塔设备强度计算-裙座基础环和螺栓计算
1-塔设备的附件(一)--裙座

mAm sbaxmin0.9s,KB
裙座壳检查孔或较大管线引出截面为危险截面,应满足下列条件:
O 操作时 O 水压实验时
M Z m s 1 1 m a x m 0 1 1g A s m F V 1 1m K in ,K Bts
0 .3 M Z w 1 s 1 m M e m 1 m 1g A as x m F V 1 1m K i,0 n .B 9s
基础环上无筋板时基础环作为悬臂梁,在均匀载荷Dmax的作用下其最大弯曲应力
O 为:
b 2 bmax
1 max
Mm1 ax zb1
2
1•b2
b
6b
bmax []b
基础环上有筋板时,求出基础环厚
O 度:
b
6M s
[ ]b
3螺栓座的设计
O 为了使塔设备在刮风或地震时不致翻倒,必须安装足够数量和一定直径的地脚螺栓,把设备固定 在基础上。地脚螺栓承受的最大拉应力为
1.座体设计
首先参照塔体厚度试取一座体有效厚度L0,然后验算危险截面的应力,危险截面的位置一般取裙座基底 截面、裙座壳检查孔或较大管线引出孔截面。
M 裙座基底截面危险截面,应满足下列0条件0 :
操作时
+
max
+水压试验时
+
Z sb
m0gFV 00 Asb
miK n,B Kts
0.3Mw00 Me Zsb
F1l3'
d3)c2
Z
F1l3'
(l2' d3)
c2(l4' d2)
2 z
三.总结,
O 裙座在化工设备中应用非常广泛,它是很好的固定装置,将设备与地面连接起来,虽然裙座不是 受压元件,但是由于裙座对整个塔器至关重要,标准要求与受压元件相同,因为裙座受压不多, 提高裙座的用材要求造成太大的浪费,这种处理大大提高了裙座支承塔体的可靠性。
裙座

二、裙座的强度计算
裙座是最常见的塔设备支承结构,如右图所示。
按所支承设备的高度与直径比,裙座可分成两种:
一种是圆筒形,一种是圆锥形。
由于圆筒形裙座制
造方便和节省材料,所以被广泛采用。
但对于承受
较大风载荷和地震载荷的塔,需要配置较多的地角
螺栓和承受面积较大的基础环,则采用圆锥形裙座
支撑结构。
裙座由裙座体、基础环板、螺栓座及基础螺栓Array等结构组成。
裙座的上端与塔体的底封头焊接,下
端与基础环、筋板焊接,距地面一定高度处开有人
孔、出料孔等通道,基础环上筋板之间还组成螺栓
座结构。
裙座体常用Q235-A或16Mn材料。
裙座体
直径超过800mm时,一般开设人孔。
裙座体上方开
直径为50mm的排气孔,在底部开设排液孔,以便
随时排除液体。
座体和塔体的联接焊缝应和塔体本身的环焊封
保持一定距离。
如果封头是由数块钢板拼焊而成,
则应在裙座上相应部位开有缺口,以免联接焊缝和
封头焊缝相互交叉,见下图。
基础环板通常是一块环形板,基础环板上的螺栓孔开成圆缺口而不是圆形孔,如下图螺栓座
由筋板和压板构成。
地脚螺栓穿过基础环板与压板,便把裙座固定在地基上。
塔设备强度计算 裙座基础环和螺栓计算

㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截面的外径,mm。
2. 基础环板厚度计算在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:(4-69)式中:A b-基础环面积,mm2;W b-基础环的截面系数,mm3;(1)基础环板上无筋板基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许用应力,MPa。
对低碳钢取[σ]b=140MPa。
(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。
此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。
基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按计算,N·mm/mm。
无论无筋板或有筋板的基础环厚度均不得小于16mm。
㈢地脚螺栓地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。
在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。
塔设备在基础面上由螺栓承受的最大拉应力为:(4-72)式中:σB-地脚螺栓承受的最大拉应力,MPa。
当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。
当σB>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹小径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹小径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。
塔器裙座兼作储液槽时地脚螺栓和圆底板的强度计算

塔器裙座兼作储液槽时地脚螺栓和圆底板的强度计算刘武昌;关永祥;刘鑫杰;高建明【摘要】对裙座兼作储液槽的化工塔器,提出了地脚螺栓和圆底板的强度计算方法---根据“维赫曼法”的概念,假设一个“虚拟基础环”。
在抵抗外力矩时,该“虚拟基础环”所应提供的拉应力,由地脚螺栓的拉力来提供,由此计算出地脚螺栓的直径。
对于圆底板,则按圆形截面计算出其抵抗外力矩所需提供的压应力,以此计算出圆底板的厚度。
