间的函数表达式为y =k 2x +b ,由题意,得⎩⎪⎨⎪⎧40=1.5k 2+b ,120=3.5k 2+b , 解得⎩⎪⎨⎪⎧k 2=40,b =-20.∴y =40x -20.∴y =⎩⎪⎨⎪⎧40x (0≤x ≤1),40(1<x ≤1.5),40x -20(1.5<x ≤7).(3)设乙车行驶的路程y 与时间x 之间的函数表达式为y =k 3x +b 3,由题意,得⎩⎪⎨⎪⎧0=2k 3+b 3,120=3.5k 3+b 3, 解得⎩⎪⎨⎪⎧k 3=80,b 3=-160.∴y =80x -160.当40x -20-50=80x -160时, 解得x =94.当40x -20+50=80x -160时, 解得x =194.94-2=14,194-2=114. 答:乙车行驶14 h 或114h ,两车恰好相距50 km.13.经统计分析,某市跨河大桥上的车流速度v (千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数(即:车流量=车流速度×车流密度).求大桥上车流量y 的最大值.解:(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,由题意,得⎩⎪⎨⎪⎧80=20k +b ,0=220k +b , 解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x ≤220时,v =-25x +88,当x =100时,v =-25×100+88=48(千米/小时).(2)由题意,得⎩⎪⎨⎪⎧-25x +88>40,-25x +88<60,解得70<x <120.∴应控制大桥上的车流密度在70~120辆/千米范围内. (3)设车流量y 与x 之间的关系式为y =vx , 当0≤x ≤20时, y =80x .∵k =80>0,∴y 随x 的增大而增大, ∴x =20时,y 最大=1600; 当20≤x ≤220时y =(-25x +88)x =-25(x -110)2+4840,∴当x =110时,y 最大=4840. ∵4840>1600,∴当车流密度是110辆/千米,车流量y 取得最大值,是每小时4840辆.14.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳设享受医保的某居民一年的大病住院医疗费用为元,按上述标准报销的金额为y 元. (1)直接写出x ≤50000时,y 关于x 的函数表达式,并注明自变量x 的取值范围. (2)若某居民大病住院医疗费用按标准报销了20000元,则他住院医疗费用是多少元? 解:(1)由题意得:①当x ≤8000时,y =0;②当8000<x ≤30000时,y =(x -8000)×50%=0.5x -4000;③当30000<x ≤50000时,y =(30000-8000)×50%+(x -30000)×60%=0.6x -7000. (2)当花费30000元时,报销钱数为y =0.5×30000-4000=11000, ∵20000>11000,∴他的住院医疗费用超过30000元,当花费是50000元时,报销钱数为y =11000+20000×0.6=23000(元), 故住院医疗费用小于50000元.故把y =20000代入y =0.6x -7000中,得 20000=0.6x -7000, 解得x =45000.答:他住院医疗费用是45000元.15.某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同. (1)求甲、乙两种油茶树苗每株的价格.(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少? 解:(1)设甲、乙两种油茶树苗每株的价格分别为x 元,y 元,由题意,得 ⎩⎪⎨⎪⎧y =x +3,100x=160y ,解得⎩⎪⎨⎪⎧x =5,y =8.答:甲、乙两种油茶树苗每株的价格分别为5元,8元.(2)设购买甲种树苗a 株,则购买乙种树苗(1000-a )株,由题意,得 5a +8(1000-a )=5600,解得a =800,∴乙种树苗购买株数为1000-800=200株.答:购买甲种树苗800株,购买乙种树苗200株.(3)设购买甲种树苗b 株,则购买乙种树苗(1000-b )株,设购买的总费用为W 元,由题意,得90%b +95%(1000-b )≥1000×92%, 解得b ≤600.易得W =5b +8(1000-b )=-3b +8000, ∵k =-3<0,∴W 随b 的增大而减小,∴当b =600时,W 最低=6200元.答:购买甲种树苗600株,购买乙种树苗400株时,费用最低,最低费用是6200元. 16.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放.某日从上午7点到10点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的变化趋势如图①,每个无人售票窗口售出的车票数y 2(张)与售票时间x (h)的变化趋势是以原点为顶点的抛物线的一部分,如图②.若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同. (1)求图②中所确定抛物线的表达式.(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?(第16题图)解:(1)设y 2=ax 2,当x =2时,y 1=y 2=40,把点(2,40)的坐标代入y 2=ax 2,得 4a =40, 解得a =10,∴y 2=10x 2.(2)设y 1=kx +b (1≤x ≤3),把点(1,0),(2,40)的坐标分别代入y 1=kx +b ,得⎩⎪⎨⎪⎧k +b =0,2k +b =40,解得⎩⎪⎨⎪⎧k =40,b =-40. ∴y 1=40x -40.∴当x =3时,y 1=80,y 2=90.设需要开放m 个普通售票窗口,由题意,得 80m +90×5≥900,∴m ≥558.∵m 取整数, ∴m ≥6.答:至少需要开放6个普通售票窗口.。

