图像压缩算法
高效图像压缩与传输算法研究

高效图像压缩与传输算法研究摘要:随着数字图像的广泛应用,图像的压缩和传输变得越来越重要。
高效的图像压缩和传输算法能够减小图像的存储空间和传输带宽,并且保持图像质量。
本文通过研究不同的图像压缩和传输算法,探讨了它们的优缺点和适用场景。
通过实验比较不同算法的性能,分析出适用于不同应用领域的最佳算法。
本文的研究结果可以为图像压缩和传输算法的实际应用提供指导。
1. 引言在数字化时代,图像的压缩和传输对于各个领域的应用至关重要。
图像压缩技术的目标是在尽可能减小存储空间和传输带宽的同时,保持图像质量。
图像传输算法的目标是将压缩后的图像高效地传输给接收端。
本文将深入研究高效的图像压缩和传输算法。
2. 图像压缩算法2.1 无损压缩算法无损压缩算法是指在压缩图像的过程中不丢失任何图像信息。
其中,著名的算法有Huffman编码、LZW编码等。
这些算法适用于需要精确还原图像的应用,如医学图像传输等。
2.2 有损压缩算法有损压缩算法是指在压缩图像过程中,因为丢弃部分冗余信息,会产生一定的图像质量损失。
常见的有损压缩算法有JPEG、JPEG2000等。
这些算法能够在较小的存储空间和传输带宽消耗下保持较好的图像质量,适用于大部分通用图像传输场景。
3. 图像传输算法3.1 网络传输图像在网络传输过程中,需要考虑带宽利用率和传输速度。
常见的网络传输协议有TCP和UDP。
TCP协议保证数据的可靠性,但传输速度相对较慢;UDP协议传输速度快,但无法保证可靠性。
根据不同的应用场景,我们可以选择合适的网络传输协议。
3.2 流媒体传输流媒体传输是实时传输图像数据的一种方式,常见的应用包括视频会议、在线视频等。
流媒体传输需要保证高帧率和低延迟。
为了提高传输效率,我们可以采用压缩传输策略,例如实时视频解码和流媒体服务器的使用。
4. 性能评估指标为了评估不同算法的性能,我们需要一些指标来进行比较。
常用的指标包括压缩比、峰值信噪比(PSNR)、结构相似性(SSIM)等。
图像压缩算法及其数学原理

图像压缩算法及其数学原理在现代科技的发展下,数字图像已经成为人们生活中不可或缺的一部分。
然而,随着图像的分辨率和色彩深度的提高,图像文件的大小也越来越大,给存储和传输带来了巨大的负担。
为了解决这个问题,图像压缩算法应运而生。
图像压缩算法是一种通过减少图像文件的数据量来实现文件大小减小的技术。
它可以分为有损压缩和无损压缩两种类型。
有损压缩算法是通过牺牲一定的图像质量来实现更高的压缩比。
最常见的有损压缩算法是基于离散余弦变换(Discrete Cosine Transform,DCT)的JPEG算法。
JPEG算法将图像分成8x8的图像块,对每个图像块进行DCT变换,然后将变换系数进行量化和编码。
在量化过程中,DCT变换系数的高频部分被量化为较小的数值,从而减小了数据量。
在编码过程中,采用了熵编码算法,如哈夫曼编码,进一步减小了数据的大小。
虽然JPEG算法可以实现较高的压缩比,但由于数据的丢失,图像质量也会有所损失。
无损压缩算法是通过保持图像质量的前提下实现文件大小减小的技术。
最常见的无损压缩算法是基于预测编码的无损压缩算法,如GIF和PNG算法。
这些算法利用图像中像素之间的相关性进行编码。
在预测编码中,每个像素的值都是通过对其周围像素值进行预测得到的。
然后,将预测误差进行编码和存储。
由于预测误差通常较小,因此无损压缩算法可以实现较小的文件大小,同时保持图像质量不变。
图像压缩算法的数学原理是其实现的基础。
在有损压缩算法中,DCT变换是其中的核心数学原理。
DCT变换是一种将时域信号转换为频域信号的数学变换。
它通过将图像块中的像素值映射到一组频域系数上,从而实现对图像的压缩。
在DCT变换中,高频系数对应于图像的细节信息,而低频系数对应于图像的整体结构。
通过量化和编码高频系数,可以实现对图像细节的压缩。
在无损压缩算法中,预测编码是其中的核心数学原理。
预测编码利用了图像中像素之间的相关性。
通过对像素值进行预测,可以减小预测误差的大小。
数字图像处理中的图像压缩算法

数字图像处理中的图像压缩算法随着科技和计算机技术的不断发展,数字图像处理成为了一个非常重要的领域。
数字图像处理技术广泛应用于各个领域,如图像储存、通信、医疗、工业等等。
在大量的图像处理中,图像压缩算法是非常关键的一环。
本文将介绍一些数字图像处理中的图像压缩算法。
