RFID技术实验报告

合集下载

rfid实训报告

rfid实训报告

rfid实训报告一、引言RFID(Radio Frequency Identification,射频识别)技术是一种非接触式自动识别技术,通过射频传感器实现信息的读取和写入。

本报告旨在总结与分析团队在RFID实训课程中的学习成果,详细介绍实训过程、所使用的设备与软件,以及所获得的实验结果和结论。

二、实训过程1. 实训目标及准备工作在开始实训之前,团队明确了实训的目标和预期结果。

同时,我们对所需设备和软件进行了调研和采购,确保一切准备工作就绪。

2. 实验一:RFID工作原理及硬件配置在这一实验中,我们详细学习了RFID工作原理,并了解不同类型的RFID标签和阅读器。

通过实际操作,我们掌握了如何配置RFID硬件。

3. 实验二:RFID标签编程本实验中,我们学习了如何使用编程软件对RFID标签进行编程,并实现标签读写功能。

通过编程,我们能够为每个标签分配唯一的序列号和数据。

4. 实验三:RFID应用与案例研究这一实验环节中,我们研究了RFID技术在不同领域中的应用案例,如供应链管理、物流跟踪等。

通过对实际案例的分析,我们深入了解了RFID技术的实际应用。

5. 实验四:RFID系统性能测试在这一实验中,我们测试了RFID系统的性能,包括读取距离、标签识别速度和抗干扰能力等。

通过实验数据的收集与分析,我们得出了一些结论,并对可能存在的问题进行了讨论。

6. 实验五:RFID系统集成在最后一个实验中,我们将所学知识应用于实际项目中,搭建了一个完整的RFID系统。

我们实施了系统集成并进行了一系列测试,以验证系统的可靠性和稳定性。

三、实验结果与讨论1. 实验一的结果分析通过对RFID工作原理和硬件配置的学习,我们深入了解了RFID 技术的基本知识,并学会了正确配置硬件设备。

2. 实验二的结果分析在RFID标签编程实验中,我们成功实现了对标签的编程和数据读写功能。

这使得标签能够存储和传输特定的信息,提供更多的应用可能性。

RFID原理与应用的实验

RFID原理与应用的实验

RFID原理与应用的实验1. 简介RFID(Radio Frequency Identification)是一种无线通信技术,通过无线电信号的识别和读取,实现对物体的自动识别和跟踪。

RFID技术在物流、仓储、交通、零售等领域广泛应用。

本文将介绍RFID的原理和在实验中的应用。

2. RFID原理RFID系统由RFID标签、RFID读写器和中间装置组成。

基本的RFID原理如下:•RFID标签:RFID标签是一种被动式设备,内部包含芯片和天线。

当RFID标签靠近RFID读写器时,由读写器发送的无线电信号激活标签内部的芯片。

标签内的芯片将存储的数据通过天线发送回给读写器。

•RFID读写器:RFID读写器是RFID系统的核心设备,用于发送和接收无线电信号。

读写器向标签发送无线电信号,同时接收标签返回的信号。

读写器可以读取标签上存储的数据,并将读取的数据发送到中间装置进行处理。

•中间装置:中间装置是RFID系统与其他系统和设备进行连接的设备,用于处理读取到的标签数据,如存储、验证等。

3. RFID实验的准备材料进行RFID实验需要准备以下材料:•RFID标签:选择合适的RFID标签作为实验的对象。

•RFID读写器:选用支持读写功能的RFID读写器。

•电脑:用于连接RFID读写器和中间装置,并进行数据的处理与展示。

•中间装置:根据实验需求选择适当的中间装置,如数据库、云平台等。

4. RFID实验步骤步骤一:连接RFID读写器将RFID读写器通过USB或其他接口连接到电脑上,确保读写器与电脑成功连接。

步骤二:准备RFID标签将准备好的RFID标签放置在读写器的有效范围内,确保能够与读写器成功通信。

步骤三:启动RFID读写器软件启动RFID读写器软件,并进行必要的设置,如波特率、读取范围等。

根据软件的具体操作指南进行设置,并确保读取器与标签能够正常通信。

步骤四:读取RFID标签数据使用读写器软件读取RFID标签上存储的数据。

rfid实训报告

rfid实训报告

rfid实训报告引言随着科技的发展和社会的进步,尤其是物联网技术的快速发展,RFID(Radio Frequency Identification,射频识别)技术作为一种非接触式自动识别技术,逐渐在各行各业应用开展。

