空间向量巧解平行、垂直关系
空间向量平行公式和垂直公式

空间向量平行公式和垂直公式
1、向量垂直公式
向量a=(a1,a2),向量b=(b1,b2)。
a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb(λ是一个常数)。
a垂直b:a1b1+a2b2=0。
2、向量平行公式
向量a=(x1,y1),向量b=(x2,y2)。
x1y2-x2y1=0。
a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0。
相关信息:
空间中具有大小和方向的量叫做空间向量。
向量的大小叫做向量的长度或模(modulus)。
规定,长度为0的向量叫做零向量,记为0。
模为1的向量称为单位向量。
与向量a长度相等而方向相反的向量,称为a的相反向量。
记为-a方向相等且模相等的向量称为相等向量。
1、共线向量定理
两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb
2、共面向量定理
如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by
3、空间向量分解定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。
任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
空间向量的垂直和平行关系

空间向量的垂直和平行关系空间向量是三维空间中具有大小和方向的量,它们之间存在着不同的关系。
其中最常见的关系是垂直和平行关系。
本文将深入探讨空间向量的垂直和平行关系,并分析其特点和性质。
一、垂直关系当两个向量的数量积等于零时,它们被称为垂直向量。
具体地说,对于空间中的向量A和A来说:A⋅A=AAA cos A=0其中,A⋅A表示向量A和A的数量积,AAA表示向量A和A的叉积,A表示两个向量之间的夹角。
当A为90度时,cos A=0,表明向量A和A 垂直。
垂直向量的特点和性质如下:1. 垂直向量的数量积为零,即两个向量之间的夹角为90度。
2. 向量的数量积等于零并不意味着它们一定是垂直的,还需考虑向量的长度和方向。
3. 若两个向量垂直,则它们的叉积为非零向量。
4. 若两个向量平行,则它们的数量积为非零常数。
5. 若一个向量与另一个非零向量垂直,则它与另一个向量平行。
二、平行关系当两个向量的叉积为零时,它们被称为平行向量。
具体地说,对于空间中的向量A和A来说:AAA=AAA sin A=0其中,AAA表示向量A和A的代数长度,sin A表示两个向量之间的夹角的正弦值。
当sin A等于零时,表明向量A和A平行。
平行向量的特点和性质如下:1. 平行向量的叉积为零,即两个向量之间的夹角的正弦值为零。
2. 平行向量之间的数量积可能为非零常数,也可能为零。
3. 若两个向量平行,则它们的数量积为非零常数。
4. 若两个向量垂直,则它们的叉积为非零向量。
5. 若一个向量与另一个非零向量平行,则它与另一个向量垂直。
通过对空间向量的垂直和平行关系进行分析,我们可以得出以下结论:1. 垂直和平行是空间向量最基本的关系,它们之间存在着一定的对应性。
2. 垂直和平行关系可以通过向量的数量积和叉积进行判断。
3. 垂直和平行向量在解决实际问题中具有重要的应用价值,如物理力学中的受力分析和几何学中的平面垂直关系。
在实际问题中,我们常常需要确定向量之间的关系,特别是垂直和平行关系。
空间向量的平行与垂直定理

空间向量的平行与垂直定理空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。
在研究物理、几何和力学等领域时,我们经常需要判断两个向量之间的关系,这个定理就为我们提供了一个有力的工具。
我们来研究两个向量的平行性。
如果两个向量的方向相同或相反,那么它们是平行的。
也就是说,如果向量A和向量B的方向相同或相反,我们可以写成A∥B。
这种平行关系可以用向量的数量积来判断。
具体来说,如果两个向量A和B的数量积等于它们的模长的乘积,即A·B=|A||B|,那么向量A和向量B是平行的。
接下来,我们来研究两个向量的垂直性。
如果两个向量的数量积等于0,那么它们是垂直的。
也就是说,如果向量A和向量B的数量积为0,我们可以写成A⊥B。
这种垂直关系可以用向量的数量积来判断。