一、无损压缩算法1. RLE 算法RLE(Run Length Encoding)算法是常见的图像无损压缩算法之一,它的主要思想是将连续的像素值用一个计数器表示。
比如将连续的“aaaa”压缩成“a4”。
RLE 算法相对比较简单,适用于连续的重复像素值较多的图像,如文字图片等。
2. Huffman 编码算法Huffman 编码算法是一种将可变长编码应用于数据压缩的算法,主要用于图像无损压缩中。
它的主要思想是将频率较高的字符用较短的编码,频率较低的字符用较长的编码。
将编码表储存在压缩文件中,解压时按照编码表进行解码。
Huffman 编码算法是一种效率较高的无损压缩算法。
二、有损压缩算法1. JPEG 压缩算法JPEG(Joint Photographic Experts Group)压缩算法是一种在有损压缩中广泛应用的算法。
该算法主要是针对连续色块和变化缓慢的图像进行处理。
JPEG 压缩算法的主要思想是采用离散余弦变换(DCT)将图像分割成小块,然后对每个小块进行频率分析,去除一些高频信息,再进行量化,最后采用 Huffman 编码进行压缩。
2. MPEG 压缩算法MPEG(Moving Picture Experts Group)压缩算法是一种针对视频压缩的算法,它主要是对视频序列中不同帧之间的冗余信息进行压缩。
该算法采用了空间域和时间域的压缩技术,包括分块变换编码和运动补偿等方法。
在分块变换编码中,采用离散余弦变换或小波变换来对视频序列进行压缩,再通过运动估计和补偿等方法,去除冗余信息。
三、总结数字图像处理中的图像压缩算法有很多种,其中无损压缩算法和有损压缩算法各有特点。
计算机图像处理中的图像压缩与图像恢复算法

计算机图像处理中的图像压缩与图像恢复算法图像压缩和图像恢复算法是计算机图像处理领域中非常重要的技术,它们可以对图像进行有效的压缩和恢复,实现图像数据在存储、传输和显示过程中的高效利用。
本文将介绍图像压缩与图像恢复算法的基本原理和常用方法。
一、图像压缩算法图像压缩算法是通过去除冗余信息和减少图像数据量来实现图像压缩的。
常见的图像压缩算法主要包括无损压缩和有损压缩两种。
1. 无损压缩算法无损压缩算法是指在图像压缩的过程中不丢失原始图像的任何信息,使得压缩后的图像与原始图像完全一致。
常用的无损压缩算法有:(1)Huffman 编码算法:通过构建霍夫曼树将出现频率较高的像素值赋予较短的编码长度,提高编码效率;(2)LZW 压缩算法:通过构建字典表来进行压缩,将图像中重复的像素值用较短的编码表示,进一步减少数据量。
2. 有损压缩算法有损压缩算法是在压缩的过程中有意丢失一定的图像信息,从而实现更高的压缩比。
常用的有损压缩算法有:(1)JPEG 压缩算法:通过离散余弦变换(DCT)将图像转化为频域表示,再利用量化和熵编码等技术对图像数据进行压缩;(2)Fractal 压缩算法:将图像分解为一系列局部细节,并利用自相似性进行压缩。
二、图像恢复算法图像恢复算法是指在图像受到损坏或失真后,通过一系列算法恢复出原始图像的过程。
常见的图像恢复算法主要包括插值算法和去噪算法。
1. 插值算法插值算法是一种用于根据已知图像信息来估计未知像素值的方法。
常见的插值算法有:(1)最近邻插值算法:根据离目标像素最近的已知像素值进行估计;(2)双线性插值算法:利用目标像素周围的已知像素值进行加权平均估计;(3)双三次插值算法:在双线性插值的基础上,通过考虑更多的邻域像素值进行估计。
2. 去噪算法去噪算法可以有效地去除图像中的噪声,恢复出原始图像的清晰度。
常见的去噪算法有:(1)中值滤波算法:利用像素周围邻域像素的中值来估计目标像素值,对于椒盐噪声和脉冲噪声有较好的去除效果;(2)小波去噪算法:利用小波变换将图像分解为不同的频率分量,通过阈值处理来剔除噪声。
图像压缩算法原理:JPEG、PNG等压缩方式

图像压缩算法原理:JPEG、PNG等压缩方式图像压缩算法旨在减小图像文件的大小,同时保持尽可能多的图像质量。
JPEG(Joint Photographic Experts Group)和PNG(Portable Network Graphics)是两种常见的图像压缩方式,它们有不同的原理和适用场景。
JPEG 压缩算法原理:离散余弦变换(DCT): JPEG 使用离散余弦变换将图像从空间域变换到频域。
DCT将图像分解为一系列频率分量,允许更多的信息被聚焦在低频分量上,这些低频分量对人眼更敏感。
