板式塔设计计算说明书

合集下载

板式塔(筛板塔)设计教材

板式塔(筛板塔)设计教材
f
u
0.2
u f C f 20 20
式中
f
L V V

0.5
—— 气体负荷因子, m/s;可由 u
查取 图3
C f 20—— 液相表面张力,mN/m
V 、 L 是以塔内气体流通面积,即塔的横截面积减去降 注意: uAfT –Af )为依据计算的。 液管面积(
4. 塔和塔板主要尺寸的设计
4.1 塔和塔板设计的主要依据
进行塔和塔板设计时,所依据的主要参数是: 汽相 流量 VS ( m³ /s ), 密度 ρV ( kg/m³) 液相 流量 LS ( m³ /s ), 密度 ρL ( kg/m³) 表面张力 σ ( mN/m ) 注意:由于各块塔板的组成和温度不同,所以各块塔板 上的上述参数均不同,设计时应取平均值。具体方法如下: (1) 若V、L变化不大,可以精馏段或提馏段的平均值为 代表进行设计. (2) 若V、L变化较大,应分段处理,各段分别取平均值 进行设计。
4.2塔板的设计参数
筛板塔设计必须确定的主要结构参数有(参阅 图 2 ): (1)塔板直径D; (2)板间距HT; (3)溢流堰的型式,长度 lW 和高度 hw; (4)降液管型式、降液管底部与塔板间的距离ho; (5)液体进、出口安定区的宽度Ws’、Ws ,边缘 区宽度Wc; (6)筛孔直径do,孔间距t。
3.2 回流比的选定
选择原则:使塔的设备费用和操作费用的总和最低,
同时应考虑到操作时的调节弹性。
选择方法:
(1) 参考生产现场所提供的回流比数据; (2) 回流比取最小回流比Rmin的1.2~2倍; (3) 先求最少理论板数 Nmin , 以理论板数为Nmin 的两倍求取回流比R; (4) 作出回流比R和理论板数N的曲线图,在曲线 图上确定合适的回流比R。

化工设计竞赛4-塔设备计算说明书(0001)

化工设计竞赛4-塔设备计算说明书(0001)

塔设备计算说明书目录概述 (2)1.1 设计依据 (2)1.2 塔的设计要求 (2)1.3 塔型选择原则 (3)1.3.1 与物性有关的因素 (3)1.3.2 与操作条件有关的因素 (4)1.3.3 其他因素 (4)1.3.4 板式塔及塔板选择 (5)1.4 塔设备详细设计 (5)1.4.1 板式塔详细设计(以T0403为例) (6)1.4.2 醋酸乙烯精馏塔T0403结构设计 (11)1.4.3 醋酸乙烯塔T0403接管设计 (15)1.4.4 醋酸乙烯塔T0403机械强度核算 (17)附图:塔设备条件图 (33)概述塔设备是石油化工生产中最重要的设备之一。

它可使气液或液液两相进行紧密接触,达到相际传质和传热的目的。

化工生产中可在塔设备中完成的常见单元操作有:精馏、吸收与解吸、萃取等。

塔设备的性能对于整个装置的产品产量、产品质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面都有很大的影响。

本项目为陕西北元化工集团股份有限公司化工分公司15万吨/年醋酸乙烯项目,该项目所涉及的塔设备共12座,其中板式塔6座,填料塔6座。

项目借助Aspen Plus V10软件得到塔设备水力学数据并进行水力学校核,使用全国化工设备设计中心站研发的SW6软件对塔设备进行机械强度校核。

1.1设计依据《化工设备设计全书——塔设备》《压力容器》GB150-2011《设备及管道绝热设计导则》GB/T8175-2008《压力容器封头》GB/T25198-2010《中国地震动参数区划分》GB 18306-2001《塔器设计技术规定》HG20652-1998《钢制化工容器结构设计规定》 HG/T20583-2011《工艺系统工程设计技术规范》HG/T20570-1995《塔顶吊柱》HG/T21639-2005《钢制人孔和手孔的类型与技术条件》HG/T21514-2005《钢制塔器容器》JB/T4710-20051.2塔的设计要求作为主要用于传质过程的塔设备,首先必须使气液两相充分接触,以获得较高的传质效率;同时还应保证塔设备的经济性和运行安全性。

