有理数的加减混合运算步骤
2.8.1有理数的加减混合运算加减法统一成加法

1 2 1 2 ( 1 ) ( . -2 ) -3 (- 2 ) (- 3 ) 2 3 2 3 (- 2) (5) (2) .(-2)- (-5)
(- 23.5) (3) .12.76- 23.5 12.76
什能 么说 法出 则运 吗用 ?的 是
(4) .(35)- (-25) ( 35) ( 25)
讲授新课
一 有理数的加减混合运算
合作探究
1.引入相反数后,加减混合运算可以统一为加法运算.
(-c) 如:a+b-c=a+b+______ (-20)+(+3)-(-5)-(+7)
2.将上面的算式转化为加法 :____________________________. ( -20)+(+3)+(+5)+(-7) -20、___ 3 、___ 5 、___ -7 这四 3.这个算式我们可以看作是___ 个数的和.
6 = . 5
1 7 ( 5) 7 解:原式= 2 3 1 7 =57 2 3 11 =2 6 1 = . 6
因培育 得创造 共成长
当堂检测
1.把下列各式写成省略加号的和的形式, 并说出它们的两种读法. (1)(-12)-(+8)+(-6)-(-5); (2)(+3.7)-(-2.1)-1.8+(-2.6). 2.将下式写成省略加号的和的形式,并按 括号内要求交换加数的位置: (1)(+16)+(-29)-(-7)-(+11)+(+9) (使符号相同的 加数在一起);
因培育 得创造 共成长
( 20) ( 3) ( 5) ( 7).
有理数的加减混合运算

如果取下关段的警戒水位作为0点,那么图 中的其他数据可以分别记作什么?并说明你 的思路.
最高水位 10.5 米
最高水位记作:+2米
下关段
警戒水位 8.5米 水位
平均水位记作:-3.1米
最低水位记作:-6.2米
平均水位5.4米
最低水位 2.3米
住在江边的小明同学记录了今年梅雨季 节下关段一周的水位变化情况:(上周日 的水位达到了警戒水位)
(2)与上周日相比,本周日河流的水位是上升了还是下降
了?为什么?你是怎么知道的?有哪些方法?
方法一: 对水位变化的数据求和
+0.2 + (+0.81) + (-0.35) + (+0.03) + (+0.28) +
(-0.36) + (-0.01) = 0.60(米)
星期
一
+0.20
二
+0.81
三
第二章 有理数及其运算
6. 有理数的加减混合运算(三)
梳理知识 1.有理数加减混合运算的步骤
(1)把算式中的减法都转化为加法; (2)进行运算(尽可能利用运算律简化计算).
2.注意事项
1. . 式子中既有加法,又有减法,可以先将其化为加法。
2. 式子中既有小数又有分数,可将其统一化为小数或者分 数。 3. 式子中有绝对值,要先算绝对值。 4. 式子中有互为相反数的数、同分母的数、可以凑成整 数的数,应用运算律将其“凑”在一起计算。
11厘米
(3)最高与最矮的学生身高相差多少?
帮帮我
做个有心人
南京出租车司机小李某一时段 全是在中山东路上来回行驶,你能否知道 在他将最后一位乘客送到目的地时,他距 离出车的出发点有多远?
有理数的加减混合运算

式子它表示求: -8,+10,-6, -4 的和
2、求和式子的简化写法:通常把每个加数的括号和它前面的加号省略不写.
上面的式子可以省略写成:-8 +10-6 -4
3、式子的读法:
(1)仍看作和式:读作“负8、正10、负6、负4的和”
(2)按运算意义:读作“负8加10减6减4”
=-39
=-48
=17
=0
=-7
=-41
=0
=-4
=30
=0.8
例计算:
01
解法指导:先写成省略括号的和的形式,并把小数化为 分数,再根据运算律进行合理运算.
02
例题解析:
计算:
01
先将上述各式化为省略加号和括号的和的形式.
02
同号为+,异号为-
03
解法指导:
习题解析:
计算:
先将上述各式化为省略加号和括号的和的形式.
0+(- 6) 4) 0 - ( - 4.4)
-2.5+(-3.2) 2)
a+b+c=(a+b)+c=a+(b+c)
a+b=b+a 加法交换律:两个有理数相加,交换加数的位置,和不变。 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加。
有理数加法的运算律
例1 计算: (2)
减去一个数,等于加上这个数的相反数。
1
2
3
4
5
有理数的加法和减法法则
你能都算对吗?
1. (-24)+(-15) 2. (-65)+17 3. (+36)+(-19) 4. (-7)+6+(-3)+10+(-6) 5. (-23)-(-16) 6. (-23)-16 7. (-26)-(-26) 8. 1-(-5)-(+4)-|-6| 9. 30-15+8-(-15)+(-8) 10. -3+4.5-2.2+1.5
1.3.2 有理数的混合运算