量化:在DCT之后,通过量化将每个频率分量的数值映射为一个较低的精度。
高频分量被更多地量化为零,从而进一步减小数据。
哈夫曼编码:使用哈夫曼编码对量化后的数据进行熵编码。
哈夫曼编码对常见的值使用较短的编码,对不常见的值使用较长的编码,以进一步减小文件大小。
色彩空间转换: JPEG通常将RGB颜色空间转换为YCbCr颜色空间,其中Y表示亮度(灰度),Cb和Cr表示色度(颜色信息)。
这样可以将图像的亮度和色度分离,使得在色度上的降采样更容易。
PNG 压缩算法原理:无损压缩:与JPEG不同,PNG是一种无损压缩算法,它保留了原始图像的每一个像素的精确信息。
这使得PNG适用于需要完整性的图像,如图标、图形等。
差分预测: PNG使用差分预测(Delta Predictive Coding)来减小冗余。
通过预测每个像素值与其周围像素值之间的差异,PNG可以用较小的数据表示图像。
LZ77压缩: PNG使用LZ77算法进行数据压缩。
该算法通过查找并用指向先前出现的相似数据的指针替换当前数据,从而减小文件大小。
无调色板和透明度支持: PNG支持真彩色图像,并且可以存储图像的透明度信息。
这使得PNG在需要保留图像质量的同时支持透明背景。
总体而言,JPEG适用于需要较小文件大小,且可以容忍一些信息损失的场景,而PNG适用于需要无损压缩和透明度支持的场景。
图像压缩算法范文

图像压缩算法范文
1.概述
图像压缩是一种数字处理技术,用于减少图像文件的大小,同时保留
其本身的内容和质量。
它通常用于将高分辨率的彩色图像转换成较小文件
以使其在网络上传输或存储更加方便和高效,同时可以减少存储空间开销。
2.图像压缩算法
2.1无损压缩算法
无损压缩算法是一种无损地压缩图像的算法,它可以在压缩前后保持
原始图像的质量。
无损压缩算法主要有 JPEG2000,JPEG-LS 和 Lossless JPEG等,它们都是基于数据变换(如DCT,DWT)和熵编码(如Huffman
编码,Arithmetic编码)的算法。
JPEG2000是最流行的无损压缩算法之一,它采用像素块编码,并通
过DCT和WVT数据变换,实现较好的无损压缩效果,使得图像文件大小可
以大大减小,但是压缩所需要的时间较长,耗费资源。
JPEG-LS是一种非常有效的无损压缩算法,它采用了图像划分,非线
性差分滤波和补偿等技术,使得图像文件大小得到显著的减小,同时可以
保持其原有质量,并且压缩所耗费的时间较短,是一种性价比比较高的图
像压缩算法。
Lossless JPEG 则采取了更多的适应性编码技术,将原图像的熵编码
进行改进。
数字图像处理中的图像压缩与去噪算法研究

数字图像处理中的图像压缩与去噪算法研究数字图像处理是一门研究如何对数字图像进行处理、分析和改善的学科。
在实际应用中,对于图像的存储、传输和展示,往往需要对图像进行压缩和去噪处理,以节省存储空间、提高传输效率和改善视觉品质。
本文将重点研究数字图像处理中的图像压缩与去噪算法。
图像压缩是指通过对图像数据进行处理,使得压缩后的图像占用更小的存储空间。
常见的图像压缩算法主要分为有损压缩和无损压缩两种。
一、图像压缩算法1. 无损压缩算法无损压缩算法是指在图像进行压缩的过程中不会导致图像信息的丢失。
常用的无损压缩算法有LZW算法、RLE算法和Huffman编码算法等。
这些算法主要通过对图像数据进行编码和解码的方式,将冗余的数据进行删除和优化,从而减小图像的存储空间。
2. 有损压缩算法有损压缩算法是指在图像进行压缩的过程中会导致图像信息的丢失,但在人眼视觉上并不明显。
有损压缩算法常用的有JPEG和JPEG2000算法。
JPEG算法通过对图像进行离散余弦变换(DCT)和量化操作来实现压缩,而JPEG2000算法则采用小波变换和比特平面编码的方式来实现更高的压缩率和更好的视觉质量。
二、图像去噪算法图像去噪是指通过对图像中的噪声进行处理,使得图像恢复原有的细节和清晰度。
常见的图像去噪算法主要分为基于统计方法的去噪算法和基于局部邻域平均的去噪算法。
1. 统计方法的去噪算法统计方法的去噪算法主要通过对图像像素值的统计特性进行建模,并通过一些统计学方法进行噪声的去除。
常用的统计方法有均值滤波、中值滤波和非局部均值滤波等。
这些方法通过利用图像像素值的均值、中值或者非局部均值替代噪声像素值,从而达到去噪的目的。