板式塔设计计算说明书

板式塔设计计算说明书

一、设计任务1. 结构设计任务完成各板式塔的总体结构设计,绘图工作量折合A1图共计4张左右,具体包括以下内容:⑴各塔总图1张A0或A0加长; ⑵各塔塔盘装配及零部件图2张A1。

2. 设计计算内容完成各板式塔设计计算说明书,主要包括各塔主要受压元件的壁厚计算及相应的强度校核、稳定性校核等内容。

二、设计条件1. 塔体内径mm 2000=i D ,塔高m 299.59H i =;2.设计压力p c =2.36MPa ,设计温度为=t 90C ︒;3. 设置地区:山东省东营市,基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类,地面粗糙度是B 类;4. 塔内装有N=94层浮阀塔盘;开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900m m ,高度为1200m m ;5. 塔外保温层厚度为δs =100m m ,保温层密度ρ2=3503m /kg ;三、设备强度及稳定性校核计算1. 选材说明已知东营的基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类;塔壳与裙座对接;塔内装有N=94层浮阀塔盘;塔外保温层厚度为δs =100m m ,保温层密度ρ2=3503m /kg ;塔体开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900m m ,高度为1200m m ;设计压力 p c =2.36MPa ,设计温度为=t 90C ︒;壳3m m ,裙座厚度附加量2m m ;焊接接头系数取为0.85;塔内径mm 2000=i D 。

通过上述工艺条件和经验,塔壳和封头材料选用Q345R 。

对该塔进行强度和稳定计算。

2. 主要受压元件壁厚计算本部分应包括常压塔的主要筒体及椭圆封头等重要受压元件的壁厚计算,裙座厚度先按经验值取。

l塔壳和封头材料选用Q345R[MPa 185][,325)(t.20p eL ==σR R (16<≤δ36)] 直径mm 2000=i D 段圆筒及封头: 圆筒:15.12mm 36.285.01852200036.2][2ci c =-⨯⨯⨯=-=p D p tφσδ 封头:mm 06.1536.25.085.018521200036.25.0][2ci c h =⨯-⨯⨯⨯⨯=-=p K D p tφσδ 经圆整后,塔壳厚度取为22m m ,封头厚度取为24m m ,裙座壳厚度取为18m m 。

课程设计计算书(板式塔)

课程设计计算书(板式塔)

《化工设备设计基础》课程设计计算说明书学生姓名:学号:所在学院:专业:设计题目:指导教师:2015年月日目录一.设计任务书 (2)二.设计参数与结构简图 (4)三.设备的总体设计及结构设计 (5)四.强度计算 (7)五.设计小结 (13)六.参考文献 (14)一、设计任务书1、设计题目根据《化工原理》课程设计工艺计算内容进行填料塔(或板式塔)设计。

设计题目:各个同学按照自己的工艺参数确定自己的设计题目:填料塔(板式塔)DNXXX设计。

例:精馏塔(DN1800)设计2、设计任务书2.1设备的总体设计与结构设计(1)根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔);(2)根据化工工艺计算,确定塔板数目(或填料高度);(3)根据介质的不同,拟定管口方位;(4)结构设计,确定材料。

2.2设备的机械强度设计计算(1)确定塔体、封头的强度计算。

(2)各种开孔接管结构的设计,开孔补强的验算。

(3)设备法兰的型式及尺寸选用;管法兰的选型。

(4)裙式支座的设计验算。

(5)水压试验应力校核。

2.3完成塔设备装配图(1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。

(2)编写技术要求、技术特性表、管口表、明细表和标题栏。

3、原始资料3.1《化工原理》课程设计塔工艺计算数据。

3.2参考资料:[1] 董大勤.化工设备机械基础[M].北京:化学工业出版社,2010.3.[2] 全国化工设备技术中心站.《化工设备图样技术要求》2000版[S].[3] GB150.压力容器[S].[4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社,2002.[5] NB/T47041-2014.塔式容器[S].4、文献查阅要求设计说明书中公式、内容等应明确文献出处;装配图上应写明引用标准号。

