(完整word版)高中数学选择填空题专项训练.docx
(word完整版)高中数学必修二练习题(人教版,附答案)

高中数学必修二练习题(人教版,附答案)本文适合复习评估,借以评价学习成效。
一、选择题1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C. 2D. 不存在2.过点且平行于直线的直线方程为()A. B.C.D.3. 下列说法不正确的....是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D. 过一条直线有且只有一个平面与已知平面垂直.4.已知点、,则线段的垂直平分线的方程是()A. B. C. D.5. 研究下在同一直角坐标系中,表示直线与的关系6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能相交7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是( )(A)①和②(B)②和③(C)③和④(D)①和④8. 圆与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.-1 B.2 C.3 D.010. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么( )A.点P必在直线AC上 B.点P必在直线BD上C.点P必在平面DBC内 D.点P必在平面ABC外11. 若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是(C )A.MN∥βB.MN与β相交或MNβC. MN∥β或MNβD. MN∥β或MN与β相交或MNβ12. 已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC(A )A.垂直B.平行C.相交D.位置关系不确定二填空题13.已知A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为;14.已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=;15.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________;16.圆心在直线上的圆C与轴交于两点,,则圆C的方程为.三解答题17(12分) 已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0 求AC边上的高所在的直线方程.18(12分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1) FD∥平面ABC;(2) AF⊥平面EDB.19(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,(1)求证:平面A B1D1∥平面EFG;(2)求证:平面AA1C⊥面EFG.20(12分)已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为2;③圆心在直线x-3y=0上. 求圆C的方程.设所求的圆C与y轴相切,又与直线交于AB,2分)设有半径为3的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?22(14分)已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3) 当直线l的倾斜角为45度时,求弦AB的长.一、选择题(5’×12=60’)(参考答案)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B A D B C C A A C A C A二、填空题:(4’×4=16’) (参考答案)13. (0,0,3) 14. 15 y=2x或x+y-3=0 16. (x-2)2+(y+3)2=5三解答题17(12分) 解:由解得交点B(-4,0),. ∴AC边上的高线BD的方程为.18(12分) 解:(1)取AB的中点M,连FM,MC,∵F、M分别是BE、BA的中点∴ FM∥EA, FM=EA∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM又 DC=a, ∴ FM=DC ∴四边形FMCD是平行四边形∴FD∥MCFD∥平面ABC(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又 CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,因F是BE的中点, EA=AB所以AF⊥EB.19解:略20解:∵圆心C在直线上,∴圆心C(3a,a),又圆与y轴相切,∴R=3|a|. 又圆心C到直线y-x=0的距离在Rt△CBD中,.∴圆心的坐标C分别为(3,1)和(-3,-1),故所求圆的方程为或.21解解:如图建立平面直角坐标系,由题意可设A、B两人速度分别为3v千米/小时,v千米/小时,再设出发x0小时,在点P改变方向,又经过y0小时,在点Q处与B相遇.则P、Q两点坐标为(3vx0, 0),(0,vx0+vy0).由|OP|2+|OQ|2=|PQ|2知,………………3分(3vx0)2+(vx0+vy0)2=(3vy0)2,即.……①………………6分将①代入……………8分又已知PQ与圆O相切,直线PQ在y轴上的截距就是两个相遇的位置. 设直线相切,则有……………………11分答:A、B相遇点在离村中心正北千米处………………12分22解:(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即 2x-y-20.(2)当弦AB被点P平分时,l⊥PC, 直线l的方程为, 即 x+2y-6=0(3)当直线l的倾斜角为45度时,斜率为1,直线l的方程为y-2=x-2 ,即 x-y=0圆心C到直线l的距离为,圆的半径为3,弦AB的长为.。
(完整word版)高三数学基础训练题集(上)1-10套(含答案)

俯视图侧视图正视图4图1乙甲7518736247954368534321高三数学基础训练一班级:姓名:座号:成绩:一.选择题:1.复数i1i,321-=+=zz,则21zzz⋅=在复平面内的对应点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.在等比数列{an}中,已知,11=a84=a,则=5a( )A.16 B.16或-16 C.32 D.32或-323.已知向量a =(x,1),b =(3,6),a⊥b ,则实数x的值为( )A.12B.2-C.2D.21-4.经过圆:C22(1)(2)4x y++-=的圆心且斜率为1的直线方程为( )A.30x y-+=B.30x y--=C.10x y+-=D.30x y++=5.已知函数()f x是定义在R上的奇函数,当0>x时,()2xf x=,( ) 则(2)f-=( )A.14B.4-C.41-D.46.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比赛得分的中位数之和是( )A.62 B.63 C.64 D.657.下列函数中最小正周期不为π的是( )A.xxxf cossin)(⋅= B.g(x)=tan(2π+x)C.xxxf22cossin)(-=D.xxx cossin)(+=ϕ8.命题“,11a b a b>->-若则”的否命题是( )A.,11a b a b>-≤-若则B.若ba≥,则11-<-baC.,11a b a b≤-≤-若则D.,11a b a b<-<-若则9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为 ( ) A .6B .24C .123D .3210.已知抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,则实数t 的取值范围是 ( ) A .()()+∞-∞-,11,YB .⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222,Y C .()()+∞-∞-,,2222YD .()()+∞-∞-,,22Y二.填空题:11.函数22()log (1)f x x =-的定义域为 .12.如图所示的算法流程图中,输出S 的值为 .13.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值为_______.14.已知c x x x x f +--=221)(23,若]2,1[-∈x 时,2)(c x f <恒成立,则实数c 的取值范围______ 三.解答题:已知()sin f x x x =+∈x (R ). (1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.高三数学基础训练二班级: 姓名: 座号: 成绩:一.选择题:1.在等差数列{}n a 中, 284a a +=,则 其前9项的和S9等于 ( )A .18B .27C .36D .92.函数()()sin cos sin f x x x x =-的最小正周期为 ( )A .4π B .2πC .πD .2π 3.已知命题p: {}4A x x a =-p ,命题q :()(){}230B x x x =--f ,且⌝p 是⌝q 的充分条件,则实数 a 的取值范围是: ( )A .(-1,6)B .[-1,6]C .(,1)(6,)-∞-⋃+∞D .(,1][6,)-∞-⋃+∞ 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。
甘肃省武威市铁路中学2014届高三数学(理)专题训练:选择填空限时练(三)Word版含答案