2. 局部邻域平均的去噪算法局部邻域平均的去噪算法主要通过对图像邻域像素进行平均或者加权平均的方式来去除噪声。
常见的局部邻域平均算法有均值滤波、中值滤波和双边滤波等。
这些算法通过对图像局部邻域像素进行求平均或者加权平均的操作,达到去噪的效果。
常用图像压缩算法对比分析

常用图像压缩算法对比分析1. 引言图像压缩是一种将图像数据进行有损或无损压缩的方法,旨在减少图像数据的存储空间和传输带宽需求,同时尽可能保持原始图像的质量。
随着数字图像的广泛应用,图像压缩算法成为了计算机科学领域的重要研究领域。
本文将对目前常用的图像压缩算法进行比较和分析。
2. JPEG压缩算法JPEG(Joint Photographic Experts Group)是一种广泛使用的无损压缩算法,适用于彩色图像。
该算法通过对图像在频域上的离散余弦变换(DCT)进行分析,将高频成分进行舍弃,从而实现图像的压缩。
JPEG算法可以选择不同的压缩比,从而平衡图像质量和压缩率。
3. PNG压缩算法PNG(Portable Network Graphics)是一种无损压缩算法,适用于压缩有颜色索引的图像。
该算法基于LZ77压缩算法和哈夫曼编码,将图像中的相似数据进行压缩存储。
相比于JPEG算法,PNG 算法可以实现更好的图像质量,但压缩率较低。
4. GIF压缩算法GIF(Graphics Interchange Format)是一种无损压缩算法,适用于压缩简单的图像,如卡通图像或图形。
该算法基于LZW压缩算法,通过建立字典来实现图像的压缩存储。
GIF算法在保持图像质量的同时,能够实现较高的压缩率。
5. WEBP压缩算法WEBP是一种无损压缩算法,由Google开发,适用于网络上的图像传输。
该算法结合了有损压缩和无损压缩的特点,可以根据需要选择不同的压缩模式。
相比于JPEG和PNG算法,WEBP算法可以实现更好的压缩率和图像质量,但对浏览器的兼容性有一定要求。
6. 对比分析从图像质量、压缩率和兼容性等方面对比分析上述四种常用图像压缩算法。
- 图像质量:JPEG算法在高压缩比下会引入一定的失真,适合于要求相对较低的图像质量;PNG和GIF算法在无损压缩的情况下能够保持较好的图像质量;WEBP算法在高压缩比下相对其他算法都具有更好的图像质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法实现与应用——《算法设计与分析》课程报告一. 基本要求 1. 题目: 图像压缩 2. 问题描述掌握基于DCT 变换的图像压缩的基本原理及其实现步骤;对同一幅原 始图像进行压缩,进一步掌握DCT 和图像压缩。
3. 算法基本思想图像数据压缩的目的是在满足一定图像质量的条件下,用尽可能少的比特数来表示原始图像,以提高图像传输的效率和减少图像存储的容量,在信息论中称为信源编码。
图像压缩是通过删除图像数据中冗余的或者不必要的部分来减小图像数据量的技术,压缩过程就是编码过程,解压缩过程就是解码过程。
压缩技术分为无损压缩和有损压缩两大类,前者在解码时可以精确地恢复原图像,没有任何损失;后者在解码时只能近似原图像,不能无失真地恢复原图像。
假设有一个无记忆的信源,它产生的消息为{}N ≤≤i a i 1,其出现的概率是已知的,记为()i a p 。
则其信息量定义为:()()i i a p a log -=I由此可见一个消息出现的可能性越小,其信息量就越多,其出现对信息的贡献量越大,反之亦然。
信源的平均信息量称为“熵”(entropy ),可以表示为:()()[]()()∑∑==-=⋅=H Ni i i Ni i i a p a p a p I a p 11log对上式取以2为底的对数时,单位为比特(bits ):()()∑=-=H Ni i i a p a p 1log根据香农(Shannon )无噪声编码定理,对于熵为H 的信号源,对其进行无失真编码所可能达到的最低比特数为,这里为一任意小的正数,因此可能达到的 最大压缩比为:H≈+H =BB C εmax 其中B 是原始图像的平均比特率。
在图像压缩中,压缩比是一个重要的衡量指标。
可以定义压缩比为:H=B C 其中B :原始数据的平均压缩比;H :压缩数据的平均比特率 图像压缩的基本模型图像编码包括两个阶段,前一个阶段就是利用预测模型或正交模型对图像信号进行变换;后一个阶段是利用已变换信号的统计特性,对其分配适当的代码来进行编码传输。