5、设计成果1、提交设计说明书一份;2、提交塔设备(填料塔、板式塔)草图一张(A3);2、提交塔设备(填料塔、板式塔)装配图一张(A1)。

板式塔设备机械设计说明

板式塔设备机械设计说明

1 板式塔设备机械设计任务书1.1 设计任务及操作条件试进行一蒸馏塔与裙座的机械设计已知条件为:塔体径mm D i 2000=,塔高m 30,工作压力为MPa 2.1,设计温度为300℃,介质为原油,安装在郊区,地震强度为7度,塔安装55层浮阀塔板,塔体材料选用16MnR ,裙座选用A Q -235。

1.2 设计容(1)根据设计条件选材;(2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力;(8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。

1.3.设计要求:(1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3图纸)2 塔设备已知条件及分段示意图已知设计条件分段示意图塔体径i D 2000mm 塔体高度H 30000mm 设计压力P 1.2MPa 设计温度t300℃ 塔 体材料16MnR 许用应力[σ]170MPa [σ]t144MPa设计温度下弹性模量E MPa 51086.1⨯常温屈服点s σ 345MPa 厚度附加量C 2mm 塔体焊接接头系数φ0.85介质密度ρ 3/800m kg塔盘数N55 每块塔盘存留介质层高度w h100mm 基本风压值0q 500N/㎡ 地震设防烈度 7度 场地土类别 II 类 地面粗糙度 B 类 偏心质量e m 4000kg 偏心距e 2000mm 塔外保温层厚度s δ 100mm保温材料密度2ρ 3/300m kg材料 Q235-A 裙许用应力t s ][σ 86MPa 常温屈服点s σ235MPa3 塔设备设计计算程序及步骤3.1 按设计压力计算塔体和封头厚度3.2 塔设备质量载荷计算3.3 自振周期计算3.4 地震载荷与地震弯距计算mgH3.5 风载荷与风弯距计算3.6 偏心弯距3.7 最大弯距3.8 圆筒轴向应力校核和圆筒稳定校核3.12 地脚螺栓计算3.13 计算结果4 计算结果总汇1 按设计压力计算塔体和封头厚度4 后记本设计的任务是进行一蒸馏塔与裙座的机械设计。

化工原理——板式塔设计

化工原理——板式塔设计
2
逐板计算,得出理论板数 N
再获得实际板数与上面假设比较
如果相差较大,需重新迭代 最后计算获得实际板数
33
第三节
板式塔的化工设计计算
一、塔的有效高度 Z
Z HT N p
已知:实际塔板数 NP 选取塔板间距 HT 有效塔高 塔体高度:有效高+顶部+底部+其它 安装高度 :裙座
34
选取塔板间距 HT :(计算塔径之后还要迭代) 考虑经济性 、经验选取 HT ↓,则塔高↓,液沫夹带量↑,液泛气速↓ HT ↑,则塔内气速↑,塔径↓,但塔高↑
设计气速 u
= 泛点率 ×uf
A Vs u
38
所需气体流通截面积
39
塔截面积 AT = 气体流通截面积 A +降液管面积 Ad 即: A = AT - Ad 塔截面积
A AT Ad 1 AT
选取 Ad / AT原则 单流型弓形降液管: 0.06 -- 0.12 多流型:可适当增大 U 形流型:可适当减小
(2)热量衡算(H)
再沸器、冷凝器负荷 Q、热剂、冷剂的用量
(3)气液平衡方程(E) (4)归一方程(S) MESH
30
已知:塔顶、塔底组成、塔顶压力、回流比 为求理论板数需要知道:塔顶、塔底温度,塔内气液相负荷, 相对挥发度 烃类特点:近似认为理想体系,可按恒摩尔流假设处理 如何确定物性
塔设计中物性的确定按塔顶温度、压力条件;
底隙 hb :30 -- 40 mm
3. 溢流堰
维持塔板上一定液层 使液体均匀横向流过
44
液流型式选取参考表
塔径 m
1.0 1.4 2.0 3.0 4.0 5.0 6.0
液体流量
m 3/h