%Proposeastrengthcalculation methodforanchorboltsandroundbaseplate when chemicaltowerskirt doublesasaliquid storagetant.The methodis asfollows:according to Weiherrmannmethodconcept,assumea virtualbasering",whenresistingexte rnaltorque,thetensilestressshouldbeofferedby virtualbasering"isofferedbyanchorboltsinf act,therebycalculatethediameteroftheanchorbolt.Tocalculatestrengthoftheroundbasep late,calculateit s compressivestressstrengthresistingtoexternaltorqueaccordingtosizeofthecir cularcross-section, therebycalculatethethicknessofroundbaseplate.【期刊名称】《化工设计通讯》【年(卷),期】2013(000)002【总页数】5页(P90-94)【关键词】维赫曼法;虚拟基础环;地脚螺栓;圆底板;扇形圆环;合力矩;弯矩;抗弯截面模量【作者】刘武昌;关永祥;刘鑫杰;高建明【作者单位】天津市创举科技有限公司,天津300130;天津市创举科技有限公司,天津300130;天津市创举科技有限公司,天津300130;天津市创举科技有限公司,天津 300130【正文语种】中文【中图分类】TQ053在化工塔器中,常有利用裙座兼作储液槽的情况。
塔计算

塔器主体设计参数压力试验类型:液压试验塔板分布段数:0 指定筒体材料负偏差为0: 未指定为0 填料分布段数: 2筒体分段数(不包括变径段且不大于10): 10 连接自下向上第2段与第3段筒体的变径段连接自下向上第1段与第2段筒体的变径段连接自下向上第4段与第5段筒体的变径段连接自下向上第3段与第4段筒体的变径段连接自下向上第6段与第7段筒体的变径段连接自下向上第5段与第6段筒体的变径段连接自下向上第8段与第9段筒体的变径段连接自下向上第7段与第8段筒体的变径段连接自下向上第9段与第10段筒体的变径段自下向上第1段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):14试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1750试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第2段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):5410试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第3段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):4450试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第4段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第5段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第6段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第7段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm): 2 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第8段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第9段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):3260试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第10段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):556试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023填料段数据自下向上第1填料段:操作工况下的填料密度(kg/m ):300 该段填料底部距基础高度hf1(mm):2827 该段填料顶部距基础高度hf2(mm):7827填料段数据自下向上第2填料段:操作工况下的填料密度(kg/m ):300 该段填料底部距基础高度hf1(mm):21577 该段填料顶部距基础高度hf2(mm):24577附件数据介质密度(kg/m ):1000 塔釜液面高度(mm):800 塔体保温层厚度(mm):100 塔体保温层密度(mm ):200 最大管线外径(mm):89 管线保温层厚度(mm):80 塔体上平台总个数:0 塔体上最低平台距基础的高度(mm):塔体上最高平台距基础的高度(mm):0 扶梯与最大管线的相对位置:90°平台宽度(mm):0 平台包角(°):360 载荷数据偏心载荷或集中载荷个数(不大于5):2 塔设备附件质量系数(以壳体质量为基准):1.2基本风压值(N/m ):0地震设防烈度:7度(0.1g) 场地土类型:III类地面粗糙度类别:B类地震类型:第二组第 1 个偏心载荷数据偏心载荷重量(kg):1000偏心载荷的作用位置到容器中心线的距离c(mm):0 