高中数学函数内容教学方法

合集下载

高中数学《函数的概念》教案

高中数学《函数的概念》教案

教学文档
高中数学(函数的概念)教案
一、教学目标
(知识与技能)
理解函数的概念,能对具体函数指出定义域、对应法则、值域。

(过程与方法)
通过对函数的学习,进一步体会集合与对应的数学思想方法。

(感情、态度与价值观)
在探究中感受到成功的喜悦,提高学习数学的兴趣。

二、教学重难点
(重点)函数的概念。

(难点)从具体实例中抽象出函数概念。

三、教学过程
(一)导入新课
带着学生复习初中阶段函数的概念,并举例说明,从而引出高中阶段对函数的学习。

(二)讲解新知
利用多媒体展示上一节的实例,例如:(1)加油站储油罐的储油量和高度的关系;(2)高速公路总里程与年份的关系。

引导学生分析归纳以上两个实例,变量分别是谁、变量的范围是什么、变量之间存在的关系是什么、这些例子有什么共同特点。

.。

高中数学函数概论教案模板

高中数学函数概论教案模板

高中数学函数概论教案模板
一、教学目标
1. 理解函数的概念及其特点;
2. 掌握函数的定义、性质和基本性质;
3. 熟练运用函数的相关知识解决实际问题。

二、教学内容及安排
1. 函数的概念
- 什么是函数?
- 函数的符号表示:y = f(x)、f: x → y
- 自变量和因变量的概念
2. 函数的性质
- 定义域和值域
- 函数的奇偶性
- 函数的增减性
3. 函数的基本性质
- 函数的连续性
- 函数的周期性
- 函数的单调性
4. 函数的运算
- 函数的相加、相减、相乘、相除
- 函数的复合
5. 实际问题的解决
- 利用函数解决实际问题
- 实际问题的函数建模
三、教学重点与难点
1. 函数的概念及其特点是本节课的重点,学生需要掌握清楚;
2. 函数的运算和实际问题的解决是本节课的难点,需要帮助学生理解和应用。

四、教学方法
1. 讲授与示范结合
2. 分组讨论与合作学习
3. 案例分析与实践应用
五、教学资源
1. 教材
2. 多媒体设备
六、教学评价
1. 课堂练习
2. 作业完成情况
3. 知识掌握程度
七、教学进度安排
第一课:函数的概念
第二课:函数的性质
第三课:函数的基本性质
第四课:函数的运算
第五课:实际问题的解决
八、教学反馈
1. 教师定期对学生学习情况进行诊断和反馈
2. 学生可以提出问题和建议,促进教学质量的提高。

以上为高中数学函数概论教案模板范本,可根据实际教学情况进行调整和修改。

高中数学下册函数教案模板

高中数学下册函数教案模板

高中数学下册函数教案模板教学目标:
1. 理解函数的定义和基本性质。

2. 掌握函数的概念和代数表达式。

3. 熟练运用函数的基本操作和性质解决实际问题。

4. 提高学生的数学思维能力和解题能力。

教学内容:
1. 函数的定义和基本性质
2. 函数的概念和代数表达式
3. 函数的基本操作和性质
4. 函数的图像和应用
教学步骤:
一、复习导入
1. 让学生回顾函数的定义和基本性质。