编码器与解码器的结构分别如图(a)、(b)。
图(a ) 编码器结构图(b ) 解码器结构在发送端,输入的原始图像首先经过DCT 变换后,其低频分量都集中在左上角,高频分量分布在右下角(DCT 变换实际上是空间域的低通滤波器)。
由于该低频分量包含了图像的主要信息,而高频分量与之相比就不那么重要了,所以可以忽略高频分量,从而达到压缩的目的。
将高频分量去掉就要用到量化,这是产生信息损失的根源。
“量化”的主要任务是用有限个离散电平来近似表达已抽取出的信息。
在此采用均匀量化,通过改变程序中的量化因子Q 的值以得到不同压缩比的图像。
Huffman编码时,首先对经DCT变换及量化后的图像收据扫描一遍,计算出各种像素出现的概率;然后按概率的大小指定不同长度的唯一码字,由此得到一张Huffman表。
编码后的图像记录的是每个像素的码字,而码字与量化后像素值的对应关系记录在码表中。
生成的一维字符矩阵即为实际中要传输的序列,压缩后的图像数据在信道中进行传输。
在接收端,接收到的压缩图像数据首先经过Huffman译码,通过搜索已生成的Huffman表,根据码字与量化后像素值的对应关系,搜索出与码字对应的像素值,并转换为二维矩阵。
反量化时将以上二维矩阵中的每一个像素值乘以量化因子Q。
最后通过DCT反变换得到重建图像。
●离散余弦变换(DCT)当前处于信息高速流通时代,要求在保证质量的前提下,以较小的空间存储图像和较小的比特率传输图像,这就需要采用各种图像压缩编码技术来实现。
DCT 变换是最小均方误差条件得出的次最佳正交变换,且已经获得广泛的应用,并已经成为许多图像编码国际标准的核心。
离散余弦变换的变换核是余弦函数,计算速度较快,有利于图像压缩和其他处理。
在大多数情况下,DCT用于图像的压缩操作中。
JPEG图像格式的压缩算法采用的是DCT。
二.算法实现●程序源代码function b = blkproc(varargin)[a, block, border, fun, params, padval] = parse_inputs(varargin{:}); [ma,na] = size(a);mpad = rem(ma,block(1)); if mpad>0, mpad = block(1)-mpad; endnpad = rem(na,block(2)); if npad>0, npad = block(2)-npad; endif (isa(a, 'uint8'))if (padval == 1)aa = repmat(uint8(1), ma+mpad+2*border(1),na+npad+2*border(2));elseaa = repmat(uint8(0), ma+mpad+2*border(1),na+npad+2*border(2));endelseif isa(a, 'uint16')if (padval == 1)aa = repmat(uint16(1), ma+mpad+2*border(1),na+npad+2*border(2));elseaa = repmat(uint16(0), ma+mpad+2*border(1),na+npad+2*border(2));endelseif (padval == 1)aa = ones(ma+mpad+2*border(1),na+npad+2*border(2));elseaa = zeros(ma+mpad+2*border(1),na+npad+2*border(2));endendaa(border(1)+(1:ma),border(2)+(1:na)) = a;m = block(1) + 2*border(1);n = block(2) + 2*border(2);mblocks = (ma+mpad)/block(1);nblocks = (na+npad)/block(2);arows = 1:m; acols = 1:n;x = aa(arows, acols);firstBlock = feval(fun,x,params{:});if (isempty(firstBlock))style = 'e';b = [];elseif (all(size(firstBlock) == size(x)))style = 's'; % sameif (isa(firstBlock, 'uint8'))b = repmat(uint8(0), ma+mpad, na+npad);elseif (isa(firstBlock, 'uint16'))b = repmat(uint16(0), ma+mpad, na+npad);elseb = zeros(ma+mpad, na+npad);endbrows = 1:block(1);bcols = 1:block(2);mb = block(1);nb = block(2);xrows = brows + border(1);xcols = bcols + border(2);b(brows, bcols) = firstBlock(xrows, xcols);elseif (all(size(firstBlock) == (size(x)-2*border)))style = 'b'; % borderif (isa(firstBlock, 'uint8'))b = repmat(uint8(0), ma+mpad, na+npad);elseif (isa(firstBlock, 'uint16'))b = repmat(uint16(0), ma+mpad, na+npad);elseb = zeros(ma+mpad, na+npad);endbrows = 1:block(1);bcols = 1:block(2);b(brows, bcols) = firstBlock;mb = block(1);nb = block(2);elsestyle = 'd'; % different[P,Q] = size(firstBlock);brows = 1:P;bcols = 1:Q;mb = P;nb = Q;if (isa(firstBlock, 'uint8'))b = repmat(uint8(0), mblocks*P, nblocks*Q);elseif (isa(firstBlock, 'uint16'))b = repmat(uint16(0), mblocks*P, nblocks*Q);elseb = zeros(mblocks*P, nblocks*Q);endb(brows, bcols) = firstBlock;end[rr,cc] = meshgrid(0:(mblocks-1), 0:(nblocks-1));rr = rr(:);cc = cc(:);mma = block(1);nna = block(2);for k = 2:length(rr)x = aa(rr(k)*mma+arows,cc(k)*nna+acols);c = feval(fun,x,params{:});if (style == 's')b(rr(k)*mb+brows,cc(k)*nb+bcols) = c(xrows,xcols); elseif (style == 'b')b(rr(k)*mb+brows,cc(k)*nb+bcols) = c;elseif (style == 'd')b(rr(k)*mb+brows,cc(k)*nb+bcols) = c;endendif ((style == 's') || (style == 'b'))b = b(1:ma,1:na);endfunction[a, block, border, fun, params, padval] = parse_inputs(varargin) iptchecknargin(2,Inf,nargin,mfilename);switch nargincase 3% BLKPROC(A, [m n], 'fun')a = varargin{1};block = varargin{2};border = [0 0];fun = fcnchk(varargin{3});params = cell(0,0);padval = 0;case 4if (strcmp(varargin{2}, 'indexed'))% BLKPROC(X, 'indexed', [m n], 'fun')a = varargin{1};block = varargin{3};border = [0 0];fun = fcnchk(varargin{4});params = cell(0,0);padval = 1;elseparams = varargin(4);[fun,msg] = fcnchk(varargin{3}, length(params));if