(推荐时间:45分钟)一、选择题1. 设A ,B 是非空集合,定义A ×B ={x |x ∈(A ∪B )且x ∉(A ∩B )},已知A ={x |0≤x ≤2},B={y |y ≥0},则A ×B 等于( )A .(2,+∞)B .[0,1]∪[2,+∞)C .[0,1)∪(2,+∞)D .[0,1]∪(2,+∞)答案 A解析 由题意知,A ∪B =[0,+∞),A ∩B =[0,2]. 所以A ×B =(2,+∞).2. 命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是( )A .不存在x ∈R ,x 3-x 2+1≤0B .存在x ∈R ,x 3-x 2+1≥0C .存在x ∈R ,x 3-x 2+1>0D .对任意的x ∈R ,x 3-x 2+1>0 答案 C3. 给出下面四个命题:①“直线a ∥直线b ”的充要条件是“a 平行于b 所在的平面”; ②“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”;③“直线a ,b 为异面直线”的充分不必要条件是“直线a ,b 不相交”;④“平面α∥平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”. 其中正确命题的序号是( )A .①②B .②③C .③④D .②④答案 D解析 当a 平行于b 所在平面时,a ,b 可能异面,故①不正确;当a 、b 不相交时,可能a ∥b ,故③不正确;由此可排除A 、B 、C ,故选D.4. 设向量a =(cos α,sin α),b =(cos β,sin β),其中0<α<β<π,若|2a +b |=|a -2b |,则β-α等于( )A.π2B .-π2C.π4D .-π4答案 A解析 由|2a +b |=|a -2b |得3|a |2-3|b |2+8a·b =0,而|a |=|b |=1,故a·b =0,即cos(α-β)=0,由于0<α<β<π,故-π<α-β<0,故α-β=-π2,即β-α=π2.选A.5. 已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110答案 D解析 a 7是a 3与a 9的等比中项,公差为-2, 所以a 27=a 3·a 9,所以a 27=(a 7+8)(a 7-4),所以a 7=8,所以a 1=20,所以S 10=10×20+10×92×(-2)=110.6. 设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3B .2C. 5D. 6答案 C解析 设切点P (x 0,y 0),则切线的斜率为y ′|x =x 0=2x 0. 由题意有y 0x 0=2x 0,又y 0=x 20+1,解得x 20=1,所以ba =2,e =1+⎝⎛⎭⎫b a 2= 5.7. 设随机变量ξ服从正态分布N (16,σ2),若P (ξ>17)=0.35,则P (15<ξ<16)=( )A .0.35B .0.85C .0.3D .0.15答案 D解析 由正态分布的对称性知,P (ξ>16)=0.5, 又P (ξ>17)=0.35,所以P (16<ξ<17)=0.5-0.35=0.15. 于是P (15<ξ<16)=P (16<ξ<17)=0.15.8. 若某空间几何体的三视图如图所示,则该几何体的体积是( )A .4 2B .2 2C.423 D.223答案 B解析 该几何体是底面是直角三角形的直三棱柱,由三棱柱体积公式V =S底h 可得V=2 2.9. 设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .y =f (x )在⎝⎛⎭⎫0,π4上单调递减 B .y =f (x )在⎝⎛⎭⎫π4,3π4上单调递减 C .y =f (x )在⎝⎛⎭⎫0,π2上单调递增 D .y =f (x )在⎝⎛⎭⎫π4,3π4上单调递增 答案 A解析 变形f (x )=sin(ωx +φ)+cos(ωx +φ) =2sin ⎝⎛⎭⎫ωx +φ+π4. 又f (-x )=f (x ),得函数为偶函数,故φ+π4=k π+π2(k ∈Z ).∴φ=k π+π4(k ∈Z ).∵|φ|<π2,∴φ=π4.又T =π,∴ω=2.∴f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 结合图象知A 正确.10.(2013·山东)函数y =x cos x +sin x 的图象大致为( )答案 D解析 函数y =x cos x +sin x 为奇函数,排除B.取x =π2,排除C ;取x =π,排除A ,故选D.11.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围为( )A .(1,1+2)B .(1+2,+∞)C .(1,3)D .(3,+∞)答案 A解析 画出可行域,可知z =x +my 在点⎝⎛⎭⎫11+m ,m1+m 取最大值,由11+m +m 21+m<2解得1<m <1+ 2. 12.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)答案 B解析 f ′(x )>2转化为f ′(x )-2>0, 构造函数F (x )=f (x )-2x , 得F (x )在R 上是增函数.又F (-1)=f (-1)-2×(-1)=4,f (x )>2x +4, 即F (x )>4=F (-1),所以x >-1. 二、填空题13.若直线y =kx -1与圆x 2+y 2=1相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为________. 答案 ±3解析 圆心O 到直线y =kx -1的距离d =1k 2+1=12, ∴k =±3.14.若执行如图所示的程序框图,输入x 1=1,x 2=2,x 3=3,x =2,则输出的数等于________.答案 23解析 通过框图可以看出本题的实质是求x 1,x 2,x 3的方差,根据方差公式得 输出S =13[(1-2)2+(2-2)2+(3-2)2]=23.15.若圆x 2+y 2-4x -4y -10=0上至少有三个不同点到直线l :ax +by =0的距离为22,则直线l 的斜率的取值范围是________. 答案 [2-3,2+3]解析 圆x 2+y 2-4x -4y -10=0可转化为(x -2)2+(y -2)2=(32)2,∴圆心的坐标为(2,2),半径为32,要求圆上至少有三个不同的点到直线l :ax +by =0的距离为22,则圆心到直线l 的距离应小于等于2, ∴|2a +2b |a 2+b 2≤2,∴⎝⎛⎭⎫a b 2+4⎝⎛⎭⎫a b +1≤0,∴-2-3≤a b ≤-2+3,又直线l 的斜率k =-ab ,∴2-3≤k ≤2+3,即直线l 的斜率的取值范围是[2-3,2+3]. 16.已知如下等式:3-4=17(32-42),32-3×4+42=17(33+43),33-32×4+3×42-43=17(34-44),34-33×4+32×42-3×43+44=17(35+45),则由上述等式可归纳得到3n -3n -1×4+3n -2×42-…+(-1)n 4n =________(n ∈N *).答案17[]3n +1-(-4)n +1。
(完整word版)高中数学二项式定理练习题.doc

选修 2-3 1.3.1 二项式定理一、选择题1.二项式 (a + b)2n 的展开式的项数是 ( )A .2nB .2n +1C .2n - 1D .2(n +1)2.(x -y)n 的二项展开式中,第 r 项的系数是 ()A .C rr +1nB .C nr -1D .(- 1) r -1 r -1C .C n C n.在 - 10 的展开式中, x 6的系数是 ( )3 (x 3)64A .- 27C 10B .27C 106 4C .- 9C 10D .9C 104.(2010 全·国Ⅰ理, 5)(1+2x)3(1- 3x)5 的展开式中 x 的系数是 ( )A .- 4B .- 2C .2D .45.在 2x 3+ 12 n ∈ * 的展开式中,若存在常数项,则n 的最小值是 ( )x (n N )A .3B .5C .8D .10.在 - 3 + x) 10的展开式中 x 5的系数是 ( )6 (1 x )(1 A .- 297 B .- 252C .297D .2077.(2009 北·京 )在 x 2-1 n的展开式中,常数项为 15,则 n 的一个值可以是x()A .3B .4C .5D .6a 53的系数为 10,则实数 a 等于8.(2010 陕·西理, 4)(x +x ) (x ∈R)展开式中 x ()19.若 (1+ 2x)6 的展开式中的第 2 项大于它的相邻两项,则 x 的取值范围是()11 1 1A.12< x < 5B.6<x <51 21 2C.12< x < 3D.6<x <5.在3120的展开式中,系数是有理数的项共有 ()102x - 2A .4 项B .5 项C .6 项D .7 项二、填空题. + + 2·- x) 10 的展开式中, x 5 的系数为 ____________. 11 (1 x x ) (1. + 2 - x) 5 的展开式中 x 3的系数为 ________. 12 (1 x) (12 + 1 63 5 .若 x 的二项展开式中 x 的系数为 ,则 a =________(用数字作答 ).13 ax 2. ·宁理,辽 + + 2-1 6 的展开式中的常数项为 ________. 14 (201013)(1x x )(xx)三、解答题15.求二项式 (a +2b)4的展开式.16. m 、 n ∈ N * ,f(x)= (1+x)m +(1+x)n 展开式中 x 的系数为 19,求 x 2 的系数的最小值及此时展开式中 x 7 的系数.17.已知在 (3x -1)n 的展开式中,第 6 项为常数项.3(1)求 n ;(2)求含 x 2 的项的系数; (3)求展开式中所有的有理项.118.若x +4n 展开式中前三项系数成等差数列.求:展开式中系数最 2 x大的项.1.[答案 ]B2[答案 ] D 3 [ 答案 ] D[ 解析 ]r 10- r(- 3) r.令 10-r = 6,∵ T r +1 =C 10x解得 r = 4.∴系数为 (-4443) C 10=9C 10. 4[答案 ] C[ 解析 ] (1+ 2 x)3(1- 3 x)5=(1 +6 x + 12x + 8x x)(1-3x)5,故(1+ 2 33 5 3 (- 3 3 0=- 10x + 12x = 2x ,所以 x 的系数为 x) (1- x) 的展开式中含 x 的项为 1×C 5 x) + 12xC 5 2.5[答案 ] Br3 n - r1 rn - rr 3n - 5r[ 解析 ] T r +1= C n (2x ) (x 2) = 2·C n x .令 3n -5r =0,∵ 0≤r ≤ n ,r 、 n ∈ Z .∴n 的最小值为 5.6[答案 ] D[ 解析 ] x 5 应是 (1+ x)10 中含 x 5 项与含 x 2 项. ∴其系数为 C 5 + C 2 (- 1)= 207.10107[答案 ] D[ 解析 ] r2 n - r1 rr r 2n -3rr通项 T r + 1=C 10( x ) (- x ) = (- 1) C n x,常数项是 15,则 2n = 3r ,且 C n = 15,验证 n =6时, r =4 合题意,故选 D.8[答案 ] D [ 解析 ]r r a 5- rr 5- r 2r - 5 ,令 2r -5=3, ∴r = 4,C 5·x ( x ) = C 5·a x4由 C 5·a = 10,得 a =2.9[答案 ]AT 2>T 11[ 解析 ] 由C 62x>1∴1< x <1.T 2>T 3 得 1 2 2C 62x>C 6(2x) 12510[ 答案 ]Ar320- r- 1 r 2 r320- r r20-r[ 解析 ] T r +1= C 20( 2x) 2 = - 2·( 2) C 20·x ,∵系数为有理数,20- r∴( 2)r与 2 3 均为有理数,∴ r 能被 2 整除,且 20- r 能被 3 整除,故 r 为偶数, 20-r 是 3 的倍数, 0≤r ≤ 20.