2. 提出一个函数的实际问题,引导学生思考如何解决。

二、讲解与练习
1. 介绍函数的概念和代数表达式,示范几个例题。

2. 给学生练习一些简单的函数操作题,巩固基本知识。

三、拓展应用
1. 引导学生观察函数的图像特点,分析其变化规律。

2. 提出一些应用题,让学生运用函数解决实际问题。

四、总结反馈
1. 总结本节课学习的内容,强调函数的重要性和应用价值。

2. 收集学生的反馈意见,了解他们的学习情况和问题。

教学资源:
1. PowerPoint课件
2. 作业本和练习题
3. 教学实例和案例
评价标准:
1. 能够准确理解和运用函数的基本概念和性质。

2. 能够正确解答相关的应用题和练习题。

3. 能够发展数学思维,提出合理的解题方法和思路。

教学反思:
教师在教学过程中应注重引导学生主动思考和探索,激发他们学习的兴趣和动力。

同时,要根据学生的实际情况进行差异化教学,关注学生个体发展的需要,帮助他们更好地掌握函数知识。

教师工作计划——高中数学教师如何帮助学生掌握函数概念

教师工作计划——高中数学教师如何帮助学生掌握函数概念

教师工作计划——高中数学教师如何帮助学生掌握函数
概念
一、教学目标
本学期的高中数学教学目标是帮助学生掌握函数概念,理解函数的本质和特性,以及掌握基本的函数运算和性质。

二、教学内容与方法
1. 教学内容:我们将从函数的定义、函数的表示方法、函数的性质、函数的运算等方面展开教学。

2. 教学方法:我们将采用讲解、实例分析、课堂讨论、练习等多种教学方法,以帮助学生更好地理解和掌握函数概念。

三、教学安排
1. 第一周:讲解函数的定义和表示方法,让学生了解函数的基本概念。

2. 第二周:讲解函数的性质,包括奇偶性、单调性等,并通过实例进行分析。

3. 第三周:讲解函数的运算,包括函数的加法、减法、乘法等基本运算。

4. 第四周:进行课堂讨论,让学生提出自己对函数概念的理解和
疑问,并进行解答和总结。

四、教学评估
通过课堂练习、作业、考试等方式,评估学生对函数概念的掌握程度,及时发现和解决学生的学习困难。

五、教学反思与改进
在每个单元结束后,进行自我反思和总结,发现教学中存在的问题和不足,及时进行调整和改进,以提高教学质量和效果。

同时,鼓励学生提出意见和建议,以便更好地满足学生的学习需求。

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》一、教学目标:1. 知识与技能:理解函数奇偶性的概念,能够判断函数的奇偶性;学会运用函数的奇偶性解决一些简单问题。

2. 过程与方法:通过观察、分析、归纳等方法,探索函数奇偶性的性质及其判断方法。

3. 情感态度价值观:培养学生的逻辑思维能力,提高学生对数学的兴趣。

二、教学内容:1. 函数奇偶性的定义2. 函数奇偶性的判断方法3. 函数奇偶性的性质三、教学重点与难点:1. 教学重点:函数奇偶性的定义及其判断方法。

2. 教学难点:函数奇偶性的性质及其应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究函数奇偶性的性质;2. 通过实例分析,让学生掌握函数奇偶性的判断方法;3. 利用小组讨论,培养学生的合作能力。