a+b - c = a+b+(- c)
和式的项的概念
用加号连结起来的每个数叫做和式的项 例如:(-20)+(+3)+(+5)+(-7)中的 (-20)、(+3)、(+5)、(-7)
这样写,好像比较麻烦。有 【跟踪训练】 没有简便一点的写法呢?怎 请将下列各式中的减法都化为加法 ,并说明它们是那些数的和. 么写?
有理数加减法混合运算的计算方法
例1、计算 (-20)+(+3)-(-5)-(+7)
转 化
如何计算呢?你认为怎样计算比较简便?
减法 加法
解:原式=(-20)+(+3)+(+5)+(-7) 减法转化成加法
= -20+3+5-7 =-27+8 =-19
省略式中的括号和加号
=(-20-7)+(3+5) 运用加法交换律使同号两数分别相加 按有理数加法法则计算
(4) (32) (27) (72) 87 (32) 27 72 (87).
省略括号和加号的代数和及其读法
4 . 5 3 . 2 1 . 1 1 . 4 4.5 3.2 1.1 1.4 化为代数和步骤: = 1、先将减法变成加法;
1.能够把有理数的减法运算转化为加法运算, 进而写成省略括号和加号的形式; 2.准确熟练地进行有理数加减混合运算,会使
用运算律简便运算.
减法
转
化
加法
有理数减法法则
减去一个数,等于 加上这个数的相反数。
①减法转化为加法
a- -b = a + (-b )
第2课时 有理数加减混合运算

-1.4千米
解:4.5+(-3.2)+1.1+(-1.4) =(4.5+1.1)+[(-3.2)+(-1.4)] =(4.5+1.1)+[(-3.2)+(-1.4)] =5.6+(-4.6)=1(千米)
答:此时飞机比起飞点高了1千米.
讲授新课
例6 动物园在检验成年麦哲伦企鹅的身 体状况时,最重要的一项工作就是称 体重.已知某动物园对6只成年麦哲伦 企鹅进行体重检测,以4kg为标准,超 过或者不足的千克数分别用正数、负 数表示,称重记录如下表所示,求这6 只企鹅的总体重.
+
1
3 4
= 2+1= 1.
讲授新课
知识点 3 加减混合运算的应用 例5 某年中国空军在南海进行了军事演习,一架飞
机作特技表演,起飞后的高度变化如下表:
高度变化 上升4.5千米 下降3.2千米 -3.2千米 +1.1千米
此时飞机比起飞点高了多少千米?
+1.75
.
错解:原式=
3
2 3
2
3 4
1
2 3
+1.75=
6
1 3
.
错解分析:错解的原因是随意省略运算符号.应将
减法统一成加法后,再将括号及其前面
的“+”省略.
正确解法:原式=
3
2 3
+2
3 4
+1 2 3
+
1
3 4
=
3
2 3
+1
2 3
+2
3 4
+
1
3 4
=
3
2 3
+1
2 3
+
2
有理数的混合运算(加减乘除乘方)

2×(-3)3 - 16÷(-2)+15
有理数的混合运算顺序
同级运算,从左到右依次进行。 例题:
1 1 -22×(-3)÷ ( )× 2 3
有理数的混合运算顺序
有括号的,先做括号内的运算,按小
括号、中括号、大括号依次进行。
例题:
有理数的计算法则复习
有理数的加法法则 (2)绝对值不相等的异号两数相加,取 绝对值较大的加数的符号,并用较大的绝 对值减去较小的绝对值。 如,-8+4= - (8-4)= -4
练习: (+12)+(-3)= -2.9+1.6=
(+1)+(-9)=
3 1 4 2
有理数的计算法则复习
1 3 2 4
有理数的计算法则复习
有理数的乘法法则 (1)同号两数相乘,同号得正,异号得 负,并把绝对值相乘。 如,(+3)×(-2)= -(3 ×2)= -6 - 4 ×(-2) =
练习: (+5)×(-3)= -1.2 ×5=
3 2 4 9
有理数的计算法则复习
有理数的乘法法则 (2)任何数与0相乘都得0。 如,(-101)×0 = 0
练习: (-16)÷ (- 4) = (-8) ÷(- 2)=
(-12) ÷3 = 0 ÷ (-1) =
总 结
有理数的计算,先确定结果的符号,再计 算绝对值。 有理数的加法计算,可以运用加法交换律、 加法结合律计算;有理数的乘法计算,可 以运用乘法交换律、乘法结合律、乘法分 配律计算。
有理数的混合运算顺序
2.1.2 有理数的减法(第2课时 有理数加减混合运算)(课件)七年级数学上册(人教版2024)