∴ r = 2,8,14,20.11[答案 ] - 16212[ 答案 ] 5[ 解析 ] 解法一: 先 形 (1+x)2(1 -x)5=(1 -x)3·(1- x 2) 2= (1-x)3(1 +x 4- 2x 2) ,展开式中 x 3 的系数 -1+ (- 2) ·C 1( -1)= 5;3331222 1-1)= 5.解法二: C 5( -1) +C 2 ·C 5(- 1) +C 2C 5( 13[ 答案 ] 232 31 320 35 3[ 解析 ] C 6(x ) ·(ax) = a 3 x= 2x , ∴a =2.14[ 答案 ] -51[ 解析 ] (1+ x +x 2)(x - x )61 1 1 =(x -x)6+ x (x - x )6+x 2(x -x )6,1 6 1 1r 6 rr rr 6 2r∴要找出 (x - x )中的常数 ,x 的系数, x 2 的系数, T r + 1=C 6x- (- 1) x -r= C 6( -1) x-,令 6- 2r =0, ∴r = 3,令 6- 2r =- 1,无解.令 6- 2r =- 2,∴ r =4.∴常数 -34C6+ C 6=- 5. 15[ 解析 ] 根据二 式定理n0 n 1 n -1k n - k kn n(a +b) = C n a + C n a b + ⋯+ C n a b + ⋯+ C n b n 得40 41 32 22 3 3 4 4 4 3 2 2 3 4(a +2b) =C 4 a + C 4a (2b)+ C 4a (2b) + C 4a(2b) + C 4(2b) =a +8a b + 24a b +32ab +16b .16[ 解析 ] 由 m + n =19,∵m , n ∈ N *.m =1 m =2 m = 18∴ , , ⋯,n = 1 . n =18 n = 1722 2 = 1 2 1 2 2 - 19m +171. x 的系数 C m +C n 2(m -m)+ 2 (n -n)= m∴当 m =9 或 10 , x2的系数取最小7 的系数 7781,此 xC 9+C 10= 156. 17[ 解析 ] r 3 x) n - r ·(- 1 r(1)T r +1 =C n ·( )2 3xr1 n - r1 ·x - 1 ) r=C n ·(x )·(-332=( -1)r ·C r ·xn - 2r. n23∵第 6 常数 ,n -2r∴r = 5 时有 = 0, ∴n = 10.3n -2r1(2)令3 =2,得 r =2( n -6)= 2,∴所求的系数为 2 1 2 45 C 10(- ) =4 .210- 2r∈Z(3)根据通项公式,由题意得:30≤ r ≤ 10r ∈Z10-2r= k(k ∈ Z),则 10- 2r =3k , 令310-3k 3 即 r =2 =5-2k.∵r ∈ Z ,∴ k 应为偶数, ∴ k 可取 2,0,- 2,∴r = 2,5,8,∴ 第 3 项、第 6 项与第 9 项为有理项.21 22 51 5它们分别为 C 10·(-2)·x ,C 10(-2) ,C 8 ·(-1)8·x - 2. 102rn - r1 r[ 解析 ]x) · 4 . 通项为: T r +1= C n ·( x 22 11 1由已知条件知: C n +C n ·2n ·,解得: n = 8.2 = 2C 2 记第 r 项的系数为 t r ,设第 k 项系数最大,则有:t k ≥ t k + 1 且 t k ≥ t k - 1.又 t =C r - 1·2-r +1,于是有:r8k 1 ·2-k +1 k·2-k C 8-≥C 8k 1 ·2-k +1k 2 ·2- k + 2 C 8-≥C 8-8! × 2≥ 8!( k -1)! ·(9 -k) ! ,k ! (8-k)! 即8!8!≥( k -1)! ·(9 -k) ! × 2.(k - 2)!·(10- k) !2≥1,9- kk∴解得 3≤ k ≤4.12≥.37 ∴系数最大项为第 3 项 T3= 7·x5和第 4 项 T4=7·x4.。
高中数学 必修二 习题:第3章 直线与方程3.2.2 Word版含解析

第三章 3.2 3.2.2一、选择题1.直线x 2-y5=1在x 轴、y 轴上的截距分别为( )A .2,5B .2,-5C .-2,-5D .-2,5[答案] B[解析] 将x 2-y 5=1化成直线截距式的标准形式为x 2+y -5=1,故直线x 2-y5=1在x 轴、y 轴上的截距分别为2、-5.2.已知点M (1,-2)、N (m,2),若线段MN 的垂直平分线的方程是x2+y =1,则实数m 的值是( )A .-2B .-7C .3D .1 [答案] C[解析] 由中点坐标公式,得线段MN 的中点是(1+m 2,0).又点(1+m2,0)在线段MN的垂直平分线上,所以1+m4+0=1,所以m =3,选C .3.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李,行李费用y (元)与行李质量x (kg)的关系如图所示,则旅客最多可免费携带行李的重量为( )A .20 kgB .25 kgC .30 kgD .80 kg [答案] C[解析] 由图知点A (60,6)、B (80,10),由直线方程的两点式,得直线AB 的方程是y -610-6=x -6080-60,即y =15x -6.依题意,令y =0,得x =30,即旅客最多可免费携带30千克行李.4.如右图所示,直线l 的截距式方程是x a +yb=1,则有( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0[答案] B[解析] 很明显M (a,0)、N (0,b ),由图知M 在x 轴正半轴上,N 在y 轴负半轴上,则a >0,b <0.5.已知△ABC 三顶点A (1,2)、B (3,6)、C (5,2),M 为AB 中点,N 为AC 中点,则中位线MN 所在直线方程为( )A .2x +y -8=0B .2x -y +8=0C .2x +y -12=0D .2x -y -12=0[答案] A[解析] 点M 的坐标为(2,4),点N 的坐标为(3,2),由两点式方程得y -24-2=x -32-3,即2x+y -8=0.6.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( )A .-32B .-23C .25D .2[答案] A[解析] 直线方程为y -91-9=x -3-1-3,化为截距式为x -32+y 3=1,则在x 轴上的截距为-32.二、填空题7.已知点P (-1,2m -1)在经过M (2,-1)、N (-3,4)两点的直线上,则m =________[答案] 32[解析] 解法一:MN 的直线方程为:y +14+1=x -2-3-2,即x +y -1=0,代入P (-1,2m -1)得m =32.解法二:M 、N 、P 三点共线, ∴4-(2m -1)-3+1=4-(-1)-3-2,解得m =32.8.过点(0,3),且在两坐标轴上截距之和等于5的直线方程是________.[答案] 3x +2y -6=0[解析] 设直线方程为x a +yb =1,则⎩⎪⎨⎪⎧b =3a +b =5,解得a =2,b =3,则直线方程为x 2+y3=1,即3x +2y -6=0. 三、解答题9.已知点A (-1,2)、B (3,4),线段AB 的中点为M ,求过点M 且平行于直线x 4-y2=1的直线l 的方程.[解析] 由题意得M (1,3),直线x 4-y 2=1的方程化为斜截式为y =12x -2,其斜率为12,所以直线l 的斜率为12.所以直线l 的方程是y -3=12(x -1),即x -2y +5=0.10.求分别满足下列条件的直线l 的方程:(1)斜率是34,且与两坐标轴围成的三角形的面积是6;(2)经过两点A (1,0)、B (m,1);(3)经过点(4,-3),且在两坐标轴上的截距的绝对值相等. [解析](1)设直线l 的方程为y =34x +b .令y =0,得x =-43b ,∴12|b ·(-43b )|=6,b =±3. ∴直线l 的方程为y =43x ±3.(2)当m ≠1时,直线l 的方程是 y -01-0=x -1m -1,即y =1m -1(x -1) 当m =1时,直线l 的方程是x =1. (3)设l 在x 轴、y 轴上的截距分别为a 、b . 当a ≠0,b ≠0时,l 的方程为x a +yb =1;∵直线过P (4,-3),∴4a -3b =1.又∵|a |=|b |,∴⎩⎪⎨⎪⎧4a -3b =1a =±b,解得⎩⎪⎨⎪⎧ a =1b =1,或⎩⎪⎨⎪⎧a =7b =-7. 当a =b =0时,直线过原点且过(4,-3), ∴l 的方程为y =-34x .综上所述,直线l 的方程为x +y =1或x 7+y -7=1或y =-34x .一、选择题1.如果直线l 过(-1,-1)、(2,5)两点,点(1 008,b )在直线l 上,那么b 的值为( )A .2 014B .2 015C .2 016D .2 017[答案] D[解析] 根据三点共线,得5-(-1)2-(-1)=b -51 008-2,得b =2 017.2.两直线x m -y n =1与x n -ym=1的图象可能是图中的哪一个( )[答案] B[解析] 直线x m -yn =1化为y =n m x -n ,直线x n -ym=1化为 y =mnx -m ,故两直线的斜率同号,故选B .3.已知A 、B 两点分别在两条互相垂直的直线y =2x 和x +ay =0上,且线段AB 的中点为P (0,10a),则直线AB 的方程为( )A .y =-34x +5B .y =34x -5C .y =34x +5D .y =-34x -5[答案] C[解析] 依题意,a =2,P (0,5).设A (x 0,2x 0)、B (-2y 0,y 0),则由中点坐标公式,得⎩⎪⎨⎪⎧ x 0-2y 0=02x 0+y 0=10,解得⎩⎪⎨⎪⎧x 0=4y 0=2,所以A (4,8)、B (-4,2).由直线的两点式方程,得直线AB 的方程是y -82-8=x -4-4-4,即y =34x +5,选C .4.过P (4,-3)且在坐标轴上截距相等的直线有( )A .1条B .2条C .3条D .4条[答案] B[解析] 解法一:设直线方程为y +3=k (x -4)(k ≠0). 令y =0得x =3+4kk ,令x =0得y =-4k -3.由题意,3+4k k =-4k -3,解得k =-34或k =-1.因而所求直线有两条,∴应选B .解法二:当直线过原点时显然符合条件,当直线不过原点时,设直线在坐标轴上截距为(a,0),(0,a ),a ≠0,则直线方程为x a +ya=1,把点P (4,-3)的坐标代入方程得a =1.∴所求直线有两条,∴应选B . 二、填空题5.直线l 过点P (-1,2),分别与x 、y 轴交于A 、B 两点,若P 为线段AB 的中点,则直线l 的方程为________.[答案] 2x -y +4=0 [解析] 设A (x,0)、B (0,y ). 由P (-1,2)为AB 的中点,∴⎩⎨⎧x +02=-10+y 2=2,∴⎩⎪⎨⎪⎧x =-2y =4.