五、教学过程:1. 导入:回顾上一节课的内容,引导学生思考函数的奇偶性与什么有关。

2. 新课讲解:(1)介绍函数奇偶性的定义;(2)讲解函数奇偶性的判断方法;(3)分析函数奇偶性的性质。

3. 例题解析:选取典型例题,分析解题思路,引导学生运用函数奇偶性解决问题。

4. 课堂练习:布置练习题,让学生巩固所学内容。

5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。

6. 课后作业:布置适量作业,巩固所学知识。

注意:在教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数奇偶性的相关知识。

六、教学评估:1. 课堂提问:通过提问了解学生对函数奇偶性的理解程度,及时发现并解决学生学习中存在的问题。

2. 练习题解答:检查学生完成练习题的情况,评估学生对函数奇偶性知识的掌握情况。

3. 课后作业:批改课后作业,了解学生对课堂所学知识的巩固程度。

七、教学反思:1. 反思教学内容:检查教学内容是否全面、深入,是否适合学生的认知水平。

2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。

3. 反思教学效果:总结本节课的教学成果,找出不足之处,为下一节课的教学做好准备。

高一数学对数函数教案5篇

高一数学对数函数教案5篇

高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。

高中数学教案《函数的概念及其表示》

高中数学教案《函数的概念及其表示》

教学计划:《函数的概念及其表示》一、教学目标1.知识与技能:o学生能够理解并掌握函数的基本概念,包括自变量、因变量、函数定义域和值域。

o学生能够识别函数关系,并用不同的方式(如解析式、表格、图像)表示函数。

o学生能够区分函数与非函数关系,理解函数关系的唯一对应性。

2.过程与方法:o通过实例分析,引导学生从具体到抽象地理解函数概念。

o运用对比、归纳等方法,帮助学生掌握函数的不同表示方法。

o通过小组合作探究,培养学生的合作学习能力和问题解决能力。

3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探究数学规律的精神。

o引导学生认识到函数在现实生活中的应用价值,增强数学应用的意识。

o通过解决问题,培养学生的耐心、细致和严谨的科学态度。

二、教学重点和难点●重点:函数的基本概念及其三种表示方法(解析式、表格、图像)。

●难点:理解函数关系的唯一对应性,区分函数与非函数关系;灵活运用不同方式表示函数。

三、教学过程1. 导入新课(5分钟)●生活实例引入:通过日常生活中的实例(如气温随时间变化、汽车速度与行驶时间的关系等),引导学生思考这些关系中是否存在一个变量随另一个变量变化而变化的规律。