一次函数图象的应用课件

一次函数图象的应用课件
一次函数图象的应 用ppt课件
目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况

02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述

初中数学一次函数的图象、性质、解析式及应用

初中数学一次函数的图象、性质、解析式及应用

初中数学一次函数的图象、性质、解析式及应用1、一次函数的定义:一般地,如果变量y与变量x有关系式y=kx+b(k,b是常数,且k≠0)那么y叫x的一次函数。

一次函数y=kx+b中,若b=0,此时变成y=kx(k≠0)称y是x的正比例函数。

2、一次函数的图象(1)一次函数y=kx+b的图象是一条直线,这条直线与y 轴相交于(0,b),这里b叫作直线y=kx+b的截距。

(2)y=kx(k≠0)的图象经过原点,y=kx+b(k≠0,b≠0)的图象不经过原点,与两坐标轴交点分别为(0,b),(,0)。

(3)对于直线,如果,且,那么这两条直线平行,反之也成立。

如果,那么这两条直线相交,反之也成立。

(4)直线y=kx+b可以看作是由直线y=kx平移而来。

(5)(k≠0)的图象的不同情形,即当k值、b值不同时图象所处的位置。

3、一次函数的性质一般地,一次函数y=kx+b(k,b为常数,k≠0)有下列性质当k>0时,y随x的增大而增大,图象是自左到右上升的直线当k<0时,y随x的增大而减小,图象是自左到右下降的直线4、用待定系数法求一次函数的解析式待定系数法:先设待求函数关系式(其中含有未知常数,系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。

用待定系数法求一次函数解析式的步骤:第一步:设关系式第二步:列方程(组)第三步:求出结果,写出关系式5、运用一次函数解决实际问题建立数学模型运用一次函数解决实际问题的一般步骤(1)通过实验,测量获得数量足够多的两个变量的对应值。

(2)建立合适的直角坐标系,在坐标系中,以各对应值为坐标描点,并画出函数图象。

(3)观察图象特征,判定函数类型。

(4)运用得到的经验公式,进一步求得所需要的结果。

例1、已知函数是一次函数,求m的值及函数关系式。

分析:一次函数满足:自变量的次数为1;自变量的系数不为0。

解析:∵是一次函数所以解得m=1所以函数关系式例2、下图不可能是关于x的一次函数的图象是()分析:一次函数中的m的取值应是一致的,应从一次函数的图象和性质出发A中,m>0,3-m>0,即A是0<m<3时的图象B中,直线经过原点,所以,m=3,即B是m=3时的图象C中,截距在x轴下方,∴3-m<0,m>3直线是呈下降趋势的,所以m<0,而无解,即C不可能D中,截距在x轴上方,所以3-m>0,m<3,图象呈下降趋势,故m<0即D是m<0时的图象解析:选C例3、已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,求直线y=kx+b的解析式。

一次函数图象的应用(图象共存问题)(人教版)(含答案)

一次函数图象的应用(图象共存问题)(人教版)(含答案)