偏心载荷中心至基础的距离(mm):5827第 2 个偏心载荷数据偏心载荷重量(kg):1000偏心载荷的作用位置到容器中心线的距离c(mm):0 偏心载荷中心至基础的距离(mm):20000裙座数据裙座数据(1)基础类型:无框架裙座结构:圆筒形裙座与筒体连接形式:对接锥形裙座底截面内径(mm):912 基础高度(mm):200 裙座总高度(mm):1077 裙座设计温度(°):20 裙座名义厚度(mm):12 裙座腐蚀裕量(mm): 2 裙座材料:Q345R 设计温度下许用应力(MPa)189 设计温度下屈服点(MPa):345 设计温度下弹性模量(MPa):201000 裙座防火层厚度(mm):0 裙座防火层密度(kg/m3):0 指定裙座材料负偏差为0 未指定为0 裙座与筒体连接段材料:Q345R 裙座与筒体连接段长度(mm):23 裙座与筒体连接段在设计温度下许用应力(MPa):2裙座数据(2)裙座上同一高度处较大孔(包括人孔)个数:2 裙座上较大孔中心线高度h1(mm):580裙座上较大孔引出管水平方向内径d(mm):36 裙座上较大孔引出管名义厚度t(mm):24裙座上较大孔引出管长度c(mm):140裙座数据(3)地脚螺栓公称直径(mm):36 地脚螺栓个数:8 地脚螺栓根径(mm):31.67 地脚螺栓材料:Q235 地脚螺栓许用应力(MPa):147 基础环板内径(mm):712 基础环板厚度(mm):22 基础环板外径(mm):1112基础环板上地脚螺栓两侧筋板内侧间距(mm):85 基础环板上两相邻筋板外侧最大间距L(mm):319.82全部筋板块数:16 筋板厚度(mm):16 筋板高度(mm):250 筋板宽度(mm):130 盖板结构:整块盖板宽度(mm):0 盖板厚度(mm):22 垫板宽度(mm):80 垫板厚度(mm):16 垫板螺栓孔直径(mm):39 盖板螺栓孔直径(mm):50框架结构数据框架高度(mm):0 框架质量(kg):0框架惯性矩(mm4):0 框架材料(碳钢)弹性模量(MPa):框架材料类型:混凝土上封头数据椭圆形封头数据材料类型板材曲面高度h I (mm) 81.25 材料名称S31603 直边高度h2(mm)25 试验温度下许用应力[σ] (MPa) 120 钢板负偏差C1 (mm) 未指定为0 设计温度下许用应力[σ]t(MPa) 104.8 腐蚀裕量C2 (mm) 0 焊接接头系数φ 1 名义厚度δn (mm) 10 液柱静压力(MPa)0下封头数据椭圆形封头数据材料类型板材曲面高度h I (mm) 81.25 材料名称S31603 直边高度h2(mm)25 试验温度下许用应力[σ] (MPa) 120 钢板负偏差C1 (mm) 未指定为0 设计温度下许用应力[σ]t(MPa) 104.8 腐蚀裕量C2 (mm) 0 焊接接头系数φ 1 名义厚度δn (mm) 14 液柱静压力(MPa)0。
塔设备04

系数α值,按图2查取;
αmax——地震影响系数α的最大值,按表4选取;
图2
1.0α
α
max
Ⅰ类场地土 Ⅱ类场地土
0.2 max
0.3 max T
T
Ⅲ类场地土
0.2α
max
0.7 max T
0
0.2 0.3 0.7 1.0
1.5
2.0
3.0
3.5T1s
Ⅰ类 微风化和中等风化的基石; Ⅱ类 除Ⅰ、Ⅲ类之外的一级稳定土; Ⅲ类 饱和松沙、淤泥和淤泥质土、冲填土、杂填土等;
i
——系数,按表3选取;
T1——塔设备的基本自振周期,s;由式(A)或(B) 计算; li——计算段的长度,mm;
Dei——塔设备各段的有效直径,mm;当笼式扶梯与进出 口管布置成180°时, ei Doi 2 si K 3 K 4 d 0 2 ps D
当笼式扶梯与进出口管布置成90°时,取下列二式中的
6
N
式中
q0 ——10 m高度处的基本风压值,按有关资料选取; fi ——风压高度变化系数,在100m以下时,按下式
计算或按表1选取: hit——塔设备第i段顶截面距地面的高度,m; K1——空气动力系数,取K1=0.7; K2i——风振系数, K 2i 1 i i
λi——系数,按表2求取;
塔设备任意危险截面I-I的最大弯矩按下面两式计 算取大值:
M max M W M e
I I I I
N mm
M max M E
I I I I
0.25M W M e
I I
首先按内压或外压圆筒及封头的设计方法,确定圆筒及 封头的有效厚度δe和δeh。再考虑制造、运输、安装的刚度要
塔计算

塔器主体设计参数压力试验类型:液压试验塔板分布段数:0 指定筒体材料负偏差为0: 未指定为0 填料分布段数: 2筒体分段数(不包括变径段且不大于10): 10 连接自下向上第2段与第3段筒体的变径段连接自下向上第1段与第2段筒体的变径段连接自下向上第4段与第5段筒体的变径段连接自下向上第3段与第4段筒体的变径段连接自下向上第6段与第7段筒体的变径段连接自下向上第5段与第6段筒体的变径段连接自下向上第8段与第9段筒体的变径段连接自下向上第7段与第8段筒体的变径段连接自下向上第9段与第10段筒体的变径段自下向上第1段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):14试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1750试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第2段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):5410试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第3段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):4450试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第4段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第5段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第6段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第7段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm): 