本文将以RFID实训为主题,探索RFID技术的原理、应用场景以及其在实训中的具体应用。

一、RFID技术的原理RFID技术利用电磁波通过无线方式实现物体的自动识别和数据传输。

它主要由三个部分组成:RFID标签、读写器和中央数据库。

RFID 标签内部包含一个芯片和一个天线,芯片用来存储和处理数据,天线用于与读写器进行通信。

读写器则通过天线向RFID标签发送电磁波信号,并接收从标签返回的响应信号。

中央数据库用来存储和管理来自各个标签的数据。

二、RFID技术的应用场景RFID技术可以应用于各个领域,下面将介绍几个典型的应用场景。

1. 物流管理在物流行业中,RFID技术可以通过标签精确追踪货物的位置和状态,提高物流效率和准确性。

通过在物流过程中的关键节点使用RFID读写器,可以实现自动化记录货物进出库的时间和位置,并通过网络上传至中央数据库,从而方便管理者实时掌握物流情况。

2. 仓库管理RFID技术也可以应用于仓库管理中。

每个货物都附带一个RFID标签,仓库管理人员可以通过RFID读写器快速扫描并记录货物的进出库信息。

这不仅提高了仓库管理效率,同时也能减少人为错误。

3. 超市购物RFID技术可以应用于超市购物体验的改进。

如果每个商品都带有一个RFID标签,消费者只需要将购物车推过RFID读写器,系统就能自动识别所有商品并计算总花费,避免了传统扫码购物的繁琐过程。

4. 动物追踪RFID技术在农业领域也有广泛应用,比如对家禽、牲畜等动物进行身份追踪。

通过在动物的耳标或体内植入RFID标签,饲养员可以精确记录动物的信息,包括疫苗接种情况、生长发育等。

这有助于提高养殖效率和动物健康管理水平。

三、RFID技术在实训中的应用在RFID实训中,学生需要掌握RFID技术的原理和应用,并通过实际操作来提升实践能力。

rfid实训报告

rfid实训报告

rfid实训报告一、引言RFID(Radio Frequency Identification,射频识别)是一种无线通信技术,通过电磁场中的RFID标签与读写器之间的数据交互,实现对物体的唯一识别与跟踪。

本报告旨在总结我们在RFID实训过程中的学习成果与实践经验,以及对RFID技术在实际应用中的潜力进行探讨。

二、实训目标1. 熟悉RFID标签的工作原理和组成结构。

2. 掌握RFID技术的基本应用领域和流程。

3. 实践RFID技术在物流追踪和库存管理方面的应用。

4. 分析RFID技术在物联网和智能城市建设中的前景。

三、实训内容及步骤1. RFID标签的设计与制备在实训开始阶段,我们了解了RFID标签的工作原理,以及标签芯片、天线和封装等组成结构。

我们首先学习了标签设计的基础原理,然后使用专业软件进行标签模拟和设计。

在设计完成后,我们通过制程工艺流程,制备了自己设计的RFID标签样品。

2. RFID读写器的选用与配置在实验室中,我们了解到RFID读写器负责与标签进行通信,并将读取的数据传输到计算机系统。

我们学习了RFID读写器的选择原则和配置方法,通过实际操作将读写器与计算机相连,并进行相应的参数调整和功能设置。

3. RFID应用实践为了更好地理解RFID技术在实际应用中的价值,我们开展了一系列的应用实践。

- 在物流追踪方面,我们模拟了货物的进出仓库环节,使用RFID技术完成对货物的扫描、记录和追踪,在后台系统中实时更新货物的位置和状态,实现了物流信息的自动化管理。

- 在库存管理方面,我们通过RFID标签对货物进行唯一标识,并将其与库存系统相连接,实现了库存盘点的自动化、高效化,大大提升了库存管理的准确性和效率。

- 在物联网和智能城市建设方面,我们对RFID技术的潜力进行了探索。

通过RFID标签的应用,我们可以实现对城市公共设施、交通系统、物资流通等方面的智能化监控和管理,为城市管理和居民生活带来更多便利。

RFID实验报告

RFID实验报告

第一次实验 10月17日1. 125khz硬件基本实验1.1 125khz 时钟信号测量实验一、实验目的熟悉和学习iso/iec 18000-2,iso18000标准规范的从电子标签返回的时钟信号。