1 5 2 1
(2)- + + - ;
4 6 3 2
(4)4.7-(-8.9)-7.5+(-6);
7
1
1
1
(5)(-4 )-(-5 )+(-4 )-(+3 );
8
2
4
8
2
1
5
1
(6)(- )+|0-5 |+|-4 |+(-9 ).
3
6
6
3
3
解:(1)原式 = 3.1.(2)原式 = . (3)原式 = 8.
写为:
可以读作
(-20) + (+3) -(-5) -(+7)
“负20、正3、正5、负7的和” =-20+3 +5-7
=-20-7+3 +5
或读作
=-27+8
“负20加3加5减7”.
=-19
概念归纳
有理数的加减混合运算可以统一为 加法
即a+b-c= a+b+(-c) .
运算,
1.加减混合运算的一般步骤:
哪一种书写更
简洁?运算理
方便呢?
=1.3+1.1-1.4
=2.4-1.4
=1
有理数加
减混合运算如
何进行呢?
例1. 计算:(-20)+(+3)-(+5)-(+7)
运用减法
法则,将减法
转化为加法
解: (-20)+(+3)-(-5)-(+7)
=( 20) ( 3) ( 5) ( 7)
=[(-20)+(-7)]+[(+5)+(+3)]
②策略:同号的加数一起加,同分母(易通分)的加数一起加,和
有理数的加减乘除的混合运算技巧

有理数的加减乘除是数学中非常基础的运算,它们在解决实际问题和其他数学运算中起着重要的作用。
它们的混合运算在解决复杂问题时尤为重要。
下面将介绍有理数的加减乘除的混合运算技巧。
一、有理数的加法运算1.1 正数加正数:两个正数相加的结果仍然是正数,例如3+5=8。
1.2 负数加负数:两个负数相加的结果仍然是负数,例如-4+(-6)=-10。
1.3 正数加负数:两个数符不其绝对值相减,结果的符号取较大绝对值的符号,例如5+(-3)=2。
二、有理数的减法运算2.1 减去一个数相当于加上这个数的相反数,即a-b=a+(-b)。
2.2 减法运算可以看作加法运算,例如5-3=5+(-3)=2。
2.3 减法运算中,正数减去一个较大的负数,结果为正数,例如7-(-4)=7+4=11。
三、有理数的乘法运算3.1 同号相乘:两个数符相它们的积为正数,例如3×4=12。
3.2 异号相乘:两个数符不它们的积为负数,例如-5×6=-30。
3.3 有理数乘法的结合律和交换律:对有理数a、b、c来说,a×(b×c)=(a×b)×c,a×b=b×a。
四、有理数的除法运算4.1 有理数的除法运算可以看作是乘法运算的倒数,即a÷b=a×(1/b)。
4.2 除法运算中,同号相除结果为正数,异号相除结果为负数。
4.3 有理数除法的分配率:对有理数a、b、c来说,a÷(b÷c)=(a×c)÷b。
五、有理数的混合运算5.1 有理数的混合运算要遵循先乘除后加减的原则,进行括号内的运算。
5.2 混合运算中,可以通过加减号的顺序调整运算的优先级,例如先进行加法运算,再进行减法运算。
5.3 在进行混合运算时,可以通过绝对值大小或符号来判断计算的顺序,避免混合运算时出现混淆。
六、总结有理数的加减乘除的混合运算需要熟练掌握各种运算规则,尤其是混合运算的顺序和优先级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加减混合运算步骤
第一步:化简括号
如果算式中有括号,首先需要将括号内的运算进行化简。
括号内的运算按照先乘除后加减的原则进行运算。
例如,在算式4+(5-2)×3中,需要先计算括号内的运算5-2=3,再将结果乘以3,得到9、所以化简后的算式为4+9
第二步:按照运算顺序计算
在化简括号之后,按照运算顺序依次计算算式中的加法和减法运算。
先计算加法,再计算减法。
第三步:按照运算规则进行运算
对于有理数的加法运算,只需要将各个加数依次相加即可。
例如,在算式4+(-8)+7-3中,需要将各个加数依次相加,得到4+(-8)+7-3=0。
对于有理数的减法运算,可以将减法转化为加法。
例如,计算5-3,可以将减法转化为加法,即5+(-3)。
所以,有理数的减法运算也可以看作是有理数的加法运算。
在计算减法时需要注意正负数的运算规则。
第四步:合并同类项
在计算加法和减法时,如果有相同的项可以合并。
对于有理数的加法运算,同号相加取共同的符号,异号相加取绝对值大的符号。
对于有理数的减法运算,可以转化为加法运算后再进行合并。
第五步:简化结果
在进行有理数的加减混合运算后,可以对结果进行简化。
如果结果是
一个不可约分的分数,可以将其化简为最简分数形式。
如果结果是一个无
理数,可以用适当的近似值来表示。
需要注意的是,有理数的加减混合运算需要遵循运算规则,特别是正
负数的运算规则。
在进行运算时,可以根据需要添加括号来改变运算的顺序。
总结起来,有理数的加减混合运算的步骤包括化简括号、按照运算顺
序计算、按照运算规则进行运算、合并同类项和简化结果。
在进行运算时,需要注意运算规则和算式中的正负数。