2 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第8段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第9段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):3260试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第10段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):556试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023填料段数据自下向上第1填料段:操作工况下的填料密度(kg/m ):300 该段填料底部距基础高度hf1(mm):2827 该段填料顶部距基础高度hf2(mm):7827填料段数据自下向上第2填料段:操作工况下的填料密度(kg/m ):300 该段填料底部距基础高度hf1(mm):21577 该段填料顶部距基础高度hf2(mm):24577附件数据介质密度(kg/m ):1000 塔釜液面高度(mm):800 塔体保温层厚度(mm):100 塔体保温层密度(mm ):200 最大管线外径(mm):89 管线保温层厚度(mm):80 塔体上平台总个数:0 塔体上最低平台距基础的高度(mm):塔体上最高平台距基础的高度(mm):0 扶梯与最大管线的相对位置:90°平台宽度(mm):0 平台包角(°):360 载荷数据偏心载荷或集中载荷个数(不大于5):2 塔设备附件质量系数(以壳体质量为基准):1.2基本风压值(N/m ):0地震设防烈度:7度(0.1g) 场地土类型:III类地面粗糙度类别:B类地震类型:第二组第 1 个偏心载荷数据偏心载荷重量(kg):1000偏心载荷的作用位置到容器中心线的距离c(mm):0 偏心载荷中心至基础的距离(mm):5827第 2 个偏心载荷数据偏心载荷重量(kg):1000偏心载荷的作用位置到容器中心线的距离c(mm):0 偏心载荷中心至基础的距离(mm):20000裙座数据裙座数据(1)基础类型:无框架裙座结构:圆筒形裙座与筒体连接形式:对接锥形裙座底截面内径(mm):912 基础高度(mm):200 裙座总高度(mm):1077 裙座设计温度(°):20 裙座名义厚度(mm):12 裙座腐蚀裕量(mm): 2 裙座材料:Q345R 设计温度下许用应力(MPa)189 设计温度下屈服点(MPa):345 设计温度下弹性模量(MPa):201000 裙座防火层厚度(mm):0 裙座防火层密度(kg/m3):0 指定裙座材料负偏差为0 未指定为0 裙座与筒体连接段材料:Q345R 裙座与筒体连接段长度(mm):23 裙座与筒体连接段在设计温度下许用应力(MPa):2裙座数据(2)裙座上同一高度处较大孔(包括人孔)个数:2 裙座上较大孔中心线高度h1(mm):580裙座上较大孔引出管水平方向内径d(mm):36 裙座上较大孔引出管名义厚度t(mm):24裙座上较大孔引出管长度c(mm):140裙座数据(3)地脚螺栓公称直径(mm):36 地脚螺栓个数:8 地脚螺栓根径(mm):31.67 地脚螺栓材料:Q235 地脚螺栓许用应力(MPa):147 基础环板内径(mm):712 基础环板厚度(mm):22 基础环板外径(mm):1112基础环板上地脚螺栓两侧筋板内侧间距(mm):85 基础环板上两相邻筋板外侧最大间距L(mm):319.82全部筋板块数:16 筋板厚度(mm):16 筋板高度(mm):250 筋板宽度(mm):130 盖板结构:整块盖板宽度(mm):0 盖板厚度(mm):22 垫板宽度(mm):80 垫板厚度(mm):16 垫板螺栓孔直径(mm):39 盖板螺栓孔直径(mm):50框架结构数据框架高度(mm):0 框架质量(kg):0框架惯性矩(mm4):0 框架材料(碳钢)弹性模量(MPa):框架材料类型:混凝土上封头数据椭圆形封头数据材料类型板材曲面高度h I (mm) 81.25 材料名称S31603 直边高度h2(mm)25 试验温度下许用应力[σ] (MPa) 120 钢板负偏差C1 (mm) 未指定为0 设计温度下许用应力[σ]t(MPa) 104.8 腐蚀裕量C2 (mm) 0 焊接接头系数φ 1 名义厚度δn (mm) 10 液柱静压力(MPa)0下封头数据椭圆形封头数据材料类型板材曲面高度h I (mm) 81.25 材料名称S31603 直边高度h2(mm)25 试验温度下许用应力[σ] (MPa) 120 钢板负偏差C1 (mm) 未指定为0 设计温度下许用应力[σ]t(MPa) 104.8 腐蚀裕量C2 (mm) 0 焊接接头系数φ 1 名义厚度δn (mm) 14 液柱静压力(MPa)0。