由截距式得l 的方程为 x -2+y4=1,即2x -y +4=0. 6.已知A (3,0)、B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.[答案] 3[解析] 直线AB 的方程为x 3+y4=1,∴y =4-4x3,∴xy =x (4-43x )=4x -43x 2=-43(x 2-3x )=-43[(x -32)2-94]=-43(x -32)2+3,∴当x =32时,xy 取最大值3.三、解答题7.△ABC 的三个顶点分别为A (0,4)、B (-2,6)、C (-8,0).(1)分别求边AC 和AB 所在直线的方程; (2)求AC 边上的中线BD 所在直线的方程; (3)求AC 边的中垂线所在直线的方程; (4)求AC 边上的高所在直线的方程; (5)求经过两边AB 和AC 的中点的直线方程.[解析] (1)由A (0,4),C (-8,0)可得直线AC 的截距式方程为x -8+y4=1,即x -2y +8=0.由A (0,4),B (-2,6)可得直线AB 的两点式方程为y -46-4=x -0-2-0,即x +y -4=0.(2)设AC 边的中点为D (x ,y ),由中点坐标公式可得x =-4,y =2,所以直线BD 的两点式方程为y -62-6=x +2-4+2,即2x -y +10=0.(3)由直线AC 的斜率为k AC =4-00+8=12,故AC 边的中垂线的斜率为k =-2.又AC 的中点D (-4,2),所以AC 边的中垂线方程为y -2=-2(x +4), 即2x +y +6=0.(4)AC 边上的高线的斜率为-2,且过点B (-2,6),所以其点斜式方程为y -6=-2(x +2),即2x +y -2=0.(5)AB 的中点M (-1,5),AC 的中点D (-4,2), ∴直线DM 方程为y -25-2=x -(-4)-1-(-4),即x -y +6=0.8.已知抛物线y =-x 2-2x +3与x 轴交于A 、B 两点,点M 在此抛物线上,点N 在y 轴上,以A 、B 、M 、N 为顶点的四边形为平行四边形,求点M 的坐标.[解析] 容易求得抛物线与x 轴的交点分别为(-3,0)、(1,0)不妨设A (-3,0)、B (1,0),由已知,设M (a ,b )、N (0,n ),根据平行四边形两条对角线互相平分的性质,可得两条对角线的中点重合.按A 、B 、M 、N 两两连接的线段分别作为平行四边形的对角线进行分类,有以下三种情况:①若以AB 为对角线,可得a +0=-3+1,解得a =-2;②若以AN为对角线,可得a+1=-3+0,解得a=-4;③若以BN为对角线,可得a+(-3)=1+0,解得a=4.因为点M在抛物线上,将其横坐标的值分别代入抛物线的解析式,可得M(-2,3)或M(-4,-5)或M(4,-21).。
甘肃省武威市铁路中学2014届高三数学(文)专题训练:选择填空限时练(六)Word版含答案

(推荐时间:45分钟)一、选择题1.已知集合A={x|x>1},B={x|x<m},且A∪B=R,那么m的值可以是() A.-1 B.0 C.1 D.2答案 D解析因为A∪B=R,所以m>1,故选D.2.已知z1-i=2+i,则复数z的共轭复数为() A.3+i B.3-iC.-3-i D.-3+i答案 A解析z=(1-i)(2+i)=3-i,复数z的共轭复数为3+i,故选A.3.采用系统抽样方法从480人中抽取16人做问卷调查,为此将他们随机编号为1,2,…,480,分组后在第一组采用简单随机抽样的方法抽到的号码为8.抽到的16人中,编号落入区间[1,160]的人做问卷A,编号落入区间[161,320]的人做问卷B,其余的人做问卷C,则被抽到的人中,做问卷B的人数为() A.4 B.5 C.6 D.7答案 B解析本题考查系统抽样知识.采用系统抽样方法从480人中抽取16人做问卷调查,抽取的号码成等差数列8,38,68,…,458,编号落入区间[161,320]的人做问卷B人数5人.4.若数列{a n}满足1a n+1-1a n=d(n∈N*,d为常数),则称数列{an}为“调和数列”.已知正项数列{1b n}为“调和数列”,且b1+b2+…+b9=90,则b4·b6的最大值是() A.10 B.100 C.200 D.400答案 B解析∵{1b n}为“调和数列”,∴{b n}为等差数列,b1+b2+…+b9=90,b4+b6=20,b4·b6≤100.5.下图为一个算法的程序框图,则其输出的结果是()A .0B .2 012C .2 011D .1答案 D解析 本题考查程序框图.根据算法的程序框图可知,p 的值周期出现,周期为4,所以p =1.6. 已知双曲线C 的中心在原点,焦点在坐标轴上,P (1,-2)是C 上的点,且y =2x 是C的一条渐近线,则C 的方程为 ( )A.y 22-x 2=1 B .2x 2-y 22=1C.y 22-x 2=1或2x 2-y 22=1 D.y 22-x 2=1或x 2-y 22=1 答案 A解析 画出图形分析知,双曲线焦点在y 轴上, 设方程为y 2a 2-x 2b 2=1(a >0,b >0).∴ab=2,① 4a 2-1b 2=1;②解得a 2=2,b 2=1.选A.7. 函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是( )答案 C解析 因为函数f (x ),g (x )都为偶函数, 所以f (x )·g (x )也为偶函数,所以图象关于y 轴对称,排除A ,D ; f (x )·g (x )=(-x 2+2)log 2|x |,当0<x <1时,f (x )·g (x )<0,排除B ,故选C.8. 等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为( )A .6B .7C .8D .9答案 C解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0, 即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C.9. (2012·天津)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+3]B .(-∞,1-3]∪[1+3,+∞)C .[2-22,2+22]D .(-∞,2-22]∪[2+22,+∞) 答案 D解析 圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n +1=mn ≤14(m +n )2,所以m +n ≥2+22或m +n ≤2-2 2.10.已知点F 1、F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)答案 D解析 A ⎝⎛⎭⎫-c ,b 2a ,B ⎝⎛⎭⎫-c ,-b2a , F 2A →=⎝⎛⎭⎫-2c ,b 2a ,F 2B →=⎝⎛⎭⎫-2c ,-b 2a .F 2A →·F 2B →=4c 2-⎝⎛⎭⎫b 2a 2>0,e 2-2e -1<0,1<e <1+ 2.11.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤1,0≤y ≤12,若目标函数z =ax +y (其中a 为常数)仅在点⎝⎛⎭⎫12,12处取得最大值,则实数a 的取值范围是( )A .(-2,2)B .(0,1)C .(-1,1)D .(-1,0)答案 C解析 由x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤1,0≤y ≤12,画出此不等式组表示的平面区域如图中阴影部分所示. 由目标函数z =ax +y ,得y =-ax +z , 因为z 仅在点⎝⎛⎭⎫12,12处取得最大值,所以得-1<-a <1,得实数a 的取值范围是(-1,1).12.已知函数f (x )=⎩⎪⎨⎪⎧|sin x |,x ∈[-π,π],lg x ,x >π,x 1,x 2,x 3,x 4,x 5是方程f (x )=m 的五个不等的实数根,则x 1+x 2+x 3+x 4+x 5的取值范围是 ( )A .(0,π)B .(-π,π)C .(lg π,1)D .(π,10)答案 D解析 函数f (x )的图象如图所示,结合图象可得x 1+x 2=-π,x 3+x 4=π, 若f (x )=m 有5个不等的实数根,需lg π<lg x 5<1,得π<x 5<10, 又由函数f (x )在[-π,π]上对称, 所以x 1+x 2+x 3+x 4=0,故x 1+x 2+x 3+x 4+x 5的取值范围为(π,10). 二、填空题13.已知0<α<π,sin 2α=sin α,则tan ⎝⎛⎭⎫α+π4=________. 答案 -2- 3解析 由sin 2α=sin α,可得2sin αcos α=sin α, 又0<α<π,所以cos α=12.故sin α=32,tan α= 3. 所以tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=3+11-3=-2- 3. 14.已知函数f (x )=-3x 2+ax +b ,若a ,b 都是区间[0,4]内任取的一个数,那么f (1)>0的概率是________. 答案2332解析 由f (1)>0得-3+a +b >0,即a +b >3. 在0≤a ≤4,0≤b ≤4的约束条件下, 作出a +b >3满足的可行域,如图, 则根据几何概型概率公式可得, f (1)>0的概率P =42-12×3242=2332. 15.一个半径为2的球体经过切割后,剩余部分几何体的三视图如图所示,则该几何体的表面积为________.答案 16π解析 该几何体是从一个球体中挖去14个球体后剩余的部分,所以该几何体的表面积为34×(4π×22)+2×π×222=16π.16.某校举行了由全部学生参加的校园安全知识考试,从中抽出60名学生,将其成绩分成六段[40,50),[50, 60),…,[90,100]后,画出如图所示的频率分布直方图.观察图形的信息,回答下列问题:估计这次考试的及格率(60分及以上为及格)为________;平均分为________.答案 75% 71解析 及格的各组的频率是(0.015+0.03+0.025+0.005)×10=0.75,即及格率约为75%;样本的均值为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,以这个分数估计总体的分数即得总体的平均分数约为71.。
(word完整版)历年高考数学真题(全国卷整理版)43964.doc