具体来说,如果两个向量A和B的数量积等于0,即A·B=0,那么向量A和向量B是垂直的。
空间向量的平行与垂直定理在几何和物理问题中有广泛的应用。
例如,在平面几何中,我们经常需要判断两条线段的平行性或垂直性。
根据空间向量的平行与垂直定理,我们可以通过计算两个向量的数量积来判断它们之间的关系。
这样,我们就可以得到准确的结论,避免了繁琐的几何证明过程。
在物理学中,空间向量的平行与垂直定理也具有重要的应用价值。
例如,在力学中,我们经常需要计算物体受力的情况。
如果两个力的方向相同或相反,那么它们是平行的;如果两个力的数量积为0,那么它们是垂直的。
根据空间向量的平行与垂直定理,我们可以通过计算向量的数量积来判断力的方向和性质,从而进行精确的力学分析。
除了在几何和物理中的应用,空间向量的平行与垂直定理还可以应用于其他领域。
例如,在计算机图形学中,我们经常需要计算向量的平行和垂直关系,以确定图形的方向和位置。
在工程学中,空间向量的平行与垂直定理可以应用于结构分析和力学设计等方面。
空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。
空间向量垂直平行公式

空间向量垂直平行公式以空间向量垂直平行公式为标题,我们来探讨一下空间向量的性质和相互关系。
在三维空间中,向量是具有大小和方向的量,可以用箭头表示。
空间向量的运算包括加法、减法、数量乘法等。
而空间向量垂直和平行的概念是空间向量之间的重要关系。
我们来了解一下空间向量的垂直关系。
两个向量a和b垂直的条件是它们的数量积为零。
数量积又称为点积或内积,可以表示为a·b=0。
这个公式告诉我们,当两个向量的数量积为零时,它们垂直于彼此。
例如,向量a=(1, 2, 3)和向量b=(-2, 1, 0),它们的数量积为1*(-2)+2*1+3*0=0,因此a和b垂直。
接下来,我们来讨论空间向量的平行关系。
两个向量a和b平行的条件是它们的叉积为零。
叉积又称为矢量积或外积,可以表示为a×b=0。
这个公式告诉我们,当两个向量的叉积为零时,它们平行于彼此。
例如,向量a=(1, 2, 3)和向量b=(2, 4, 6),它们的叉积为(2*3-4*2, 4*1-6*1, 6*2-2*4)=(0, 0, 0),因此a和b平行。
除了垂直和平行关系,空间向量还具有一些其他的性质。
例如,向量的模可以表示为|a|=√(a1^2+a2^2+a3^2),其中a1、a2、a3分别表示向量a在x、y、z轴上的分量。
模表示向量的大小,可以用于计算两个向量之间的夹角。
两个向量a和b的夹角可以表示为cosθ=(a·b)/(|a|*|b|),其中θ表示夹角。
夹角的范围是0到180度,如果夹角为90度,则表示两个向量垂直;如果夹角为0度或180度,则表示两个向量平行。
空间向量还可以进行向量投影。
向量投影是将一个向量投影到另一个向量上的过程,可以用来计算两个向量之间的距离。
向量a在向量b上的投影可以表示为projb a=(a·b)/|b|*(b/|b|),其中projb a 表示向量a在向量b上的投影,b/|b|表示向量b的单位向量。
空间几何中的平行与垂直关系

空间几何中的平行与垂直关系平行与垂直关系是空间几何中非常重要的概念,它们在解决平面或立体几何问题时经常被用到。
在本文中,我将介绍平行和垂直的定义和性质,并探讨它们在几何学中的应用。
一、平行关系在空间几何中,当两条线或两个平面没有交点且始终保持相同的距离时,我们称它们是平行的。
换句话说,平行线永远不会相交,平行面之间也永远不会相交。
我们可以使用以下方法来判断线或面是否平行:1. 如果两条线被一条平面所截,且截得的两对同位角相等,则这两条线平行。
2. 如果两个平面被一条直线所截,且截得的两对同位角相等,则这两个平面平行。
平行关系常常在解决与直线、多边形和多面体相关的问题时被应用。
比如,在建筑设计中,设计师常常需要确定两面墙是否平行,以便确保建筑结构的稳定。
在制图学中,要绘制平行线的效果,可以应用平行规或平行尺等工具辅助。
二、垂直关系与平行关系相反,垂直关系指的是两条线、两个平面或两个立体之间相互间的直角关系。
当两条线或两个平面的夹角大小为90度时,它们被认为是垂直的。
同样地,如果两个立体之间的相邻平面的交线是垂直的,则我们称这两个立体是垂直的。
判断垂直关系的方法有:1. 如果两条直线相交,并且相交的四个角中有两个角是直角,则这两条直线是垂直的。