塔设备强度计算-裙座基础环和螺栓计算

㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截面的外径,mm。
2. 基础环板厚度计算在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:(4-69)式中:A b-基础环面积,mm2;W b-基础环的截面系数,mm3;(1)基础环板上无筋板基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许用应力,MPa。
对低碳钢取[σ]b=140MPa。
(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。
此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。
基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按表4-35计算,N·mm/mm。
无论无筋板或有筋板的基础环厚度均不得小于16mm。
㈢地脚螺栓地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。
在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。
塔设备在基础面上由螺栓承受的最大拉应力为:(4-72)式中:σB-地脚螺栓承受的最大拉应力,MPa。
当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。
当σB>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹小径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹小径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
㈡基础环板设计
1. 基础环板内、外径的确定
裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用
(4-68)
式中:
D ob-基础环的外径,mm;
D ib-基础环的内径,mm;
D is-裙座底截面的外径,
mm。
2. 基础环板厚度计算
在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:
(4-69)
式中:
A b-基础环面积,mm2;
W b-基础环的截面系数,mm3;
(1)基础环板上无筋板
基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:
(4-70)
式中:
δb-基础环厚度,mm;
[σ]b-基础环材料的许用应力,MPa。
对低碳钢取[σ]b=140MPa。
(2)基础环板上有筋板
基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。
此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。
基础环厚度:
(4-71)
式中:
δb-基础环厚度,mm;
M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按表4-35计算,N·mm/mm。
无论无筋板或有筋板的基础环厚度均不得小于16mm。
㈢地脚螺栓
地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。
在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。
塔设备在基础面上由螺栓承受的最大拉应力为:
(4-72)
式中:
σB-地脚螺栓承受的最大拉应力,MPa。
当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。
当σB>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹小径可按式(4-73)计算:
(4-73)
式中:
d1-地脚螺栓螺纹小径,mm;
C2-地脚螺栓腐蚀裕量,取3mm;
n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;
[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。
圆整后地脚螺栓的公称直径不得小于M24。
㈣裙座体与塔体底封头的焊接结构
裙座体与塔体的焊接形式有下表所示的两种:
名称结构要求特点适用对象
对接焊
缝裙座与塔体直径相等,二者对
齐焊在一起
焊缝承受压应力作用,可承受较高
的轴向载荷
大型塔设备
搭接焊
缝
裙座内径稍大于塔体外径焊缝承受剪应力作用,受力条件差小型塔设备
1.裙座体与塔体对接焊缝(如附图)J-J
截面的拉应力校核
(4-74)
式中D it-裙座顶截面的内直径,mm。
2.裙座体与塔体搭接焊缝(如附图)J-J截面的剪应力校核
(4-75)
(4-76)
式中:
A W-焊缝抗剪断面面积,mm2;
D ot-裙座壳顶部截面的外直径,mm;
M max J-J-搭接焊缝处的最大弯矩,N·mm;
m max J-J-压力试验时塔设备的最大质量(不计裙座质量),Kg;
m0J-J-J-J截面以上塔设备的操作质量,Kg;
W W-焊缝抗剪截面系数,mm3;
[ ]W t-设计温度下焊接接头的许用应力,取两侧母材许用应力的小值,MPa。