高中数学函数说课稿(共8篇)

合集下载

高中二次函数说课稿8篇

高中二次函数说课稿8篇

高中二次函数说课稿8篇高中二次函数说课稿篇一[本课学问要点]会画出这类函数的图象,通过比拟,了解这类函数的性质。

[MM及创新思维]同学们还记得一次函数与的图象的关系吗?你能由此推想二次函数与的图象之间的关系吗?那么与的图象之间又有何关系?[实践与探究]例1.在同始终角坐标系中,画出函数与的图象。

解列表x…-x-x-xxxxx……xxxxxxxx……xxxxxxxxx…描点、连线,画出这两个函数的图象,如图26.2.3所示。

回忆与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探究观看这两个函数,它们的开口方向、对称轴和顶点坐标有那些是一样的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?例2.在同始终角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线。

解列表x…-x-x-xxxxxx…x-x-xxxx-x-x……-xx-x-x-x-x-x-xx…描点、连线,画出这两个函数的图象,如图26.2.4所示。

可以看出,抛物线是由抛物线向下平移两个单位得到的。

回忆与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的。

探究假如要得到抛物线,应将抛物线作怎样的平移?例3.一条抛物线的开口方向、对称轴与一样,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式。

解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2)。

因此所求函数关系式可看作,又抛物线经过点(1,1)。

所以故所求函数关系式为xxx。

回忆与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:开口方向对称轴顶点坐标[当堂课内练习]1.在同始终角坐标系中,画出以下二次函数的图象:观看三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的xxxx。

高中数学说课稿模板(共8篇)

高中数学说课稿模板(共8篇)

篇一:高中数学说课稿模板(10分钟)各位评委老师好:今天我说课的题目是是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。

一、教材分析是在学习了基础上进一步研究并为后面学习做准备,在整个高中数学中起着承上启下的作用,因此本节内容十分重要。

根据新课标要求和学生实际水平我制定以下教学目标1、知识能力目标:使学生理解掌握2、过程方法目标:通过观察归纳抽象概括使学生构建领悟数学思想,培养能力3、情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于观察勇于思考的学习习惯和严谨的科学态度根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对缺少感性认识,所以本节课的重点是二、教法学法根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段.在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。

三、教学过程六、教学程序及设想1、由……引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程. 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

对于本题:……2、由实例得出本课新的知识点是:……3、讲解例题。

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。

在题中:4、能力训练。

课后练习……使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、总结结论,强化认识。

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。

“函数”说课稿—获奖说课稿

“函数”说课稿—获奖说课稿

---------------------------------------------------------------最新资料推荐------------------------------------------------------“函数”说课稿—获奖说课稿函数说课稿《全日制普通高级中学教科书(必修) 数学》第一册(上) 的第二章为函数,是根据《全日制普通高级中学数学教学大纲(供试验用) 》必修课的函数部分编写的。

一、本单元课时安排:共 9 个小节,可分为三个部分:第一部分包括函数、函数的表示法、函数的单调性、反函数;第二部分包括指数、指数函数;第三部分包括对数、对数函数、函数的应用举例。

共约 30课时。

二、本单元课程价值及达成度:(一)课程价值:(1)知识构建功能:函数是数学的重要的基础概念之一。

是进一步学习高等数学的基础课程,而其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具。

函数是中学数学的主体内容。

它与中学数学很多内容都密切相关,初中代数中的函数及其图象就属于函数的内容,高中数学中的指数函数、对数函数、三角函数是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用。

1/ 8后续内容的极限、微积分初步知识等都是函数的内容。

理科限定选修内容有极限、导数,文科限定选修内容有导数,这些内容是函数及其应用研究的深化和提高,也是进一步学习和参加工农业生产需要具备的基础知识。

故本章的学习起着承上启下的作用。

(2)能力培养功能:通过对函数相关概念的学习,如(函数、反函数、单调性等)加深对函数概念的理解、培养学生的比较能力,理解能力,概括能力。

通过对函数的表示方法的学习,培养学生的理论联系,实际能力。

通过对第二章应用题讲解,可培养学生用数学知识分析问题,解决问题能力,数学建模能力。

通过对指数函数、对数函数教学,可以培养学生数形结合能力,问题转化能力。

高中数学函数的说课稿(精选5篇)