2. 如果两个平面相交,并且相交的交线与两个平面各自的法线垂直,则这两个平面是垂直的。
垂直关系在几何学中有广泛的应用。
在建筑学中,垂直关系被用来确保墙壁与地面之间的角度为直角,以提供良好的结构支持。
在三维计算机图形学中,垂直关系可以用来进行透视变换,使得图像更加逼真。
三、平行和垂直的性质在空间几何中,平行和垂直具有一些重要性质,这些性质可以帮助我们解决几何问题。
1. 如果一条直线与两条平行线相交,则与这两条平行线的交线上的对应角是相等的。
2. 如果两条线分别与第三条线平行,则它们之间的对应角是相等的。
3. 判断两个平面是否垂直的方法之一,是计算它们的法向量之间的夹角。
空间向量的垂直与平行解析几何的几何关系

空间向量的垂直与平行解析几何的几何关系空间向量在解析几何中具有广泛的应用,它们可以描述物体在空间中的位置、方向和运动等属性。
在学习空间向量时,了解其垂直与平行的几何关系是非常重要的。
本文将通过几何解析的方式,深入探讨空间向量垂直与平行的性质及其应用。
一、垂直向量在空间中,当两个向量的数量积为零时,我们称这两个向量是垂直的。
数学上可以表达为:两个向量的数量积等于零,则它们垂直。
设有两个向量a和b,它们的坐标分别表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b垂直的条件可以表示为:a1 * b1 + a2 * b2 + a3 * b3 = 0这个条件求解出的结果就是两个向量垂直的充要条件。
垂直向量在几何上有许多重要的应用。
例如在平面几何中,两条直线互相垂直,则它们的方向向量必然垂直;在立体几何中,两个平面互相垂直,其法向量也必然垂直。
因此,熟练掌握垂直向量的性质对于解析几何的应用非常重要。
二、平行向量在空间中,当两个向量之间存在倍数关系时,我们称这两个向量是平行的。
数学上可以表达为:两个向量之间存在倍数关系,则它们平行。
设有两个向量a和b,它们的坐标表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b平行的条件可以表示为:a1/b1 = a2/b2 = a3/b3 = k (k为常数)其中k为两个向量平行的倍数关系。
平行向量的性质可以应用于线段、直线和平面的平行关系的判断。
例如,在平面几何中,两个直线互相平行,则它们的方向向量之间必然存在倍数关系;在立体几何中,平面与直线平行,则平面的法向量与直线的方向向量必然平行。
三、垂直与平行向量的应用举例1. 垂直向量的应用考虑一个示例问题:已知一条直线L的向量方程为(r - r1) · n = 0,其中r1为已知点,n为已知向量。
求直线L上与已知点A垂直的点B 的坐标。
解析:根据向量方程可以得知,L上的任意点P满足向量n与r - r1垂直的关系。
用向量的方法证明平行与垂直关系

用向量的方法证明平行与垂直关系平行与垂直是向量的重要性质,可以用向量的方法进行证明。
接下来,我将介绍如何用向量的方法证明平行和垂直关系,以及一些相关的性质和定理。
1.平行性质的证明:两个向量a和b平行的定义是它们的方向相同或相反,并且它们的长度可以不相等。
下面是两个向量平行的证明方法:方法一:向量比例法如果向量a和b平行,那么可以找到一个非零实数k,使得a=k*b。
可以通过比较向量的坐标分量来找到这个常数k。
如果两个向量平行,它们的对应坐标分量之间的比值应该相等。
举例来说,如果有向量a=(1,2,3)和向量b=(2,4,6),我们可以通过将它们的相同位置的坐标分量相除来证明它们平行,如下所示:1/2=2/4=3/6=1/2这表明向量a和b的对应坐标分量比值相等,因此它们是平行的。
方法二:向量点乘法如果两个向量a和b平行,那么它们的点乘等于它们的长度之积。
即a·b=,a,*,b,其中,a,和,b,分别表示向量a和b的长度。
假设有向量a=(x1, y1, z1)和向量b=(x2, y2, z2),那么它们的点乘为a·b = x1*x2 + y1*y2 + z1*z2、另一方面,它们的长度之积为,a,*,b, = sqrt(x1^2 + y1^2 + z1^2) * sqrt(x2^2 + y2^2 + z2^2)。
如果将这两个等式相等,即a·b = ,a,*,b,那么可以得出向量a和b平行。
2.垂直性质的证明:两个向量a和b垂直的定义是它们的点乘为零,即a·b=0。