实用文档参考公式:如果事件 A、B互斥,那么P( A B) P( A)P( B)如果事件 A、B相互独立,那么P(AgB)P( A)gP( B)如果事件 A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件 A 恰好发生 k 次的概率P n (k ) C n k p k (1 p)n k (k 0,1,2,⋯n) 球的表面积公式S 4R2其中 R 表示球的半径球的体积公式V 3 R34其中 R表示球的半径普通高等学校招生全国统一考试一、选择题1、复数 1 3i =1 iA 2+IB 2-IC 1+2iD 1- 2i2、已知集合 A= {1.3. m },B={1,m} ,A U B=A, 则 m=A 0 或3B 0 或 3C 1或3D 1 或 33 椭圆的中心在原点,焦距为4 一条准线为 x=-4 ,则该椭圆的方程为A x2 + y2 =1B x2 + y2 =116 12 12 8C x2 + y2 =1D x2 + y2 =18 4 12 44 已知正四棱柱ABCD- A1B1C1D1中, AB=2, CC= 2 2 E 为 CC的中点,则直线AC与平面1 1 1 BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n} 的前 n 项和为 S n,a5=5, S5=15,则数列的前100项和为(A) 100(B)99(C)99(D)101 101101100100(6)△ ABC中, AB边的高为 CD,若a· b=0, |a|=1 , |b|=2 ,则(A)( B)(C)(D)3(7)已知α为第二象限角, sin α+ sin β =3,则 cos2α =555 5--9(D) 3(A) 3 (B ) 9 (C)(8)已知 F1、 F2 为双曲线 C : x2 -y 2 =2 的左、右焦点,点 P 在 C 上, |PF1|=|2PF2| ,则 cos ∠ F1PF2=1 334(A) 4( B ) 5(C)4(D)51( 9)已知 x=ln π, y=log52 , z=e 2,则 (A)x < y < z ( B ) z < x <y (C)z < y < x (D)y< z < x(10) 已知函数 y = x2 -3x+c 的图像与 x 恰有两个公共点,则 c =(A ) -2 或 2 ( B ) -9 或 3 (C ) -1 或 1 ( D )-3 或 1( 11)将字母 a,a,b,b,c,c, 排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有( A ) 12 种( B ) 18 种( C ) 24 种( D ) 36 种7(12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF = 3。
甘肃省武威市铁路中学2014届高三数学(文)专题训练:选择填空限时练(五)Word版含答案

(推荐时间:45分钟)一、选择题1. 若集合A ={x |0≤x +3≤8},B ={x |x 2-3x -4>0},则A ∩B 等于( )A .{x |-3≤x <-1或4<x ≤5}B .{x |-3≤x <4}C .{x |-1<x ≤5}D .{x |-1<x <4} 答案 A解析 A ={x |-3≤x ≤5},B ={x |x <-1或x >4},由数轴可知A ∩B ={x |-3≤x <-1或4<x ≤5}.2. 复数z =4-3i1-2i的虚部是( )A .2B .-2C .1D .-1答案 C解析 z =4-3i 1-2i =(4-3i )(1+2i )(1-2i )(1+2i )=4+8i -3i +65=2+i.3. 甲、乙两组数据的茎叶图如图所示,则甲、乙两组数据的中位数依次是( )A .83,83B .85,84C .84,84D .84,83.5 答案 D解析 甲组数据的中位数是84,乙组数据的中位数是83.5. 4. 函数y =2|log 2x |的图象大致是( )答案 C解析 当log 2x ≥0,即x ≥1时,f (x )=2log 2x =x ; 当log 2x <0,即0<x <1时,f (x )=2-log 2x =1x.所以函数图象在0<x <1时为反比例函数y =1x 的图象,在x ≥1时为一次函数y =x 的图象. 5. 已知a >b >1,c <0,给出下列四个结论:①c a >c b ;②a c <b c ;③log b (a -c )>log a (b -c );④b a -c >a b -c . 其中所有正确结论的序号是( )A .①②③B .①②④C .①③④D .②③④答案 A解析 a >b >1⇒1a <1b ,又c <0,故c a >cb,故①正确;由c <0知,y =x c 在(0,+∞)上是减函数,故a c <b c .故②正确. 由已知得a -c >b -c >1. 故log b (a -c )>log b (b -c ).由a >b >1得0<log a (b -c )<log b (b -c ), 故log b (a -c )>log a (b -c ).故③正确.6. 已知双曲线x 225-y 29=1的左支上一点M 到右焦点F 2的距离为18,N 是线段MF 2的中点,O 是坐标原点,则|ON |等于( )A .4B .2C .1D.23答案 A解析 设双曲线左焦点为F 1,由双曲线的定义知, |MF 2|-|MF 1|=2a ,即18-|MF 1|=10, 所以|MF 1|=8.又ON 为△MF 1F 2的中位线, 所以|ON |=12|MF 1|=4,所以选A.7. 如图所示的程序框图,输出的S 的值为( )A.12B .2C .-1D .-12答案 A解析 k =1时,S =2, k =2时,S =12,k =3时,S =-1, k =4,S =2,……所以S 是以3为周期的循环. 故当k =2 012时,S =12.8. 若由不等式组⎩⎪⎨⎪⎧x ≤my +n x -3y ≥0(n >0)y ≥0确定的平面区域的边界为三角形,且它的外接圆的圆心在x 轴上,则实数m 的值为 ( )A. 3 B .-33C.52D .-73答案 B解析 根据题意,三角形的外接圆的圆心在x 轴上, 则直线x =my +n 与直线x -3y =0垂直, ∴1m ×13=-1, 即m =-33. 9. 已知集合A ={x |x 2+a ≤(a +1)x , a ∈R },若存在a ∈R ,使得集合A 中所有整数元素之和为28,则实数a 的取值范围是( )A .[9,10)B .[7,8)C .(9,10)D .[7,8]答案 B解析 注意到不等式x 2+a ≤(a +1)x ,即(x -a )(x -1)≤0, 因此该不等式的解集中必有1与a .要使集合A 中所有整数元素之和为28,必有a >1.注意到以1为首项、1为公差的等差数列的前7项和为7×(7+1)2=28,因此由集合A 中所有整数元素之和为28得7≤a <8, 即实数a 的取值范围是[7,8).10.已知函数f (x )=a x -1+3(a >0且a ≠1)的图象过一个定点P ,且点P 在直线mx +ny -1=0(m >0,且n >0)上,则1m +4n 的最小值是( )A .12B .16C .25D . 24答案 C解析 由题意知,点P (1,4),所以m +4n -1=0, 故1m +4n =m +4n m +4(m +4n )n =17+4n m +4m n ≥25, 所以所求最小值为25.11.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则ω的值为( )A .2B .3C .4D .5答案 B解析 由图可知函数的最大值为2, 故A =2,由f (0)=2可得sin φ=22, 而|φ|<π2,故φ=π4;再由f ⎝⎛⎭⎫π12=2可得sin ⎝⎛⎭⎫ωπ12+π4=1, 故ωπ12+π4=π2+2k π(k ∈Z ), 即ω=24k +3(k ∈Z ). 又T 4>π12,即T >π3, 故0<ω<6,故ω=3.12.已知函数f (x )的定义域为[-1,5],部分对应值如下表:f (x )的导函数y =f ′(x )下列关于函数f (x )的命题: ①函数y =f (x )是周期函数; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f (x )-a 有4个零点. 其中真命题的个数是( )A .4B .3C .2D .1答案 D解析 ①显然错误;③容易造成错觉,t max =5; ④错误,f (2)的不确定影响了正确性;②正确, 可有f ′(x )<0得到. 二、填空题13.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴相切,则该圆的标准方程是________. 答案 (x -2)2+(y -1)2=1解析 设圆心坐标为(a ,b ),则|b |=1且|4a -3b |5=1.又b >0,故b =1,由|4a -3|=5得 a =-12(圆心在第一象限,舍去)或a =2,故所求圆的标准方程是(x -2)2+(y -1)2=1.14.一个棱锥的三视图如图所示,则这个棱锥的体积为________.答案 12解析 依题意得,该棱锥的体积等于13×(3×4)×3=12.15.在边长为2的正方形ABCD 内部任取一点M .(1)满足∠AMB >90°的概率为________;(2)满足∠AMB >135°的概率为________. 答案 (1)π8 (2)π-28解析 (1)以AB 为直径作圆,当M 在圆与正方形重合形成的半圆内时,∠AMB >90°,所以概率为P =π24=π8.(2)在边AB 的垂直平分线上,正方形ABCD 外部取点O ,使OA =2,以O 为圆心,OA 为半径作圆,当点M 位于正方形与圆重合形成的弓形内时,∠AMB >135°,故所求概率P =π4×(2)2-12×2×14=π-28.16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c = 22,1+tan Atan B=2cb ,则C =________. 答案 45°解析 由1+tan A tan B =2c b 和正弦定理得,cos A =12,∴A =60°.由正弦定理得,23sin A =22sin C ,∴sin C =22.又c <a ,∴C <60°,∴C =45°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合小测 1一、选择题1.函数 y=2x+1 的图象是2.△ ABC 中, cosA= 5 , sinB=3,则 cosC 的值为135A.5656 16 16B. -C.-D.656565653.过点( 1, 3)作直线 l ,若 l 经过点( a,0)和 (0,b),且 a,b ∈N* ,则可作出的l 的条数为A.1B.2C.3D. 多于 34.函数 f( x)=log x(a > 0 且 a ≠ 1)对任意正实数 x,y 都有aA. f(x · y)=f(x) · f(y)B. f(x · y)=f( x)+f(y)C.f(x+y)=f(x)· f(y)D. f(x+y)=f(x)+f(y)5.已知二面角 α— l — β的大小为 60°, b 和 c 是两条异面直线,则在下列四个条件中,能使 b 和 c 所成的角为 60°的是A. b ∥ α,c ∥ βB.b ∥ α,c ⊥ βC.b ⊥ α,c ⊥ βD. b ⊥ α,c ∥ β6.一个等差数列共 n 项,其和为 90,这个数列的前 10 项的和为 25,后 10 项的和为 75,则项数 n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 A.8 种B.10 种C.12 种D.32 种8.