●提出问题:这些关系中的两个变量之间是如何相互影响的?能否用数学语言来描述这种关系?●明确目标:引出函数的概念,并说明本节课将要学习的内容。

2. 概念讲解(15分钟)●函数定义:详细讲解函数的基本概念,包括自变量、因变量、函数关系以及定义域和值域的概念。

●实例分析:结合生活实例,分析哪些关系可以构成函数,哪些不能,强调函数关系的唯一对应性。

●表示方法:介绍函数的三种表示方法(解析式、表格、图像),并举例说明每种方法的应用场景。

3. 案例分析(10分钟)●典型例题:选取几道具有代表性的例题,通过分析题目中的变量关系,引导学生判断是否为函数关系,并尝试用不同方式表示该函数。

●师生互动:在例题讲解过程中,适时提问引导学生思考,鼓励学生尝试自己解答或提出疑问。

《函数的概念》教学设计

《函数的概念》教学设计

3.1函数的概念及其表示(第一课时)一、教学内容解析函数是现代数学中最基本的概念,是描述客观世界中变量关系和规律的最为基本的数学语言和工具.在高中阶段,函数不仅贯穿数学课程的始终,而且是学习方程、不等式、数列、导数等内容的工具和基础.在初中,函数定义采用“变量说”,高中阶段要建立函数的“对应关系说”,与初中的“变量说”相比,高中用集合语言与对应关系表述函数概念,明确了定义域、值域,引入抽象符号f(x).函数概念的核心是“对应关系”:两个非空数集A、B间有一种确定的对应关系f,即对于数集A中每一个x,数集B中都有唯一一个确定的y和它对应.基于以上分析,确定本节课的教学重点和难点.二、重、难点分析1.教学重点:用集合语言与对应关系建立函数概念,培养学生的数学抽象素养.2.教学难点:从不同的问题情境中提炼出函数要素,并由此抽象出函数的概念,理解函数的对应关系f.三、教学目标分析1.目标(1)在“变量说”的基础上,理解函数的“对应关系说”;(2)经历函数概念的抽象过程,培养学生的数学抽象素养;(3)从数学模型构成要素的角度认识具体函数,并通过函数的表示,进一步加深对函数概念的认识.2.目标达成(1)学生从具体实例出发,能在初中“变量说”的基础上,进一步抽象对应关系、定义域与值域等三个要素,构建函数的一般概念;(2)学生能在确定变量变化范围的基础上,通过解析式、图象、表格等形式表示对应关系,理解函数对应关系的本质,体会引入符号f表示对应关系的必要性;(3)学生能在不同实例的比较、分析基础上,归纳共性进而抽象出函数概念,体验用数学的眼光看待事物,发展数学抽象素养.四、学情分析由于初中函数的概念是“变量说”定义,学生对这种定义已经很熟悉,应用起来得心应手,受先入为主思想的影响对“对应关系说”定义引入的必要性认识不足,对函数的“对应关系说”定义接受起来多少有一种排斥心理;学生初中对函数的理解仅停留在一些具体函数的层面上,更确切的说是局限于对函数具体解析式的理解,初中数学学习学生重计算、重例题,对抽象的函数概念的理解有一定困难.不过,学生生活中已经积累了丰富的函数的实例素材,这为函数教学做好了准备.从学生的学习习惯上看,学生初入高中自主学习的目的性、主动性还不够,知识的接受基本在课堂,有的学生甚至还不会听课.所以高中数学教学还肩负着教会学生学习的任务.在课堂教学中采用课前预习、引导发现、学生合作交流的教学方法,通过课前预习,实现课堂教学效益的最大化.五、教学方法归纳法教学六、教学过程设计为达到本节课的教学目标,突出重点,突破难点,计划将教学过程设计为六个阶段:(一)引入1.回顾初中学过的函数及其表示(1)一次函数y=ax+b(a ≠0)(2)二次函数y=ax 2+bx+c(a ≠0)(3)反比例函数y=xk (k ≠0) 提问:这些函数的共性是什么?如何描述?2.初中函数的概念(变量说)一般地,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,则称y 是x 的函数.[师生活动] 教师提出问题,学生自主回答,教师归纳总结.[设计意图] 让学生再次归纳,复习巩固“变量说”.3.思考:正方形的周长l 与边长x 的对应关系是l=4x ,l 是x 的函数吗?若是,它与正比例函数y=4x 相同吗?你能用已有的函数知识判断y=x 与y=x x 2是否相同吗?