下面是两个向量垂直的证明方法:方法一:向量内积法两个向量a和b的点乘为a·b=x1*x2+y1*y2+z1*z2、如果a·b=0,那么可以证明向量a和b垂直。
举例来说,如果有向量a=(1,2,3)和向量b=(2,-1,-2),我们可以计算它们的点乘为:a·b=1*2+2*(-1)+3*(-2)=0因此,向量a和b垂直。
空间几何中的平行与垂直关系

空间几何中的平行与垂直关系空间几何是研究空间中点、线、面及其相关性质和关系的数学学科。
在空间几何中,平行和垂直是两个基本的关系。
本文将介绍平行和垂直的概念、性质以及它们在空间几何中的应用。
一、平行关系平行是指两条直线或两个面永远不会相交的关系。
在空间几何中,我们可以通过以下方式判断两条直线是否平行:1. 直线的斜率相等:如果两条直线的斜率相等,那么它们是平行的。
这是因为两条直线的斜率相等,意味着它们的倾斜角度相同,在空间中永远不会相交。
2. 直线的方向向量平行:如果两条直线的方向向量平行,那么它们是平行的。
我们可以通过计算两条直线的方向向量,并判断它们是否平行。
3. 直线的截距比相等:如果两条直线的截距比相等,那么它们是平行的。
我们可以通过计算两条直线的截距比,并判断它们是否相等。
平行的性质:1. 平行具有传递性:如果直线l1与直线l2平行,直线l2与直线l3平行,那么直线l1与直线l3平行。
2. 平行具有对称性:如果直线l1与直线l2平行,那么直线l2与直线l1平行。
平行的应用:1. 平行线在平面图形中的应用:平行线在平面图形中有着重要的应用,如矩形、平行四边形等。
在这些图形中,平行线的存在使得我们可以推导出图形的性质和定理。
2. 平行线在建筑设计中的应用:建筑设计中常常需要使用平行线来确定建筑物的边界、墙壁等。
二、垂直关系垂直是指两条直线或两个面之间存在直角的关系。
在空间几何中,我们可以通过以下方式判断两条直线是否垂直:1. 直线斜率之积为-1:如果两条直线的斜率之积为-1,那么它们是垂直的。
这是因为两条直线的斜率之积为-1,意味着它们相互垂直。
2. 直线的方向向量垂直:如果两条直线的方向向量垂直,那么它们是垂直的。
我们可以通过计算两条直线的方向向量,并判断它们是否垂直。
3. 直线的斜率之和为0:如果两条直线的斜率之和为0,那么它们是垂直的。
这是因为两条直线的斜率之和为0,意味着它们相互垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、重难点提示重点:用向量方法判断有关直线和平面的平行和垂直关系问题。
难点:用向量语言证明立体几何中有关平行和垂直关系的问题。
考点一:直线的方向向量与平面的法向量1. 直线l上的向量a或与a共线的向量叫作直线l的方向向量。
2. 如果表示向量a的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a⊥α,此时向量a叫作平面α的法向量。
【核心归纳】①一条直线的方向向量有无数多个,一个平面的法向量也有无数多个,且它们是共线的。
②在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是唯一确定的。
【随堂练习】已知A(1,1,0),B(1,0,1),C(0,1,1),则平面ABC的一个法向量的单位向量是()A. (1,1,1)B. (,333C.111(,,)333D. (333-思路分析:设出法向量坐标,列方程组求解。
答案:设平面ABC的一个法向量为n=(x,y,z),AB=(0,-1,1),BC=(-1,1,0),AC=(-1,0,1),则·0·0·0AB y zBC x yAC x z⎧=-+=⎪⎪=-+=⎨⎪=-+=⎪⎩nnn,∴x=y=z,又∵单位向量的模为1,故只有B正确。
技巧点拨:一般情况下,使用待定系数法求平面的法向量,步骤如下:(1)设出平面的法向量为n=(x,y,z)。
(2)找出(求出)平面内的两个不共线的向量a=(a1,b1,c1),b=(a2,b2,c2)。
(3)根据法向量的定义建立关于x,y,z的方程组·0·0.=⎧⎨=⎩n an b(4)解方程组,取其中的一个解,即得法向量。
【核心突破】①用向量法解决立体几何问题是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想。
②用空间向量解决立体几何问题的“三步曲”:例题1 (浙江改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC 。