若 a,b 是异面直线, a α,b β ,α∩ β=l ,则下列命题中是真命题的为A. lC.l 与 a 、 b 分别相交至多与 a 、 b 中的一条相交B. l 与 a 、 b 都不相交D. l 至少与 a 、 b 中的一条相交9.设 F1, F2是双曲线x2- y2=1的两个焦点,点P 在双曲线上,且PF1· PF2=0,则4| PF1 |· | PF2 |的值等于A.2B.22C.4D.810.f(x)=(1+2 x)m+(1+3x) n(m,n∈ N*) 的展开式中x 的系数为13,则 x2的系数为A.31B.40C.31 或 40D.71 或 8011.从装有 4 粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率A. 小B. 大C.相等D. 大小不能确定12.如右图, A、B、C、D 是某煤矿的四个采煤点, l 是公路,图中所标线段为道路, ABQP、BCRQ 、CDSR 近似于正方形 .已知 A、B、 C、 D 四个采煤点每天的采煤量之比约为 5∶1∶ 2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比 .现要从 P、Q、R、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在A. P 点B. Q 点C.R 点D. S点题号1234567891011答案二、填空题13.抛物线 y2=2x 上到直线x- y+3=0 距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是 2 , 3 , 6 ,这个长方体对角线的长是 _________.15.设定义在R 上的偶函数f(x)满足f(x+1)+ f(x)=1, 且当x∈[ 1,2]时, f(x)=2 - x,则f(8.5)=_________.综合小测 2一、选择题:A F1.如图,点 O 是正六边形 ABCDEF 的中心,则以图中点 A 、B 、C、OD、 E、F、O 中的任意一点为始点,与始点不同的另一点为终点的所B E 有向量中,除向量OA 外,与向量 OA 共线的向量共有A .3 个B. 5 个C. 7 个 D . 9 个C D2.已知曲线C:y2=2px 上一点 P 的横坐标为4,P 到焦点的距离为5,则曲线 C 的焦点到准线的距离为1A .2B. 1C. 2 D . 413.若 (3a2- 2a 3) n展开式中含有常数项,则正整数n 的最小值是A .4B . 5C. 6 D . 84.从 5 名演员中选 3 人参加表演,其中甲在乙前表演的概率为3311A .20B.10C.20D.105.抛物线y2=a(x+1) 的准线方程是x= - 3,则这条抛物线的焦点坐标是A. (3, 0)B.( 2, 0)C.( 1, 0)D.( -1, 0)6.已知向量m a, b,向量m n ,且 m n ,则 n 的坐标可以为A. (a,-b)B. (-a,b)C. (b,-a)D. (-b,-a)7. 如果S={x|x=2n+1, n∈ Z}, T={x|x=4n± 1, n∈ Z} , 那么A.S TB.T SC.S=TD.S ≠T8.有 6 个座位连成一排,现有 3 人就坐,则恰有两个空座位相邻的不同坐法有A .36 种B. 48 种C. 72 种D. 96 种9.已知直线l 、 m,平面α、β,且 l⊥α ,mβ.给出四个命题:(1)若α∥β,则l⊥m;(2)若 l ⊥ m,则α∥β ;(3)若α⊥β,则 l∥ m;(4) 若 l∥ m,则α⊥β,其中正确的命题个数是A.4B.1C.3D.210.已知函数 f(x) = log 2(x2- ax+ 3a)在区间 [2,+∞)上递增,则实数 a 的取值范围是()A.( -∞, 4)B.( - 4, 4]C.(-∞,- 4)∪ [2,+∞)D.[ -4, 2)11.4 只笔与 5 本书的价格之和小于22 元,而 6 只笔与 3 本书的价格之和大于24 元,则2 只笔与3 本书的价格比较()A .2 只笔贵B. 3 本书贵C.二者相同D.无法确定12.若是锐角, sin1,则 cos的值等于63261B.261231231A.66C.4D.3题号123456789101112答案二、填空题:13.在等差数列{ a n}中,a1 = 1,第 10 项开始比 1 大,则公差 d 的取值范围是__________ .2514.已知正三棱柱ABC — A1B 1C1,底面边长与侧棱长的比为 2 : 1,则直线AB1与CA1所成的角为.15.若sin 20, sincos1sin1cos,化简 cossinsin= _________ .11cos16.已知函数f( x)满足: f(p+q)= f(p)f(q) , f(1)=3 ,则f 2 (1) f (2) f 2 ( 2) f (4) f 2 (3) f (6) f 2 (4) f (8).f (1) f (3) f ( 5) f (7)=综合小测 3一、选择题:1.设集合 P={3 , 4,5} , Q={4 ,5,6, 7} ,定义 P★ Q={ (a, b) | a P, b Q} 则P★Q中元素的个数为()A .3B. 7C. 10 D . 121x2e 3的部分图象大致是()2.函数y2A B C D3.在(1x)5(1 x)6(1 x) 7的展开式中,含x4项的系数是首项为- 2 ,公差为3的等差数列的()A .第 13 项B.第 18 项C.第 11 项 D .第 20 项4.有一块直角三角板ABC ,∠ A=30 °,∠ C=90°, BC 边在桌面上,当三角板所在平面与桌面成45°角时, AB 边与桌面所成的角等于()A .arcsin 6B.C. D .arccos10 46445.若将函数y f ( x) 的图象按向量 a 平移,使图象上点P 的坐标由( 1, 0)变为( 2,2),则平移后图象的解析式为A .y f ( x1)2B.C.y f ( x1)2D.()y f (x1)2y f (x1)26.直线x cos140y sin 40 10 的倾斜角为()A .40°B. 50°C. 130° D . 140°7.一个容量为 20 的样本,数据的分组及各组的频数如下:( 10,20 ],2;(20, 30 ],3;( 30, 40 ],4;( 40, 50 ],5;( 50, 60 ], 4;( 60,70 ], 2. 则样本在区间(10, 50 ]上的频率为()A .0.5B . 0.7C . 0.25D . 0.058.在抛物线 y 2 4x 上有点 M ,它到直线 y x 的距离为4 2 ,如果点 M 的坐标为( m, n ),且 m, nR , 则 m()的值为1nB . 1C . 2D . 2A .2x2y21(a, bR )的离心率 e [ 2,2] ,在两条渐近线所构成的角9.已知双曲线b 2a 2中,设以实轴为角平分线的角为,则 的取值范围是()A . [, ] B . [, ] C . [ , 2]D . [ 2, )6 23 22 3310.按 ABO 血型系统学说, 每个人的血型为 A ,B ,O ,AB 型四种之一, 依血型遗传学,当且仅当父母中至少有一人的血型是 AB 型时,子女的血型一定不是O 型,若某人的血型为 O 型,则父母血型的所有可能情况有()A .12 种B . 6 种C . 10 种D . 9 种11.正四面体的四个顶点都在一个球面上,且正四面体的高为 4,则球的表面积为 ()A .16( 12-6 3)B . 18C .36D . 64(6- 4 2)12.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进 3 步,然后再后退 2步的规律移动 .如果将此机器狗放在数轴的原点,面向正方向,以1 步的距离为 1 单位长移动,令 P ( n )表示第 n 秒时机器狗所在位置的坐标,且P ( 0) =0,则下列结论中错 . 误的是( ) .A .P ( 3)=3B . P ( 5)=5C . P ( 101) =21D . P ( 101) <P(104) 二、填空题:13.在等比数列 { a n }中,a 3 a 8 124, a 4 a 7512 ,且公比 q 是整数,则 a 10 等于.x214.若 y2,则目标函数 z x3y 的取值范围是.xy 62 cot 21, 那么 (1 sin )( 2 cos ).15.已知sin116.取棱长为 a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体 .则此多面体: ①有 12 个顶点;②有 24 条棱;③有 12 个面;④表面积为3a 2 ;⑤体积为5a3.以上结论正确的是.(要求填上的有正确结论的序号)6综合小测 4一、选择题1.满足 |x-1|+|y- 1|≤ 1 的图形面积为A.1B. 2C.2D.42.不等式 |x+log3x|<|x|+|log x|的解集为3A.(0 ,1)B.(1, +∞ )C.(0,+ ∞ )D.(-∞ ,+∞ )3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的 2 倍,则双曲线的离心率 e 的值为A. 25C.3D.2 B.34.一个等差数列n1项的平均值是5,若从中抽取一项,余下项{ a } 中,a =- 5,它的前 11的平均值是 4,则抽取的是A. a11B.a10C.a9D.a8-1等于5.设函数 f(x)=log a x(a>0,且 a≠ 1)满足 f(9)=2,则 f (log 92)A.2B. 21D. ±2 C.26.将边长为 a 的正方形ABCD 沿对角线 AC 折起,使得 BD=a,则三棱锥 D —ABC 的体积为A. a3B. a3C. 3 a3D. 2 a361212127.设 O、A、B、C 为平面上四个点,OA =a,OB =b,OC =c,且 a+b+c=0 ,a·b=b·c=c·a=-1,则 |a|+|b|+|c|等于A.22B.23C.32D.338.将函数 y= f( x)sinx 的图象向右平移个单位,再作关于 x 轴的对称曲线,得到函数4y=1- 2sin2 x 的图象,则f(x)是A.cosxB.2cosxC.sinxD.2sin x9.椭圆 x2y 2 =1 上一点 P 到两焦点的距离之积为 m ,当 m 取最大值时, P 点坐标259为A. ( 5, 0),(- 5,0)B.( 2 ,32 )( 5, 3 2 )52 2 2C.( 5 2 , 3 )(-5 2, 3) D.( 0,- 3)( 0,3)22 22P 箱中有红球 1 个,白球 9 个, Q 箱中有白球 7 个,(P 、 Q 箱中所有的球除.现随意从 P 箱中取出 3 个球放入 Q 箱,将 Q 箱中的球充分搅匀后, 再 3个球放入 P 箱,则红球从 P 箱移到 Q 箱,再从 Q 箱返回 P 箱中的A.19 C.1 35B.100D.100511.如图,正方体ABCD — A 1B 1C 1D 1 中,点 P 在侧面1 1及其边界上运动, 并且总是保持1BCC B AP ⊥BD ,则动点 P的轨迹是A . 线段B 1CB. 