高中数学函数的说课稿(精选5篇)

高中数学函数的说课稿(精选5篇)高中数学函数的说课稿(精选5篇)作为一名教职工,时常需要用到说课稿,借助说课稿可以更好地组织教学活动。

那么大家知道正规的说课稿是怎么写的吗?下面是小编帮大家整理的高中数学函数的说课稿(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学函数的说课稿1一、教材说明本节课是人教版高中数学必修I第一章《集合与函数概念》1.2.2函数的表示方法,该课时主要学习函数的三种表示方法:解析法,图像法,列表法,以及应用函数的表示方法解决一些实际问题1.教材所处低位和作用学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所涉及的问题,而且是加深理解函数的概念的过程。

特别是在信息技术的环境下面可以使函数在数与形两方面的方式表示,因而使得学习函数的表示也是向学生渗透数形结合方法的重要过程。

2.学情分析学生的年龄特点和认知特点学生已具备的基本知识与技能二、教学目标知识与技能1.进一步理解函数概念,使学生掌握函数的三种表示法:解析法,列表法,图像法2. 能够恰当运用函数的三种表示方法,并借此解决一些实际问题:初步培养学生实际问题转化为数学问题的能力过程与方法1. 通过三种方法的学习,渗透数形结合的思想2.在运用函数解决实际问题的过程中,培养学生分析问题的能力增强学生运用数学的意识情感态度与价值:让学生体会数学在实际问题中的应用,培养学生学习兴趣三、教学重点,难点重点:函数的三种表示方法(因为学习本节课的目的就是为了掌握函数的三种不同表示方法)难点:根据不同的实际需要选择恰当的方法表示函数(因为恰当比较难把握)四、教法分析与学法指导本着以“学生发展为本”。

引导学生主动参与学习,指导学生学会学习方法,培养学生积极探索的精神,学生为主,教师指导。

整个教学过程主要用启发式教学方法,体现“分析”——“研究”——“总结”的学习环节,并以多媒体为教辅手段。

通过创设问题情境,营造学习氛围,组织学生讨论,让学生尝试探索中不断发现问题,以激发学生的求知欲,并在寻求解决问题的方法尝试的过程中获得自信心和成功感,在完成知识目标的同时,也完成情感目标的教育五、教学过程教学环节教学环节与教学内容设计意图引入定义表示法,这节课将更深入的了解、探讨这三种表示方法,先回顾函数解析法,图像法,列表法的定义;并给出一些众所周知的例子。

函数的概念说课稿

函数的概念说课稿

《函数概念说课稿》各位评委老师大家好:我说课的内容是数学人教版普通高中新课程标准实验教科书必修1函数第一课时。

我将从教材解读,学情分析、教材目标设计、教学重难点、教法与学法选择、教学过程设计、及课时总结七个方面来汇报我对这节课的教学设想。

一、教材解读《函数的概念》是人教版高中数学(必修)第一册第一章“集合与函数概念”的第二节内容。

适合于高中一年级学生,在初中阶段我们已经学习了一次函数、二次函数、反比例函数等这为过渡到本课题的学习起到了过渡的作用。

本节课的学习既可以对集合的概念知识进一步的巩固和深化,又可以为后面学习初等函数、分析函数的性质以及函数的应用打下坚实的基础。

函数的概念贯穿于整个初等数学体系之中,是对初中数学中函数概念的深化、归纳。

它在整个教材中起着承上启下的作用。

因此本节课设定的教学重点是“函数的概念形成”。

二、学情分析从学生的知识层面上看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过第一节“集合”的学习,对集合思想的认识也有一定的了解,为学习函数,从根本上解释函数的定义提供了知识保证。

从学生能力层面上看:通过以前的学习学生已经有了一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力。

教学中由实例抽象概括出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生能力要求比较高,因此我认为发展学生的抽象思维能力和对函数概念的本质理解是本节课的教学难点。