二、实验内容通过示波器观测从电子标签返回的时钟clk信号。

三、基本原理负载调制的基本原理。

四、所需仪器供电电源、示波器。

五、实验步骤1、测试线连接连接示波器:使用ch1 探头,地接到j22测试架,ch1探针接到j23测试架设置示波器:触发源选择ch,其余设置可以参照图5-2-12。

2、操作打开控制软件,系统默认实验模式即为lf 125khz模式,打开串口,启动只读自动识别标签。

3、观测信号,如图5-3-1所示:图5-3-1 解调电子标签返回的时钟信号图1.2 125khz mod信号测量实验一、实验目的熟悉和学习iso/iec 18000-2,iso18000标准规范的对射频进行调制的信号。

二、实验内容通过示波器观测微处理器对射频芯片进行调制的mod信号。

三、基本原理负载调制的基本原理。

四、所需仪器供电电源、示波器。

五、实验步骤1、测试线连接连接示波器:使用ch1 探头、ch2探头,地都接到j22测试架,ch1探针接到j23测试架,ch2接到j24测试架。

设置示波器:触发源选择ch,其余设置可以参照图5-3-2。

2、操作打开控制软件,系统默认实验模式即为lf 125khz模式,打开串口,选择读写卡操作的读数据。

3、观测信号,如图5-3-2所示:图5-3-2 射频调制信号图1.3 125khz 调制解调信号测量实验一、实验目的熟悉和学习iso/iec 18000-2,iso18000标准规范的对射频进行调制和解调的信号。

二、实验内容通过示波器观测射频调制的mod信号和解调的demod信号。

三、基本原理负载调制的基本原理。

四、所需仪器供电电源、示波器。

五、实验步骤1、测试线连接连接示波器:使用ch1 探头、ch2探头,地都接到j22测试架,ch1探针接到j24测试架,ch2接到j25测试架。

无线射频识别实验报告

无线射频识别实验报告

一、实验目的1. 熟悉无线射频识别(RFID)技术的基本原理和组成;2. 掌握RFID系统的搭建与调试方法;3. 理解RFID技术在实际应用中的优势与挑战;4. 培养动手能力和团队协作精神。