线段 BC 1C . BB 1 中点与 CC 1 中点连成的线段D. BC 中点与 11中点连成的线段B C题号 1答案二、填空题2 3 4 5 6 7 8 9 10 1112.已知 (2 x x 2 p)6 的展开式中,不含 x 的项是 20 , 则 p 的值是 ______.2713.点 P 在曲线 y=x 3- x+ 2上移动,设过点 P 的切线的倾斜角为, 则 的取值范围3是 _____.14.在如图的 1× 6 矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格, 且相邻两格不同色, 则不同的涂色方案有 ______种 .颜色外完全相同)从 Q 箱中随意取出概率等于10.已知能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).综合小测 5一、选择题1.在数列 { a n }中, a 11, a n 1a n 2 1则此数列的前 4 项之和为 ()A .0B . 1C . 2D .- 22.函数 ylog 2 x log x (2x) 的值域是()A . (, 1]B . [3,)C . [ 1,3]D . (, 1] [3, )3.对总数为 N 的一批零件抽取一个容量为30 的样本,若每个零件被抽取的概率为1 ,4则 N 的值( )A .120B . 200C . 150D . 1004.若函数 yf (x)的图象和 ysin( x)的图象关于点 P( ,0)对称 ,则 f ( x) 的表达4 4式是( )A . cos(x) B . cos(x4) C .cos(x)D . cos(x)4445.设 (ab)n 的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是()A .第 5 项B .第 4、 5 两项C .第 5、6 两项D .第 4、 6 两项6.已知 ab0,全集 UR,集合 M{ x | bxa b}, N { x | abx a} ,2P { x | bx ab }, 则 P, M , N 满足的关系是( )A . P MNB .C . PM(C U N )D .P MNP (C U M )N7. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有 k 条有记号,则能估计湖中有鱼()n k条M kA .M条B.M C.n条 D .n条k n k M8.函数f (x) | x |,如果方程f ( x) a 有且只有一个实根,那么实数 a 应满足()A .a<0B. 0<a<1C. a=0 D . a>19.设M (cos xcosx,sin x sinx)( x R) 为坐标平面内一点,O 为坐标原点,3535记 f(x)=|OM| ,当 x 变化时,函数f(x)的最小正周期是()A .30πB. 15πC. 30 D . 1510.若函数 f (x)x3ax2bx 7 在 R 上单调递增,则实数 a, b 一定满足的条件是()A .a23b 0B.a23b 0C.a23b 0 D .a23b 1题号12345678910答案二、填空题:11.“面积相等的三角形全等”的否命题是命题(填“真”或者“假”)12 .已知tan3(1 m)且3(tan tan m) tan0, ,为锐角,则的值为13.某乡镇现有人口 1 万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的 0.8%和 1.2%,则经过 2 年后,该镇人口数应为万 . (结果精确到 0.01)14.(理 )“渐升数”是指每个数字比其左边的数字大的正整数(如34689) .则五位“渐升数”共有个,若把这些数按从小到大的顺序排列,则第100个数为.10 / 21综合小测 6一、选择题1. 给出两个命题: p :|x|=x 的充要条件是 x 为正实数; q :存在反函数的函数一定是单调函数,则下列哪个复合命题是真命题()A .p 且 qB . p 或 q┐┐C . p 且 qD . p 或 q2.给出下列命题:其中正确的判断是( )A. ①④B. ①②C.②③D. ①②④3.抛物线 y=ax 2(a<0) 的焦点坐标是 ()A. (0, a)B.(0,1 ) C.(0,-1 ) D.( - 1 ,0)44a4a4a4.计算机是将信息转换成二进制进行处理的,二进制即“逢2 进 1”如( 1101) 2 表示二进制数,将它转换成十进制形式是1× 23+1× 22+0 ×21 +1× 20=13 ,那么将二进制数转换成十进制形式是 ( )A.2 17- 2B.216- 2C.216- 1D.2 15- 15.已知 f(cosx)=cos3x,则 f(sin30 °)的值是 ( )A.1B.3C.0D. - 124,当 x ∈[- 3,-1]时,记 f(x)的最大值6.已知 y=f(x)是偶函数,当 x>0 时, f(x)=x+x为 m ,最小值为 n ,则 m - n 等于()A.2B.1C.3D.32(x3)2 y 2 =1 上的动点,则△7.已知两点 A (- 1,0), B ( 0, 2),点 P 是椭圆42PAB 面积的最大值为()A.4+ 2 3B.4+ 32C.2+ 2 3D.2+ 3232328.设向量 a=(x 1 ,y 1),b=(x 2,y 2),则下列为 a 与 b 共线的充要条件的有 ()①存在一个实数λ ,使得 a=λb 或 b=λa ;② |a· b|=|a|· |b|;③x1y1;④ (a+b)∥ (a- b). x2y2A.1 个B.2 个C.3 个D.4个9. 如图,点 P 是球 O 的直径 AB 上的动点, PA=x,过点 P 且与 AB 垂直的截面面积记为 y,则 y=1)f(x)的大致图象是(210.三人互相传球,由甲开始发球,并作为第一次传球,经过 5 次传球后,球仍回到甲手中,则不同的传球方式共有()A.6 种B.10 种C.8 种D.16 种11.已知点 F 1、 F2分别是双曲线x2y2=1 的左、右焦点,过F1且垂直于 x 轴的直a2b2线与双曲线交于A、B 两点,若△ ABF 2为锐角三角形,则该双曲线的离心率 e 的取值范围是()A.(1,+ ∞)B.(1, 3 )C.( 2 -1,1+ 2 )D.(1,1+ 2 )题号1234567891011答案二、填空题12.方程 log 2|x|=x2- 2 的实根的个数为 ______.13.1996 年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由 60 个 C 原子组成的分子,它结构为简单多面体形状.这个多面体有 60 个顶点,从每个顶点都引出3 条棱,各面的形状分为五边形或六边形两种,则 C60分子中形状为五边形的面有______个,形状为六边形的面有 ______个 .14.在底面半径为 6 的圆柱内,有两个半径也为 6 的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.15.定义在 R 上的偶函数 f(x)满足 f(x+1)= - f( x),且在[- 1,0]上是增函数,给出下列关于 f(x)的判断:① f(x)是周期函数;② f(x)关于直线 x=1 对称;③ f(x)在[ 0, 1]上是增函数;④ f(x)在[ 1, 2]上是减函数;⑤出所有正确判断的序号).f(2)= f(0),其中正确判断的序号为____________( 写综合小测 7一、选择题1.准线方程为x 3的抛物线的标准方程为()A .y26x B.y212 x C.y26x D .y212x2.函数y sin 2x 是()A .最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为2π的奇函数D.最小正周期为2π的偶函数3.函数y x21( x0) 的反函数是()A .y x1(x 1)B .y x 1(x1)C.y x1(x1) D.y x1(x 1) 4.已知向量 a(2,1), b(x, 2)且a b与2a b 平行,则 x 等于()A .- 6B. 6C.- 4 D . 45.a1是直线ax( 2a1) y 1 0和直线 3x ay 3 0 垂直的()A .充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分又不必要的条件6.已知直线 a、 b 与平面α,给出下列四个命题①若 a∥ b, b α,则 a∥α ;②若 a∥α, bα,则 a∥ b ;③若 a∥α, b∥α,则 a∥ b;④a⊥α, b∥α,则 a⊥ b.其中正确的命题是()A .1 个B. 2 个C. 3 个 D . 4 个7.函数y sin x cos x, x R 的单调递增区间是()A.[ 2k,2k3]( k Z )B.[2k3,2k]( k Z )4444C.[2k,2k]( k Z )D.[k3, k]( k Z )82288.设集合 M= { y | y 2 x , x R}, N { y | y x21, x R}, 则 M N 是()A .B.有限集C. M D . N9.已知函数f ( x)满足2 f (x) f (11,则 f ( x) 的最小值是())| x |x2B. 2C.22D .2 2A .3310.若双曲线x2y21的左支上一点P( a, b)到直线y x 的距离为2, 则 a +b的值为()A .1B.1C.- 2 D . 22211.若一个四面体由长度为1, 2,3 的三种棱所构成,则这样的四面体的个数是()A .2B. 4C. 6 D . 812.某债券市场常年发行三种债券, A 种面值为 1000 元,一年到期本息和为 1040 元; B 种贴水债券面值为1000 元,但买入价为960 元,一年到期本息和为1000 元; C 种面值为1000 元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a, b, c,则 a, b, c 的大小关系是()A .a c且a b B.a b cC.a c b D.c a b题号123456789101112答案二、填空题13.某校有初中学生 1200 人,高中学生900 人,老师120 人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60 人,那么N=.14.在经济学中,定义Mf ( x) f ( x1) f ( x), 称Mf ( x)为函数 f (x) 的边际函数,某企业的一种产品的利润函数P(x)x330x 21000( x[10,25]且 x N *),则它的边际函数 MP( x)=.(注:用多项式表示)15.已知a,b,c分别为△ ABC 的三边,且3a23b 23c 22ab0,则 tanC.16 .已知下列四个函数:①y log 1 ( x2); ②y3 2 x1; ③ y 1x2 ; ④2y3( x2) 2 .其中 象不 第一象限的函数有.(注:把你 符合条件的函数的序号都填上)综合小测8一、1. 直x cosy 1 0 的 斜角的取 范 是()A.0,B. 0,C., 3D.0,3,24 4442. 方程xlg x3的根 α,[ α ]表示不超 α的最大整数,[ α ]是()A . 