三、教学目标❖理解并掌握函数的概念❖掌握函数的三要素,理解函数相等的含义❖准确把握函数记号的含义,熟练掌握函数的几种表示方法。

四、教学重点理解函数的模型化思想,用集合与对应的语言来刻画函数。

五、教学难点符号“y=f(x)”的含义及函数概念的理解六、教法与学法的选择1.问题式教学本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法,以问题为主线,通过课本中的具体实例,发现问题中的两个变量的关系,让学生归纳概括出函数的本质。

高中数学说课稿全套(最新8篇)

高中数学说课稿全套(最新8篇)

高中数学说课稿全套(最新8篇)高中高二数学说课稿篇一一、教材分析1.教材所处的地位和作用“几何概型”这一节内容是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。

此节内容是为更广泛地满足随机模拟的需要而在新课本中增加的,这是与以往教材安排上的的不同之处。

这充分体现了数学与实际生活的紧密关系,来源生活,而又高于生活。

同时也暗示了它在概率论中的重要作用,在高考中的题型的转变。

2、教学的重点和难点重点:几何概型概念的理解和公式的运用;难点:几何概型的应用。

二、教学目标分析1.知识与技能目标①通过探究,让学生理解几何概型试验的基本特征,并与古典概型相区别;②理解并掌握几何概型的定义;③会求简单的几何概型试验的概率。

2、过程与方法通过学习运用几何概型的过程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。

3、情感、态度与价值观通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯。

三、教法与学法分析1、教法分析:结合本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、分析问题、解决问题等教学过程,观察对比、概括归纳几何概型的概念及其概率公式,再通过具体实际问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

利用多媒体辅助教学。

2、学法指导:以学生活动为主,引导学生在动手操作、实践探索、合作交流的基础上,充分调动学生学习的积极性和主动性。

结合本课的实际需要,作如下指导:对于概念,学会几何概型与古典概型的比较;立足基础知识和基本技能,掌握好典型例题;注意数形结合思想的运用,把抽象的问题转化为熟悉的几何概型。

四、教学过程分析㈠以境激情、导入新课[课件展示]问题1:一条长50米的电话线架于两电线杆之间,其中一个杆子上装有变压器。

在暴风雨天气中,电话线遭到雷击的点是随机的。

函数的说课稿

函数的说课稿

函数的说课稿一、说教材本文是高中数学课程中函数部分的教学内容,函数作为现代数学的核心概念之一,在数学体系中具有举足轻重的地位。

它不仅是连接代数与几何的桥梁,而且是研究现实世界变化规律的重要数学模型。

在本课中,我们将系统学习函数的基本概念、性质以及其应用。

(1)作用与地位函数部分的学习,旨在帮助学生建立完整的数学观念,培养他们的逻辑思维能力和解决实际问题的能力。

它是整个数学学习过程中的一个关键节点,对于学生理解数学的本质,提高数学素养具有重要意义。

(2)主要内容本节课主要围绕以下内容展开:1. 函数的定义:通过实例引出函数的概念,强调函数是一种特殊的关系,即每个输入值对应唯一的输出值。

2. 函数的性质:介绍函数的单调性、奇偶性、周期性等基本性质,并通过图像加深理解。

3. 函数的应用:通过实际例子,让学生体会函数在现实生活中的应用,激发他们的学习兴趣。

二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能:(1)理解函数的定义,能够准确描述函数的基本概念;(2)掌握函数的基本性质,能够分析并判断函数的单调性、奇偶性、周期性等;(3)能够运用函数解决简单的实际问题。

2. 过程与方法:(1)通过实例分析,培养学生观察、抽象、概括的能力;(2)通过图形表示,培养学生直观想象和空间思维能力;(3)通过小组合作,培养学生合作交流的能力。