[师生活动] 教师提出问题,让学生产生疑惑.[设计意图] 说明学习函数概念的“对应关系说”的必要性.(二)函数概念的构建问题1 阅读教材中的实例1,回答下列问题:(1)这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系如何表示?这是一个函数吗?为什么?(2)有人说:“根据对应关系S=350t ,这趟列车加速到350km/h 后运行1h 就前进了350km.”这个说法正确吗?为什么?(3)时间t 的变化范围是什么?(4)能根据现有条件回答0.6h 时对应的距离是多少吗?(5)你认为如何描述才能准确反映问题情境?[师生活动] 教师给出问题,学生先思考并将问题的要点写出,然后小组交流,收集并归纳问题的回答要点,教师点评.[设计意图] 问题(1)是为了让学生回顾初中所学函数的概念用“是否满足定义要求”来回答问题;问题(2)(3)(4)是要激发学生认知冲突,发现其中的不严谨;问题(5)是为了让学生关注到t 的变化范围,并尝试用精确的语言表述.问题2 阅读教材中的实例2,回答下列问题:(1)你认为该怎样确定一个工人的每周所得?(2)一个工人的工资w 是他工作天数d 的函数吗?(3)你以仿照问题1对S 与t 的对应关系的精确表示,给出这个问题中w 与d 的对应关系的精确表示吗?(4)问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?[师生活动] 学生阅读题目后,自主回答.[设计意图] 问题(1)是引导学生使用不同的表示方法;问题(3)是让学生模仿问题1的方法给出描述,既让他们熟悉表述方法,又训练抽象概括能力;问题(4)是使学生进一步关注到对于函数而言,解析式与自变量的变化范围都是确定函数的要素.问题3 阅读教材中的实例3,回答下列问题:(1)I是t的函数吗?为什么?①给定t的值,怎么给?(在0~24小时内给定一个时该t)②通过图形能确定唯一的I与t0对应,怎么找?(在横轴上,过t作垂线交曲线于点(t0,I),I就是与t对应的值.)(2)从所给的图中能回答11月24日8:00的AQI值吗?为什么?(3)11月23日这一天AQI的值的变化范围是什么?(4)这是一个函数,有解析式吗?如果让你表示出这个函数,你会怎么做?(5)模仿问题1,你能用准确的集合语言和对应关系描述这个问题情境吗?[师生活动] 给学生适当的时间阅读思考,教师引导学生一起分析上述问题,并归纳出结果.[设计意图] 问题(1)是让学生认可图象表示一个函数;问题(2)再次强调自变量的取值集合;问题(3)让学生意识到函数值构成集合;问题(4)(5)通过教师讲解,给出对应,关系的描述方法,化解难点. 问题4阅读教材中的实例4,回答下列问题:(1)这个表格中,时间的变化范围是什么?能不能用[2006,2015]表示?恩格尔系数的变化范围是什么?(2)由这个表格,恩格尔系数是不是年份的函数?你能说清楚到底是怎么对应的吗?(3)由这个表格,能得到2005年的恩格尔系数吗?(4)这个函数有解析式吗?如果让你表示出这个函数,你会怎么做?(5)模仿问题1,你能用准确的集合语言和对应关系描述这个问题情境吗?[师生活动] 先让学生思考,然后师生一起归纳结果.[设计意图] 与问题3的情况类似,学生对用表格表示的对应关系是否为函数关系的判断存在疑惑,通过问题引导学生思考,教师再作适当讲解,从而使学生接受.问题5上述问题1~问题4中的函数有哪些共同特征?由此你能概括出函数概念的本质特征吗?[师生活动] (1)给学生充分的思考时间,引导学生重新回顾用集合与对应语言刻画函数的过程,小组合作完成上述表格.(2)教师引导学生得出:①都包含两个非空实数集;②都有一个对应关系;③尽管对应关系的表示方法不同,但它们都有如下特征:对于数集A中的任意一个x,按照对应关系,在数集B中都有唯一确定的y和它对应.(3)归纳得出,除解析式、图象、表格外,还有其他表示对应关系的方法,为了表示方便,引入符号f统一表示对应关系,进而给出函数的一般性定义.教师解释函数记号y=f(x),x∈A.[设计意图] 让学生通过归纳四个实例中的函数的共同特征,体会数学抽象过程,概括出用集合对应语言刻画的一般性函数概念.