证明:PQ ∥平面BCD 。
思路分析:利用直线的方向向量和平面的法向量垂直证明线面平行。
答案:证明:如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线为y 、z 轴的正半轴,建立空间直角坐标系O -xyz 。
由题意知,A (0,2),B (0,0),D (0,0)。
设点C 的坐标为(x 0,y 0,0)。
因为3AQ QC =,所以Q00331,442x y ⎛⎫+ ⎪ ⎪⎝⎭。
因为M 为AD 的中点,故M (0,1),又P 为BM 的中点,故P 10,0,2⎛⎫ ⎪⎝⎭,所以PQ =0033,,0444x y ⎛⎫+ ⎪ ⎪⎝⎭。
又平面BCD 的一个法向量为a =(0,0,1),故PQ ·a =0。
又PQ ⊄平面BCD ,所以PQ ∥平面BCD 。
技巧点拨:解决此类问题的依据是要根据线面平行的判定定理,可证直线的方向向量与平面内某一向量平行,也可证直线的方向向量与平面的法向量垂直。
例题2 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点。
求证:AB1⊥平面A1BD。
思路分析:证明线面垂直可以通过证明线与面的法向量平行来实现。
答案:证明:如图所示,取BC的中点O,连接AO ,因为△ABC为正三角形,所以AO⊥BC。
∵在正三棱柱ABC—A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1,取B1C1的中点O1,以O为原点,分别以OB,1OO,OA所在直线为x轴,y轴,z轴建立空间直角坐标系,则B(1,0,0),D(-1,1,0),A1(0,23,A(0,03,B1(1,2,0)。
1BA=(-1,23,BD=(-2,1,0)。
1AB=(1,2,3-)设平面A1BD的法向量为n=(x,y,z),因为n⊥1BA,n⊥BD,故1023020BA x y zx yBD⎧⎧⋅=-+=⎪⎪⇒⎨⎨-+=⎪⋅=⎪⎩⎩nn,令x=1,则y=2,z3n=(1,2,-3)为平面A1BD的一个法向量,而1AB=(1,23,所以1AB=n,所以1AB∥n,故AB1⊥平面A1BD。
技巧点拨:解决此类问题的依据是要根据线面垂直的判定定理,证明直线的方向向量与平面的法向量平行。
例题3 如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=2,BB1=1,E为BB1的中点,求证:平面AEC1⊥平面AA1C1C。
思路分析:建系写出坐标,分别求出两个平面的法向量,证明两个平面垂直。
答案:证明:由题意得AB,BC,B1B两两垂直,以B为原点,分别以BA,BC,BB1所在直线为x,y,z轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12), 则1AA =(0,0,1),AC =(-2,2,0),1AC =(-2,2,1),AE =(-2,0,12)。
设平面AA 1C 1C 的一个法向量为n 1=(x ,y ,z ),则11·0·0AA AC ⎧=⎪⎨=⎪⎩1n n ⇒0220z x y =⎧⎨-+=⎩ 令x =1,得y =1,∴n 1=(1,1,0)。
设平面AEC 1的一个法向量为n 2=(x 0,y 0,z 0),则21·0·0AC AE ⎧=⎪⎨=⎪⎩2n n ⇒000002201202x y z x z -++=⎧⎪⎨-+=⎪⎩ 令z 0=4,得x 0=1,y 0=-1。
∴n 2=(1,-1,4)。
∵n 1·n 2=1×1+1×(-1)+0×4=0, ∴n 1⊥n 2.∴平面AEC 1⊥平面AA 1C 1C 。
技巧点拨:利用空间向量证明面面垂直通常可以有两个途径,一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直。
向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系。
恰当建系或用基向量表示后,只须经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度。
利用向量解决立体几何中的探索性问题【满分训练】在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 的中点,棱BB 1上是否存在一点M ,使得D 1M ⊥平面EFB 1。