3. 情感态度与价值观:(1)激发学生对函数学习的兴趣,培养他们勇于探索、积极进取的精神;(2)使学生认识到数学与现实生活的紧密联系,提高他们的数学应用意识。

三、说教学重难点本节课的教学重点是函数的定义和性质,难点是函数性质的判断和应用。

1. 教学重点:(1)函数的定义:让学生准确理解函数的概念,明确输入值与输出值之间的关系;(2)函数的性质:使学生掌握函数的基本性质,并能运用性质分析函数。

2. 教学难点:(1)函数性质的判断:指导学生通过观察函数图像和解析式,判断函数的单调性、奇偶性、周期性等;(2)函数的应用:引导学生运用所学知识解决实际问题,提高他们的应用能力。

2022年高中数学说课稿范文八篇

2022年高中数学说课稿范文八篇
第3页 共22页
学的主体;只有这样做,才能使学生“学”有新“思”,“思”有 新“得”,“练”有新“获”,学生也才会逐步感受到数学的美, 会产生一种胜利感,从而提高学生学习数学的爱好;也只有这样做, 课堂教学才富有时代特色,才能适应素养教化下培育“创新型” 人才的须要。
(二)教法分析 本节课设计的指导思想是:现代认知心理学——建构主义学 习理论。 建构主义学习理论认为:应把学习看成是学生主动的建构活 动,学生应与肯定的学问背景即情景相联系,在实际情景下进行 学习,可以使学生利用已有学问与阅历同化和索引出当前要学习 的新学问,这样获得的学问,不但便于保持,而且易于迁移到生 疏的问题情景中。 本节课采纳“诱思引探教学法”。把问题作为动身点,指导 学生“画、看、说、用”。较好地探求一元二次不等式的解法。 五、课堂设计 本节课的教学设计充分体现以学生发展为本,培育学生的视
第12页 共22页
(2)函数单调性的证明 实力目标:培育学生全面分析、抽象和概括的实力,以及了 解由简洁到困难,由特别到一般的化归思想 情感目标:培育学生勇于探究的精神和擅长合作的意识 (这样的教学目标设计更注意教学过程和情感体验,立足教 学目标多元化) 三、教法学法分析 1、教法分析 “教必有法而教无定法”,只有方法得当才会有效。新课程 标准之处老师是教学的组织者、引导者、合作者,在教学过程要 充分调动学生的主动性、主动性。本着这一原则,在教学过程中 我主要采纳以下教学方法:开放式探究法、启发式引导法、小组 合作探讨法、反馈式评价法 2、学法分析 “授人以鱼,不如授人以渔”,最有价值的学问是关于方法 的只是。学生作为教学活动的主题,在学习过程中的参加状态和 参加度是影响教学效果最重要的因素。在学法选择上,我主要采
第8页 共22页
生:阅读教材书上的例 1,并完成教材书上的 136 页的练习 题2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数说课稿(共8篇)篇一:高中数学函数说课稿范文各位评委老师,大家好!我是本科数学**号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。

我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。

恳请在座的专家评委批评指正。

一、教材分析1、教材的地位和作用(1)本节课主要对函数单调性的学习;(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题(根据具体的课题改变就行了,如果不是热点难点问题就删掉)2、教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。

(这个必须要有)二、教学目标知识目标:(1)函数单调性的定义(2)函数单调性的证明能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想情感目标:培养学生勇于探索的精神和善于合作的意识(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)三、教法学法分析1、教法分析“教必有法而教无定法”,只有方法得当才会有效。

新课程标准之处师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。

本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。

学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。

在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

(前三部分用时控制在三分钟以内,可适当删减)四、教学过程1、以旧引新,导入新知通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,归纳。

通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x 的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。

(适当添加手势,这样看起来更自然)2、创设问题,探索新知紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

3、例题讲解,学以致用例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。

这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。

强调单调区间一般写成半开半闭的形式例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。

这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。

一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

4、归纳小结本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

5、作业布置为了让学生学习不同的数学,我将采用分层布置作业的方式:一组习题1.3a组1、2、3 ,二组习题1.3a组2、3、b组1、26、板书设计我力求简洁明了地概括本节课的学习要点,让学生一目了然。

(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)五、教学评价本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