1B . 2C . 3D . 43. 若“ p 且 q ”与“ p 或 q ”均 假命 , ( )A. 命 “非 p ”与“非 q ”的真 不同B. 命 “非 p ”与“非 q ”至少有一个是假命C. 命 “非 p ”与“ q ”的真 相同D. 命 “非 p ”与“非 q ”都是真命4. 1!, 2!, 3!,⋯⋯, n !的和 S nn(),S 的个位数是A . 1B . 3C . 5D . 75. 有下列命 ①AB BCAC = 0 ;② a b c = a c b c ;③若 a = ( m ,4),| a | = 23 的充要条件是 m = 7 ;④若 AB 的起点 A(2,1) , 点 B( 2,4) ,BA 与 x 正向所 角的余弦 是4, 其中正确命 有 ( )个5A.0B.1C.2D.36. 左下 中 , 阴影部分的面 是 ( )A.16B.18C.20D.22yx 4D 1C1B 14A 1·N·R- 2P ·D·My2Q ·C2 xBA7. 如右上 , 正四棱柱 ABCD – A 1B 1C 1D 1 中,AB=3,BB 1=4.1 的 段 PQ 在棱 AA 1 上移 , 3 的 段 MN 在棱 CC 上移 ,点 R 在棱 BB 上移 , 四棱 R – PQMN 的体 是()118. 用 1, 2, 3, 4 这四个数字可排成必须含有重复数字的四位数有()..A.265 个B.232 个C.128 个D.24个9.已知定点A(1,1) , B(3,3) ,动点P在 x 轴正半轴上,若APB取得最大值,则 P 点的坐标()A.( 2 ,0) B.( 3,0) C.( 6,0) D. 这样的点P不存在10.设 a 、b 、 x 、y均为正数,且 a 、b 为常数,x 、y为变量.若 x y 1 ,则 axby的最大值为 ()a b a b1a b D.( a b) 2A. B.2C.2211.如图所示,在一个盛水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水面以上拉动时,圆柱形容器内水面的高度h 与时间 t 的函数图像大致是()h h h hO t1 23t O t1 t2t3t O t1t2 3tO t1 t2t3tt t tA B C D12.4 个茶杯和 5 包茶叶的价格之和小于22 元 , 而 6 个茶杯和 3 包茶叶的价格之和大于 24,则 2 个茶杯和 3 包茶叶的价格比较()A.2 个茶杯贵B.2 包茶叶贵C. 二者相同D.无法确定二、填空题13.对于在区间 [ a ,b ]上有意义的两个函数 f ( x) 和 g (x) ,如果对任意 x[ a, b] ,均有f ( x)g( x)1, 那么我们称f (x)和 g( x)在 [ a, b ] 上是接近的.若函数y x 23x 2 与y 2x3在[a , b ]上是接近的,则该区间可以是.14.在等差数列 a n中 , 已知前20 项之和S20170 , 则a6a9a11a16.15.如图,一广告气球被一束入射角为的平行光线照射,其投影是长半轴长为 5 的椭,制作个广告气球至少需要的面料.16. 由y 2 及 x y x 1 成几何形的面是.综合小测 9一、1.集合 A={ x|x=2 k,k∈ Z}, B={ x|x=2k+1,k∈ Z}, C={ x|x=4k+1,k∈ Z}, 又 a∈ A,b∈ B,有A. a+b∈ AB. a+b∈BC.a+b∈ CD.a+b 不属于 A, B,C 中的任意一个2.已知 f(x)=sin( x+),g(x)=cos( x-), f(x) 的象22A. 与 g(x)的象相同B. 与 g(x)的象关于 y 称C.向左平移个位,得到g(x)的象D. 向右平移个位,得到 g(x)的象223.原点的直与x2+y2+4x+3=0 相切,若切点在第三象限,直的方程是A. y= 3 xB. y=- 3 xC.y=3D. y=-3 x x 334.函数 y=1-1下列法正确的是,x 1A. y 在 (- 1,+∞ )内增B. y 在 (-1,+ ∞ )内减C.y 在 (1,+ ∞ )内增D. y 在 (1,+ ∞ )内减5.已知直 m,n 和平面,那么 m∥ n 的一个必要但非充分条件是A. m∥ ,n∥B.m⊥,n⊥C.m∥且 nD.m,n 与成等角6.在 100 个零件中,有一品20 个,二品30 个,三品 50 个,从中抽取 20 个作本:①采用随机抽法,将零件号00,01,02,⋯, 99,抽出 20 个;②采用系抽法,将所有零件分成20 ,每 5 个,然后每中随机抽取 1 个;③采用分抽法,随机从一品中抽取 4 个,二品中抽取 6 个,三品中抽取10 个;A. 不采取哪种抽方法,1 100 个零件中每个被抽到的概率都是5B. ①②两种抽方法,100 个零件中每个被抽到的概率都是1,③并非如此C.①③两种抽样方法,这 100 个零件中每个被抽到的概率都是1,②并非如此5D.采用不同的抽样方法,这100 个零件中每个被抽到的概率各不相同7.曲线 y=x 3 在点 P 处的切线斜率为 k ,当 k=3 时的 P 点坐标为A.( - 2,- 8)B.( - 1,- 1),(1,1)C.(2,8)1 1D.(- ,-)288.已知 y=log a (2- ax)在[ 0, 1]上是 x 的减函数,则 a 的取值范围是A.(0 , 1)B.(1 ,2)C.(0, 2)D.[ 2,+∞ )19.已知 lg3,lg(sin x - ),lg(1 -y)顺次成等差数列,则2A. y 有最小值11,无最大值B. y 有最大值1,无最小值12C.y 有最小值11,最大值 1D. y 有最小值- 1,最大值 11210.若 OA =a , OB =b ,则∠ AOB 平分线上的向量 OM 为a bB.a bA.| b |(), 由 OM 决定| a || a || b |a bD.| b | a | a | bC.b || a | | b || a 11.一对共轭双曲线的离心率分别是 e 1 和 e 2,则 e 1+e 2 的最小值为 A. 2B.2C.2 2D.412.式子 1 22 32n 2的值为lim222nC 2C 3C nA.0B.1C.2D.3二、填空题13.从 A={ a ,a ,a ,a } 到 B={ b ,b ,b ,b } 的一一映射中,限定a 的象不能是b ,且 b12 34123411 4的原象不能是 a 4 的映射有 ___________个 .14.椭圆 5x 2- ky 2=5 的一个焦点是 (0, 2),那么 k=___________.15.已知无穷等比数列首项为 2,公比为负数, 各项和为 S ,则 S 的取值范围是 _______.16.已知 a n 是 (1+ x)n 的展开式中 x 2的系数,则 lim (111) =___________.na 2 a 3a n综合小测 10一、选择题1.(理)全集设为 U ,P 、S 、T 均为 U 的子集,若P (U T )=( U T )S 则( )A . PT S SB . P =T = SC . T = UD . P U S = T( 文 ) 设 集 合 M { x | x m0} , N{ x | x 22x 8 0} , 若 U = R , 且UMN,则实数 m 的取值范围是()A .m <2B . m ≥2C . m ≤ 2D . m ≤ 2 或 m ≤ - 42.(理)复数( 55i) 3 (3 4i ) ( )4 3iA .10 5i 10 5B . 10 5 10 5iC . 10 5 10 5iD . 10 5 10 5i(文)点 M ( 8, - 10),按 a 平移后的对应点M 的坐标是( - 7, 4),则 a =( )A .( 1, - 6)B .( - 15, 14)C .(- 15, - 14)D .(15, - 14)3.已知数列 { a n } 前 n 项和为 S n1 59 13 1721( 1) n 1( 4n 3) ,则S 15S22S 31 的值是()A .13B . - 76C . 46D .764.若函数 f ( )(x 3 )33 x a x的递减区间为 (,33),则 a 的取值范围是 ( )A .a > 0B . - 1< a <0C . a >1D .0< a < 15.与命题“若 a M 则 b M ”的等价的命题是( )A .若 a M ,则 b MB .若 b M ,则 a MC .若 a M ,则 b MD .若 b M ,则 a M6.(理)在正方体 ABCDA 1B 1C 1D 1 中, M ,N 分别为棱 AA 1 和 BB 1 之中点,则 sin( CM , D 1N )的值为()A .1B . 45C .25D .295 93(文)已知三棱锥S- ABC 中, SA , SB ,SC 两两互相垂直,底面 ABC 上一点 P 到三个面 SAB , SAC , SBC 的距离分别为2 ,1,6 ,则 PS 的长度为( )A .9B .5C .7D . 37.在含有 30 个个体的总体中,抽取一个容量为5 的样本,则个体 a 被抽到的概率为()A .1B.1C.1D .5 306x2568.(理)已知抛物线C:y mx2与经过 A( 0, 1), B( 2, 3)两点的线段AB 有公共点,则m 的取值范围是()A .(, 1][3 ,)B. [3,)C.(, 1]D. [- 1, 3](文)设 x R ,则函数 f (x)(1| x |)(1x) 的图像在x轴上方的充要条件是()A .- 1< x< 1B. x< - 1 或 x> 1C.x< 1D. - 1< x<1 或 x< - 19.若直线 y= kx+ 2与双曲线 x2y 2 6 的右支交于不同的两点,则k 的取值范围是()A .(15 , 15 )B.(0,15)C.(15, 0) D .(15, 1)33333 10. a, b, c (0,+∞)且表示线段长度,则a, b,c 能构成锐角三角形的充要条件是()A .a2b2c2B .| a2b2 | c2C.| a b | c | a b | D .| a2b2 | c 2a2b211.今有命题 p、q,若命题 S 为“ p 且 q”则“或”是“”的()A .充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(理)函数y x 4153x 的值域是()A .[1, 2]B. [0, 2]C.( 0,3] D .[1,3](文)函数 f (x) 与g(x) (76)x2图像关于直线x- y 0对称,则 f ( 4 x)的=单调增区间是()A .( 0, 2)B .( - 2, 0)C.( 0,+∞)D.( - ∞, 0)二、填空题13.等比数列{ a n}的前 n 项和为S n,且某连续三项正好为等差数列{ b n } 中的第1,5, 6 项,则lim Sn 2________.n na114.若lim ( x2x 1 x k ) 1,则k=________.x15.有 30 个顶点的凸多面体,它的各面多边形内角总和是________.16.长为 l ( 0< l< 1 )的线段 AB 的两个端点在抛物线y x2上滑动,则线段AB 中点 M 到 x 轴距离的最小值是________.21 / 21。