isempty(msg)% BLKPROC(A, [m n], 'fun', P1)a = varargin{1};block = varargin{2};border = [0 0];padval = 0;else% BLKPROC(A, [m n], [mb nb], 'fun')a = varargin{1};block = varargin{2};border = varargin{3};fun = fcnchk(varargin{4});params = cell(0,0);padval = 0;endendotherwiseif (strcmp(varargin{2}, 'indexed'))params = varargin(5:end);[fun,msg] = fcnchk(varargin{4},length(params));if isempty(msg)% BLKPROC(A, 'indexed', [m n], 'fun', P1, ...)a = varargin{1};block = varargin{3};border = [0 0];padval = 1;else% BLKPROC(A, 'indexed', [m n], [mb nb], 'fun', P1, ...)a = varargin{1};block = varargin{3};border = varargin{4};params = varargin(6:end);fun = fcnchk(varargin{5},length(params));padval = 1;endelseparams = varargin(4:end);[fun,msg] = fcnchk(varargin{3},length(params));if isempty(msg)% BLKPROC(A, [m n], 'fun', P1, ...)a = varargin{1};block = varargin{2};border = [0 0];padval = 0;else% BLKPROC(A, [m n], [mb nb], 'fun', P1, ...)a = varargin{1};block = varargin{2};border = varargin{3};params = varargin(5:end);fun = fcnchk(varargin{4}, length(params));padval = 0;endendendif (islogical(a) || isa(a,'uint8') || isa(a, 'uint16'))padval = 0;endclearclcI=imread('C:\Users\lenovo.lenovo-PC\Desktop\²âÊÔͼ.jpg'); I=rgb2gray(I);I=im2double(I);T=dctmtx(8);B=blkproc(I,[8 8],'P1*x*P2',T,T');mask = [1 1 1 1 0 0 0 01 1 1 0 0 0 0 01 1 0 0 0 0 0 01 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0];B2 = blkproc(B,[8 8],@(x)mask.* x);I2 = blkproc(B2,[8 8],'P1*x*P2',T',T);subplot(1,2,1);imshow(I);title('Ô-ʼͼÏñ');subplot(1,2,2);imshow(I2);title('ѹËõºóͼÏñ');figure;error = I.^2-I2.^2;MSE = sum(error(:))/prod(size(I2));B3 = B-B2;I3 = blkproc(B3,[8 8],'P1*x*P2',T,T');imshow(I3);title('¾ù·½Îó²îͼÏñ');主要函数功能描述Blkproc:对图像进行分块处理MSE :计算均方误差I2 = blkproc(B2,[16 16],'P1*x*P2',T',T):压缩操作I=rgb2gray(I):将彩色图像转化为灰度图像●测试数据测试图像为I1,图像大小为7561021⨯测试图像为I2,图像大小为671879⨯●运行结果。