二、实验原理无线射频识别技术(RFID)是一种利用无线电波进行信息交换和识别的技术。

它通过射频标签(Tag)和读写器(Reader)之间的通信,实现数据读取和写入。

RFID 系统主要由以下几部分组成:1. 射频标签:标签是RFID系统的核心,用于存储信息。

标签可以分为有源标签和无源标签两种类型。

2. 读写器:读写器负责读取标签信息,并将信息传输给后台系统。

读写器通常由天线、控制器和通信接口组成。

3. 天线:天线用于发射和接收射频信号,将能量传输给标签,并接收标签返回的信号。

4. 后台系统:后台系统负责数据处理、存储和查询,实现对RFID标签的实时监控和管理。

三、实验内容1. 实验器材:RFID标签、读写器、天线、计算机、实验平台等。

2. 实验步骤:(1)搭建RFID系统:将标签、读写器、天线连接到实验平台上,并确保各部分连接正常。

(2)配置读写器:通过读写器配置软件设置读写器的参数,如波特率、频率等。

(3)测试标签读写:将标签放置在读写器附近,通过读写器读取标签信息,验证标签读写功能。

(4)测试标签识别距离:改变标签与读写器的距离,观察标签识别距离的变化,分析影响识别距离的因素。

(5)测试标签抗干扰能力:在读写器附近放置金属物体,观察标签识别情况,分析标签抗干扰能力。

(6)测试标签数据存储与更新:通过读写器向标签写入数据,并验证数据是否成功存储和更新。

四、实验结果与分析1. 标签读写功能测试:实验结果表明,标签在读写器附近能够成功读取信息,验证了标签读写功能。

2. 标签识别距离测试:实验发现,标签识别距离受读写器频率、标签类型、标签与读写器的距离等因素影响。

在高频段,标签识别距离较远;无源标签识别距离较有源标签短。

射频识别技术实验报告

射频识别技术实验报告

射频识别技术实验报告
1. 实验介绍
本次实验旨在介绍射频识别(RFID)技术,并通过实验验证
其在物品识别和追踪方面的应用。

2. 实验步骤
1. 准备工作:搜集所需的RFID设备和标签,并确保读写器与
计算机连接正常。

2. 设置实验环境:将读写器放置在适当的位置,并确保标签与
读写器之间有恰当的距离。

3. 标签编码:将需要识别的物品附上RFID标签,并对标签进
行编码。

4. 识别物品:将被标签编码的物品放置在读写器的工作范围内,观察识别结果。

5. 追踪物品:在物品移动时,通过读取标签信息来追踪其位置
和状态。

6. 结果记录:记录每个被识别和追踪的物品的信息,包括时间、位置和状态。

3. 实验结果
根据实验记录和观察,射频识别技术在物品识别和追踪方面表
现出较高的准确性和效率。

通过读取标签信息,可以方便地获取物
品的位置和状态,从而提高物品追踪的效率。

4. 结论
射频识别技术在物品识别和追踪方面具有广泛的应用前景。


过实验验证,可以看出该技术具有准确性高、效率高的特点,为物
品管理和追踪提供了一种便捷有效的解决方案。

5. 参考文献
[参考文献1]
[参考文献2]
...
(请根据实际情况添加参考文献)
以上为射频识别技术实验报告的简要内容,详细实验数据和分析可见附录。

rfid实验报告

rfid实验报告

rfid实验报告RFID实验报告引言:RFID(Radio Frequency Identification)是一种无线通信技术,通过无线电信号实现对物体的识别和追踪。