在此过程中,要突破“如何在四个实例基础上让学生进行归纳、概括、抽象函数的概念,并以此培养学生的数学抽象素养”这一难点,突出“在学生初中已有函数的认识基础上,通过实例归纳概括出函数的基本特征(要素),用集合与对应的语言建立函数的概念”这一教学重点.(三)函数概念的理解1.函数的概念:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个函数,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.理解:(1)集合A,B及对应关系f是一个整体,函数是两个集合的元素间的一种对应关系;(2)y=f(x)的意义:把对应关系f作用到x就得到一个y;(3)f可以是一个解析式,也可以是一个图象,还可以是一个表格.从图表中可以比较直观地看出x与y之间的对应关系.[师生活动]师生一起归纳出函数的概念,教师再逐一解读.[设计意图]理解函数的概念,培养学生的归纳整理能力.(四)函数概念的初步应用问题6如果让你用函数的定义重新认识一次函数、二次函数与反比例函数,那么你会怎样表述这些函数?随堂练习:教材63页练习1,练习3[师生活动] 在学生思考后,教师用一次函数与二次函数进行示范,学生用反比例函数进行练习,之后让学生独立完成上述表格,最后让学生完成教材63页练习1,练习3,教师进行点评.[设计意图] 用函数定义重新认识已学函数,加深对函数定义的理解,进一步体会定义域,对应关系与值域是函数的三个要素.问题7试构建一个问题情境,使其中的变量关系可以用解析式y=x(10-x)来描述.随堂练习:教材64页练习4[师生活动] 在学生思考后,教师以例1进行示范,学生完成教材64页练习4.[设计意图] 让学生在完成例1的过程中,进一步体会函数模型应用的广泛性,加深对函数概念的理解. (五)课堂小结教师引导学生回顾本节课的学习内容,并引导学生回答问题:(1)什么是函数?其三要素是什么?(2)对于对应关系f,你有哪些认识?(3)与初中学习过的函数概念相比,你对函数又有什么新的认识》(4)本节课我们是怎样得到函数概念的?结合本节课的学习,你对如何学习数学又有什么体会?[师生活动] 教师出示问题后,先由学生思考,再由全班交流,最后教师再进行总结,要强调如下几点:(1)函数的定义是判断一个对应关系是不是函数的标准;(2)要通过具体例子理解函数的对应关系f 的特征,特别是对于“A 中任意一个数”“B 中都有唯一 确定的数”等关键词含义要认真体会;(3)对应关系f 的表示形式可以是解析式、图象、表格等多种形式,但它们的实质相同.[设计意图] 引导学生从函数概念的内涵、要素的归纳过程,关键词的理解角度进行小结,进一步加深对函数概念的理解.(六)布置作业1.复习巩固设集合A={x|0≤x ≤6},B={y|0≤y ≤2},下列对应关系f:A →B 上从A 到B 的函数的是( )A. f:x →y=21xB.f:x →y=31x C.f:x →y=x D.f:x →y=x+1[设计意图]考查学生对函数概念的认识,巩固函数概念.2.综合运用(1)教材73页习题3.1第8题和第11题;(2)试构建一个问题情境,使其中的变量关系可以用解析式22⎪⎭⎫ ⎝⎛⋅=ππx y 来描述. [设计意图]考查学生运用函数概念刻画实际问题的能力. 七、板书设计[设计意图] 强调函数的概念集合对应说中的关键词八、课后反思本节课是在初中的已有知识的基础上对函数从集合对应说这个角度做了一个诠释,引导学生结合实例归纳总结出函数的概念,并会用函数的集合对应说解释一次函数、二次函数和反比例函数.本节课的成功之处是对4个实例的分析,通过对这4个实例的一步步分析,引导学生进一步认识函数、了解函数、掌握函数;而败笔之处是对对应关系的解读不够清楚,学生仍然带有疑惑,对符号y=f(x)没有一个清晰的认识,这一点需要在今后的课堂中加以重视,多次讲解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数内容教学方法
【摘要】函数是我国高中数学教育中的重点和难点,在高中数学教材中占有很大比重,函数与方程、不等式、数列等函数内容贯穿高中数学教学的始终。