(这一部分不能缺,话语可适当精简)以上就是我对本节课的设计,谢谢!篇二:高中数学说课稿:《函数的最大值和最小值》说课稿范文高中数学说课稿:《函数的最大值和最小值》【教材分析】1.本节教材的地位与作用本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义.2.教学重点会求闭区间上连续开区间上可导的函数的最值. 3.教学难点高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法. 4.教学关键本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.【教学目标】根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:1.知识和技能目标(1)理解函数的最值与极值的区别和联系.(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.2.过程和方法目标(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值.(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处.(3)会求闭区间上连续,开区间内可导的函数的最大、最小值.3.情感和价值目标(1)认识事物之间的的区别和联系.(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题.(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.【教法选择】根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用.数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学.【学法指导】对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.【教学过程】本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织.【教学设计说明】上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以“是否存在?存在于哪里?怎么求?”为线索展开.1.由于学生对极限和导数的知识学习还谈不上深入熟练,因此教学中从直观性和新旧知识的矛盾冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以“学生的发展为本”的基本理念.2.关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握.对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能力性.3.在教学手段上,制作多媒体课件辅助教学,使得数学知识让学生更易于理解和接受;课堂教学与现代教育技术的有机整合,大大提高了课堂教学效率.4.关于教学法,为充分调动学生的学习积极性,让学生能够主动愉快地学习,本节课始终贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的数学教学思想,引导学生主动参与到课堂教学全过程中.篇三:高中数学函数的概念说课稿《函数的概念》说课稿各位专家、评委:大家好!我说课的内容是《普通高中课程标准实验教科书数学ⅰ必修本(a 版)》的第一章1.2.1函数的概念第一课时。

我将从教材分析、教学目标设计、教法与学法选择、教学过程设计、教学媒体选择、半数设计以及教学评价设计等方面来汇报我对这节课的教学设想.一、教材分析1.教学内容: (1)初步学会从集合的角度定义函数并通过函数的概念判断函数;(2)了解函数的三要素,会求几个简单函数的定义域和值域;(3)学习通过函数的定义域和对应法则,判断两个函数是否相等.2、教材的特点、地位与作用本小节对函数概念的学习是在初中学过的函数概念的基础上从更严密的角度来定义函数的.函数概念是整个中学数学中最重要的基本概念之一,它为后续学习指数函数、对数函数、幂函数等内容打下基础.而函数又是初等数学和高等数学中最基本最重要的内容之一,经常用到数学的各个分支里.它还是数形结合思想、函数与方程思想产生的载体.3、教学的重点和难点重点:体会函数是描述变量之间相互依赖关系的重要数学模型,正确理解函数的概念、了解函数的三要素. 难点:对函数概念及符号二、教学目标设计(1)知识与技能①理解函数的概念,初步学会用函数的定义判断函数.②会求一些最基本的函数的定义域、值域.③能通过函数的定义域和对应法则判断两个函数是否相等.(2)过程与方法①回顾初中函数的定义,然后通过三个背景实例,分别设置问题,在问题的引导下分析概括出三个实例的共同点,进而引出函数的概念.②在引入了函数概念的基础上给出函数的三要素.(3)情感、态度与价值观①通过对函数概念形成的探究,培养学生主动发现问题和分析问题的能力. y?f(x)的理解.②培养学生的抽象概括能力;学会数学表达和交流,发展数学应用意识.三、教法与学法选择任何一堂课都是不同教学方法综合作用的结果,我们认为本堂课有以下主要的教法和学法.1.问题式教学法:本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,这刚好也符合建构主义的教学理论.2.探究式学法:新课程要求课堂教学的着力点是尊重学生的主体地位,发挥学生的主动精神,培养学生的创新能力,使学生真正成为学习的主体,结合本堂课的特点,我倡导的是探究式学法;让学生在探究问题的过程中,通过老师的引导归纳概括出函数的概念,通过问题的解决,达到熟练理解函数概念的目的,从而让学生由“被动学会”变成“主动会学”.四、教学过程设计(一).结构分析:为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段:(二).教学过程:课题引入:2010年9月5日0时14分,我国在西昌卫星发射中心用“长征三号乙”运载火箭,成功将“鑫诺六号”通信广播卫星送入太空。

相关文档
最新文档