学生做题前请先回答以下问题问题1:对于一次函数y=kx+b来讲,当k0时,图象必过第_______象限;当k0时,图象必过第_______象限;当b0时,图象必过第_______象限;当b0时,图象必过第_______象限.问题2:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质_____________;②验证___________________________________.以下是问题及答案,请对比参考:问题1:对于一次函数y=kx+b来讲,当k0时,图象必过第象限;当k0时,图象必过第象限;当b0时,图象必过第象限;当b0时,图象必过第象限.答:对于一次函数y=kx+b来讲,当k0时,图象必过第一、三象限;当k0时,图象必过第二、四象限;当b0时,图象必过第一、二象限;当b0时,图象必过第三、四象限.问题2:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质;②验证.答:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质判断k,b的符号;②验证另一个函数图象存在的合理性.一次函数图象的应用(图象共存问题)(人教版)一、单选题(共8道,每道12分)1.一次函数y=-ax+4与正比例函数y=2ax(a为常数,且a≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:图象共存问题2.一次函数y=kx-k2与正比例函数y=-kx(k为常数且k≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题3.一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题4.一次函数y=kx-b与正比例函数y=kbx(k,b为常数,且kb≠0)在同一坐标系内的大致图象不可能的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题5.两条直线与(k,b为常数,且kb≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:图象共存问题6.一次函数y=-kx+4-k与正比例函数y=3kx(k为常数,且k≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:图象共存问题7.一次函数y=ax-b与y=abx(ab≠0)在同一坐标系中的图象可能是( )A.①②B.③④C.②④D.①③答案:D解题思路:试题难度:三颗星知识点:图象共存问题8.两条直线y=mx-n与y=nx+m(m,n为常数,且mn≠0)在同一坐标系中的图象可能是( )A.①③B.①②C.②③D.③④答案:D解题思路:试题难度:三颗星知识点:图象共存问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列所示图象中与故事情节相吻合的是()
2、.甲、乙两人赛跑争夺冠军,如图,t表示赛跑所化时间,s表示比赛时所跑的距离,请根据图象回答下列问题:
①图形反映了哪两个变量之间的关系?
②他们进行的是多少米赛跑?
③谁获得冠军?
④乙在比赛中的平均速度是多少?
3:(1999年江苏省南京市中考题)某地长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(千克)的一次函数,其图象如图所示.
求:(1)y与x之间的函数关系式;
(2)旅客可免费携带的行李的重量.
秒)
4、..一位农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前y 与x 之间的关系式
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆? ]
5.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a 元收费,超过6立方米时,不超过的部分每立方米仍按a 元收费,超过的部分每立方米按c 元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
y(元)
(1)求a,c 的值 (2)当x ≤6,x ≥6时,分别写出y 于x 的函数关系式 (3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?
6、已知A 地在B 地正南方向3千米处,甲、乙两人分别从两地向正北方向匀速直行。

他们与A 地的距离s (千米)与所行时间t (小时)之间的关系如图所示,其中1l 表示甲运动的过程,2l
⑴甲和乙哪一个在A 地,哪一个在B 地?
⑵甲用多长时间追上了乙?
⑶求出表示甲的函数关系式和表示乙的函数关系式。

⑷通过函数关系式,计算说明什么时候两人又相距3千米。

7、对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系,从温度计的刻度上可以看出,摄氏
(0℃)温度x 与华氏(0F )温度y 有如下对应关系:
⑴通过①描点连线,②猜测y 与x 之间的函数关系式,③求解,④验证等几个步骤,试确定y 与x 之间的函数关系式。

⑵某天,中国上海的最高气温是8℃,澳大利亚悉尼的最高气温是91F ,问这一天悉尼的最高气温比上海的最高气温高多少摄氏度?(结果保留整数)
8.工厂有甲、乙两条生产线先后投产,两条生产线的产量(吨)与时间(天)的关系如图所示.根据图象回答下列问题:
(1)在乙生产线投产以前,甲生产线已生产了多少吨成品? (2)甲、乙两条生产线每天分别生产多少吨成品? (3)分别求出图中两条直线所对应的函数关系式.
9、小强骑自行车去郊游,右图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象,小明9点离开家,15点回家,根据这个图象,请你回答下列问题:①小强到离家最远的地方需几小时?此时离家多远?②何时开始第一次休息?休息时间多长?③小强何时距家21㎞?(写出计算过程)
10.如图,l 1表示神风摩托车厂一天的销销售售收入与摩托车销售量的关系;l 2表示摩托车厂一天的销售成本与销售量之间的关系. (1)写出销售收入与销售量之间的函数关系式. (2)写出销售成本与销售量之间的函数关系式;
(3)当一天的销售量为多少时,销售收入等于销售成本.
(4)当一天的销售量超过多少辆时,工厂才能获利?(2005年江苏中考题)
y/x/天
j
距离(km)时间1513121110.5O 15
30。

相关文档
最新文档