随着新课程改革的不断推进,对函数内容的教学也提高了新的教学要求和标准,在新观念的指导下促进学生分析问题和解决问题能力的提升。

本文拟从当前我国高中数学函数教学的现状出发,深入探寻高中数学函数内容的教学方法。

【关键词】高中数学函数内容教学方法
1、前言
新课标明确提出函数内容是高中数学教学中的核心和重点,对教师和教和学生的学都做出了严格和具体的要求。

教师方面要求高中数学教师要积极转变教学理念,摒弃传统僵化的教学模式,深入研究学生的学习心理,以学生为函数教学的主体,探寻最佳的教学方式,通过师生、生生之间的“探究、合作、交流”,发展学生的数学思维,提高学生数学探索能力。

学生方面积极培养学生对函数内容的兴趣,激发学生参与函数学习的动力,并且灵活运用函数建立模型解决实际问题,加深对高中数学函数内容的认识和理解。

2、高中数学函数内容的教学现状
2.1从高中数学教材来看
高中数学教材时函数内容的载体,函数能力在教科书中的章节设置、内容设置、版块设置对函数的教学都存在一定的影响。

相对于西方教材中对函数内容的设置,我国高中数学教学偏重函数和推理
与形式化,而西方在这方面偏重对函数知识的渗透和拓展。

对函数的实际运用是当前高中数学教材中最欠缺的部分,相应的增加函数思想在生活中的应用和渗透,加强数学学科与现实生活之间的联系。

另外,教材中还缺乏用现代信息技术解决函数问题的相关内容。

2.2从高中数学教师来看
教师在高中函数教学中发挥着引导和指挥的作用,新课程标准要求一切教学活动围绕学生展开,学生是学习的主体,教师要不断提高自身的专业素养和职业修养,正确、高效的组织教学活动,引导学生树立正确的学习态度、养成良好的学习习惯以及找寻适合自己的学习方法。

当前高中数学教师在教学中往往忽略函数的实际背景,不能为函数教学提供鲜活的实证,导致学生感觉学习函数既困难有没有用处。

2.3从高中学生学习来看
学生作为学习的主体,处于高中函数教学的中心地位,根据对当前高中生对函数内容的学习现状调查来看,大部分学生在一次函数、二次函数、正比例函数、反比例函数等教学内容掌握的程度较好,但很难举出教材范围以外的实例。

高中生对函数素材贫乏一方面是由于学生没有充分认识到函数内容的重要性,另一方面是由于高中教师没有做好理论与实践相结合的教学指导。

【1】
3、高中数学函数内容的教学方法
3.1加强函数思想的渗透和拓展
西方在函数内容教学上比较注重对函数思想的渗透和拓展,这也
是我国高中数学教学需要借鉴和学习的地方。

例如在函数概念这节的教学实践中,教师可以向学生讲述一下函数概念的演变过程,增加学生对函数概念的深层认识,而不是单纯的、机械的去死记硬背。

在学生理解函数本质后,增加对函数相关实际背景的补充,引导学生自觉的将函数概念与生活常识联系起来,并全班一起归纳概括出函数的定义。

3.2加大多媒体技术在数学教学中的应用
21世纪是信息化的时代,多媒体技术被广泛应用在生产生活的每个方面,同样多媒体技术也被引入到教学实践中。

例如在讲授“函数的单调性”一节时变可选择多媒体课件为教具,进行现代化的函数教学。

首先有多媒体课件播放各种函数的图像,让学生先对函数产生一个直观上的感知,然后引发学生对表象信息进行联想和生发,找出相应函数的变化态势和变化规律,发现函数的单调性,最终得出图像的上升成为单调增,图像的下降成为单调减。

3.3引导学生善于运用数学思维
将数学思维和数学思想渗透到高中数学函数内容的教学中,有利于学生用专业的、学科的思维方式进行学习,有利于提高课堂教学的质量和效率。

第一将集合思想运动到函数教学中有利于帮助学生从已知条件中推敲出潜在条件,从而更好地解决问题;第二函数与方程思想在函数教学中的应用,有利于培养学生举一反三的能力;第三函数问题的解决离不开划归类比的数学思维,有利于将函数知识转化为实际问题,从而更好的将所学知识运用在生产生活实践
中。

第四整形结合思想具有灵活性、形象性和直观性,有利于帮助学生正确观察等式和函数图象的形状,将形象思维和抽象思维有机结合起来,探寻函数图像表达的几何意义;第五先猜后证思想在高中数学函数教学中具有强大的生命力,面对函数问题,学生可以依据所学知识通过合理的联想猜测问题的最终答案,然后再进行下一步的验证和解决,既能激发学生学习的积极性,还能开发学生的创造性思维。

【2】
4、结语
综上所述,选择正确的教学方法对高中数学函数内容的教学事半功倍。

新课程改革对高中数学函数内容的教学内容和教学模式提出了更高的要求,因此,作为高中数学教师要努力提高个人专业素养,精心做好函数内容的教学设计,并选择适当的教学方法,真正提高函数课堂教学的有效性。

参考文献
[1]帅中涛.高中数学函数教学中渗透数学思想方法的应用[j].
读与写杂志,2012(3):126.
[2]张敏.对高中数学中函数教学方法的探讨[j].数学学习与研究,2011(15):29.。

相关文档
最新文档