思路分析:设出点M 的坐标,利用线面垂直列方程组求解。
答案:建立如图所示的空间直角坐标系D -xyz ,设正方体的棱长为2,则E (2,1,0),F (1,2,0),D 1(0,0,2),B 1(2,2,2)。
设M (2,2,m ),则EF =(-1,1,0),1B E =(0,-1,-2),1D M =(2,2,m -2)。
∵D 1M ⊥平面EFB 1, ∴D 1M ⊥EF ,D 1M ⊥B 1E ,∴1D M ·EF =0且1D M ·1B E =0, 于是22022(2)0m -+=⎧⎨---=⎩,∴m =1。
故取B 1B 的中点为M 就能满足D 1M ⊥平面EFB 1。
技巧点拨:对于“是否存在”型问题的探索方式有两种:一种是根据条件做出判断,再进一步论证。
另一种是利用空间向量,先设出假设存在的点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”。
(答题时间:40分钟)1. (东营高二检测)已知平面α的法向量为a =(1,2,-2),平面β的法向量为b =(-2,-4,k ),若α⊥β,则k =( )A. 4B. -4C. 5D. -52. (青岛高二检测)若AB =λCD +μCE ,则直线AB 与平面CDE 的位置关系是( )A. 相交B. 平行C. 在平面内D. 平行或在平面内3. 已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B. 407,-157,4 C. 407,-2,4 D. 4,407,-154. (汕头模拟)如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为3,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1。
(1)求证:E ,B ,F ,D 1四点共面; (2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1。
5. 下列命题中,正确的是________。
(填序号)① 若n 1,n 2分别是平面α,β的一个法向量,则n 1∥n 2⇔α∥β; ② 若n 1,n 2分别是平面α,β的一个法向量,则α⊥β⇔n 1·n 2=0; ③ 若n 是平面α的一个法向量,a 与平面α共面,则n ·a =0; ④ 若两个平面的法向量不垂直,则这两个平面一定不垂直。
6. 平面上有四个互异的点A ,B ,C ,D ,已知(DB +DC -2DA )·(AB -AC )=0,则△ABC 的形状是 三角形。
7. 如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是矩形,AB =2,AD =1,AA 1=3,M 是BC 的中点。
在DD 1上是否存在一点N ,使MN ⊥DC 1?并说明理由。
8. (衡水调研卷)如图所示,在四棱柱ABCD -1111A B C D 中,1A D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱1A A =2。
(1)证明:AC ⊥1A B ;(2)是否在棱A 1A 上存在一点P ,使得AP =λ1PA ,且面AB 1C 1⊥面PB 1C 1。
1. D 解析:∵α⊥β,∴a ⊥b ,∴a ·b =-2-8-2k =0,∴k =-5。
2. D 解析:∵AB =λCD +μCE ,∴AB 、CD 、CE 共面,则AB 与平面CDE 的位置关系是平行或在平面内。
3. B 解析:∵AB ⊥BC ,∴AB ·BC =0,即3+5-2z =0,解得z =4,又∵BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,则156031120x y x y (-)++=⎧⎨(-)+-=⎩ ,解得407157x y ⎧=⎪⎪⎨⎪=-⎪⎩。
4. 证明:(1)以B 为原点,以BA ,BC ,BB 1为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系B xyz ,则B (0,0,0),E (3,0,1),F (0,3,2),D 1(3,3,3),则BE =(3,0,1),BF =(0,3,2),1BD =(3,3,3),所以1BD =BE +BF 。