在现代社会中,RFID技术已经广泛应用于物流、供应链管理、智能交通等领域。

本文将介绍一次RFID实验的设计、过程和结果,并探讨其在现实生活中的应用前景。

实验设计:本次实验的目的是通过RFID技术实现对物体的追踪和识别。

实验所需材料包括RFID标签、RFID读写器、电脑等。

首先,我们选择了一批不同类型的物体,如书籍、水杯、手机等,并为每个物体粘贴了一个RFID标签。

然后,将RFID读写器连接到电脑上,并安装相应的软件以实现对RFID标签的读写和数据处理。

实验过程:在实验开始前,我们首先对RFID读写器和标签进行了测试,确保其正常工作。

然后,将每个物体放置在读写器的感应范围内,并使用软件读取和记录每个物体的RFID标签信息。

在实验过程中,我们还对读写器的感应范围、读取速度等进行了调整和优化,以提高读写的准确性和效率。

实验结果:通过实验,我们成功地实现了对物体的追踪和识别。

每个物体的RFID标签信息能够被准确地读取和记录,包括物体的名称、型号、生产日期等。

同时,我们还可以通过软件对这些信息进行管理和查询,实现对物体的库存管理、追溯等功能。

实验结果表明,RFID技术在物流和供应链管理中具有巨大的潜力和应用前景。

RFID技术的应用前景:RFID技术在现实生活中有着广泛的应用前景。

首先,在物流和供应链管理领域,RFID技术可以实现对物品的追踪、定位和管理,提高物流效率和准确性。

其次,在智能交通领域,RFID技术可以实现对车辆的识别和收费,提高交通管理的智能化水平。

此外,RFID技术还可以应用于智能家居、医疗健康等领域,实现物品的自动识别和管理,提升生活品质和便利性。

结论:通过本次RFID实验,我们深入了解了RFID技术的原理和应用,以及其在物体追踪和识别方面的优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六.实验结果及总结
该实验与实验一的区别在于采集节点频率的不同,但是其工作方式不变,依旧是电感耦合,而此次我们做实验的时候,将数据传输的信道改了,使得终端每次只能接收到我们自己采集设备的数据,更方便直白地验证了数据的采集,也很好地检验了采集设备的采集范围,方式在一米左右的地方,采集设备便可以识别到电子标签,数据如下
下载成程序:程序烧写到FLASH
点击 将目标文件下载到目标系统的指定存储区中,输出窗口会显示成功烧写的提示信息。
4、如果路由器板上没有下载程序,在安装有Keil uVision4的计算机上运行附带的源程序:节点程序(V1.1)\811_Router(01)(02或03)\Router.uvproj,编译、下载到路由器板上。注意:实验箱上采集节点一和采集节点二部分既可作为路由节点,又可作为采集节点,取决于所下载的程序是路由程序还是采集节点程序。程序下载过程如下:
3、将CC2420模块插入ZigBee RF1接口上。如果协调器板上没有下载程序,在安装有Keil uVision4的计算机上运行附带的源程序:实验程序\节点程序(V1.1)\9b96_协调器\Coordinator.uvproj,编译、下载到路由器板上。程序下载过程如下:
1)将仿真器连接到实验箱的JTAG1接口上,给实验箱上电;
1)将仿真器连接到路由节点的JTAG接口上,给实验箱上电;
2)打开工程文件:实验程序\节点程序(V1.1)\811_Router(01)( 02或03)\Router.uvproj,编译、下载程序;
5、如果节点开发板上没有下载程序,在安装有Keil uVision4的计算机上运行附带的源程序:节点程序(V1.1)\811_RFD_11(13.567MHz)\demo.uvproj,编译、下载到节点开发板上。程序下载过程如下:
魏丽芳
3
RFID系统基于ALOHA算法的防碰撞仿真实验及智慧农业演示
魏丽芳
4
温度传感器实验
魏丽芳
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
福建农林大学计算机与信息学院信息工程类实验报告
系:电子信息工程专业:电子信息工程年级:2012级
姓名:***学号:***实验课程:RFID技术
实验室号:_田C306实验设备号:12实验时间:15.5.15
(3)Flash大小添加
在上图中点击Setting进入如下对话框,点击add 添加
所有的配置均要点击“OK”来保存配置
4、如果路由器板上没有下载程序,在安装有Keil uVision4的计算机上运行附带的源程序:节点程序(V1.1)\811_Router(01)(02或03)\Router.uvproj,编译、下载到路由器板上。注意:实验箱上采集节点一和采集节点二部分既可作为路由节点,又可作为采集节点,取决于所下载的程序是路由程序还是采集节点程序。程序下载过程如下:
六.实验结果及总结
实验结果:将RFID卡放置在采集设备上,相应的终端会读取到数据,其读取到数据的方式是采用电感耦合的方式,但是每次读取到的结果不一样。
总结:针对读取结果不同,我们经过讨论发现是因为有多台仪器在同时做实验,而机子采用的发送频率都是2.45Ghz的微波频段,且微波的作为范围较大,大家的实验终端接收装置便不断接收到不同的信号,故每次待机到的数据不一样,通过本次实验,我们对ZigBee协议栈的原理更加了解,另外学习了RFID模块数据的传输过程
附:图1、2、3
PRIO
福建农林大学计算机与信息学院信息工程类实验报告
系:电子信息工程专业:电子信息工程年级:2012级
姓名:***学号:***实验课程:RFID技术
实验室号:_田C306实验设备号:12实验时间:15.5.22
指导教师签字:成绩:
实验名称
实验二 RFID(125KHz)实验
一、实验目的
指导教师签字:成绩:
实验名称
例:实验一 RFID(13.56MHz)实验
一、实验目的
1、学习ZigBee协议栈的原理。
2、学习RFID模块数据的传输过程。
二、实验内容
1、搭建由协调器、路由器、终端节点组成的ZigBee网络。
2、通过ZigBee网络采集RFID模块的数据并在上位机上显示结果。
三、实验设备
2、ZigBee协议栈串口应用
五、实验步骤
1、将PDL-LM3S-6734MDK文件夹下的Luminary文件夹拷贝到“C:\Keil\ARM\INC”目录下, 若弹出“确认文件夹替换”的对话框,请选择“全部”。
2、将PDL-LM3S-6734MDK文件夹下的driverLib.lib文件拷贝到“C:\Keil\ARM\RV31\LIB\Luminary”目录下,若弹出“确认文件替换”的对话框,请选择“是”,即将原先工程模板中的文件DriverLib.lib替换成为PDL-LM3S-6734MDK文件夹下的文件driverLib.lib。
1)将仿真器连接到采集节点的JTAG接口上,给实验箱上电;
2)打开工程文件:节点程序(V1.1)\811_RFD_11(13.56MHz)\demo.uvproj,完善程序Main.C的程序(见图1、2、3、4)
3)对节点程序(V1.1)\811_RFD_11(13.56MHz)\demo.uvproj编译、下载程序;
2)打开工程文件:实验程序\节点程序(V1.1)\9b96_协调器\Coordinator.uvproj,编译、下载程序;
其中:工程的编译链接:
点击 编译工程,同时将在输出窗口的BuildOutput子窗口输出编译信息:当显示0 Eorror,0 Warning时(出现的警告有时可以忽略),可进行代码固化了。
1)将仿真器连接到路由节点的JTAG接口上,给实验箱上电;
2)打开工程文件:实验程序\节点程序(V1.1)\811_Router(01)( 02或03)\Router.uvproj,编译、下载程序;
5、如果节点开发板上没有下载程序,在安装有Keil uVision4的计算机上运行附带的源程序:节点程序(V1.1)\811_RFD_11(125KHz)\demo.uvproj,编译、下载到节点开发板上。程序下载过程如下:
6、用串口线连接计算机串口和实验箱的UART1口,打开计算机上的监控软件MICM.exe,进入IOT监控系统界面,选择好串口并打开,然后依次将协调器、路由器、终端节点上电、复位,
具体实现见上位机使用说明:
准备好后如下图:
5、当有节点挂到协调器上时,界面右上方协调器下会显示节点名称,双击节点名称会进入该节点窗口,在此窗口中会显示当前数据信息(包含数字显示和图表显示),并定时更新。
下载成程序:程序烧写到FLASH
点击 将目标文件下载到目标系统的指定存储区中,输出窗口会显示成功烧写的提示信息。当无法编译时,设计j-link:
(1)PC 机通过J-LINK仿真器与目标板连接,选择硬件仿真中的Cortex-M3 J-LINK。若工程中用到.ini脚本文件,需在此处指定其路径。点击: 设置如下
(2)使用J-LINK仿真器,为仿真器选择合适的驱动以及为应用程序和可执行文件下载进行配置:
Project->Project-Option for Target->Debuger->Settings,检查J-LINK连接是否成功。
Project->Project-Option for Target->Utilities,做如下配置:
6、用串口线连接计算机串口和实验箱的UART1口,打开计算机上的监控软件MICM.exe,进入IOT监控系统界面,选择好串口并打开,然后依次将协调器、路由器、终端节点上电、复位,
具体实现见上位机使用说明:
准备好后如下图:
5、当有节点挂到协调器上时,界面右上方协调器下会显示节点名称,双击节点名称会进入该节点窗口,在此窗口中会显示当前数据信息(包含数字显示和图表显示),并定时更新。
从上图可以看到,除协调器与PC机的通讯可采用以太网或USB外,其他各个部分之间都采用ZigBee网络。整个系统除了PC机外的其他部分都采用当前最流行的低功耗、小封装的Cortex-M3芯片做主控芯片。其中的终端节点和路由节点采用LM3S811,汇聚节点采用内部集成以太网和USB控制器的LM3S6952或LM3S9B96,终端节点除ZigBee部分进行数据传输外,还有不同的传感器信号处理部分。
1、串口线、USB线(一头扁的一头方的)、M3-LINK仿真器、5V电源。
2、协调器开发板、路由器开发板、包含RFID(13.56MHz)传感器的节点开发板和射频卡。
3、安装有Keil uVision4的计算机以及ZigBee组网源程序。
四、实验说明
1、硬件组成
从硬件角度看,系统由4大部分组成:位于最底层的传感器采集节点、中间的路由节点、将数据传送到PC机的协调器节点以及PC机几个平台。系统框图如下图所示:
1、学习ZigBee协议栈的原理。
2、学习RFID模块数据的传输过程。
二、实验内容
1、搭建由协调器、路由器、终端节点组成的ZigBee网络。
2、通过ZigBee网络采集RFID模块的数据并在上位机上显示结果。
三、实验设备
1、串口线、USB线(一头扁的一头方的)、M3-LINK仿真器、5V电源。
2、协调器开发板、路由器开发板、包含RFID(125KHz)传感器的节点开发板和射频卡。
福建农林大学计算机与信息学院
信息工程类
实验报告
课程名称:
RFID技术
姓 名:
***
系:
电子信息工程
专 业:
电子信息工程
年 级:
2012级
学 号:
***
相关文档
最新文档