板式塔计算

板式塔计算

板式塔计算板式塔的结构设计及计算2.1 : 塔体与裙座的机械设计条件如下:1.塔体内径D=2000mm,塔体高度近似计算H=40000mm,计算压力Pc=1.0Mpa,计算温度t=300C.2.设置地区:基本风压=400N/;地震防裂度为8度,场地土类:B类。

3.塔内装有N=70快浮法塔板,每块塔板上存留介质层高度为=100mm,介质密度=950kg/,沿塔每高5米左右开设一个人孔,人孔数为8个,相应的人孔安置半圆形平台8个,平台宽度B=900mm,高度为1000mm。

4.塔外保温层厚度=95mm,保温材料密度=300kg/.5.塔体与裙座之间悬挂一台再沸器,其操作质量=400kg,偏心距e=2000mm。

6. 塔体与封头材料选用16MnR,,其=144MPa,=170MPa, =345MPa, =1.8MPa。

7.裙座材料选用Q235—B。

8.塔体与裙座对接焊接,塔体焊接接头系数=0.85。

9.塔体与封头壁厚附加量取c=2mm,裙座壁厚附加量取c=2mm。

2.2 按压力计算塔体厚度:===8.2mm,C=2mm,圆整后=12mm;2.3 封头厚度计算:===8.19mm,C=2mm,圆整后取=12mm;2.4 塔设备质量载荷计算:2.4.1 筒体圆筒,封头,裙座质量圆筒质量=59635.86=21372.56kg;封头质量=4382=876kg裙座质量=5963.08=1835.68kg群体裙座质量=++=21372.56+876+1835.68=24084.24kg;注:1.塔体圆筒的总高度=35.86m;2.查得DN2000,厚度12mm的圆筒每米质量为596kg;3.查得DN2000,厚度12mm的椭圆形封头质量取438kg, (其中封头曲面深度500mm,直边高度40mm;)4.裙边高度3080mm(厚度=12mm)2.4.2 塔内件质量==0.78547570=16485kg注:1.由表查得浮阀塔板每平方米的质量为75kg。

课程设计-板式塔设计计算

课程设计-板式塔设计计算

(2)筛板塔板
塔板上开圆孔,孔径:3 - 8 mm,大孔径筛板:12 - 25 mm。
(3)浮阀塔板 浮阀塔盘
方形浮阀
圆形浮阀
条形浮阀
方形浮阀
F1型浮阀
优点:浮阀根据气体流量,自动调节开度,提高了塔板的操作弹 性、降低塔板的压降,同时具有较高塔板效率,在生产中得到广 泛的应用。 缺点:浮阀易脱落或损坏。
② 降液管液泛
当塔内气、液两相流量较大,导致降液管内阻力及塔板阻
力增大时,均会引起降液管液层升高,当降液管内液层高度难 以维持塔板上液相畅通时,降液管内液层迅速上升,以致达到 上一层塔板,逐渐充满塔板空间,即发生液泛。并称之为降液 管液泛。
说明:两种液泛互相影响和关联,其最终现象相同。
(2) 严重漏液 漏液量增大,导致塔板上难以维持正常操作所需的液面,无
6.10.2 塔内气、液两相异常流动
(1)液泛 如果由于某种原因,使得气、液两相流动不畅,使板上液
层迅速积累,以致充满整个空间,破坏塔的正常操作,称此现
象为液泛。 液 泛现象:
① 过量雾沫夹带液泛 原因:
① 气相在液层中鼓泡,气泡破裂,将雾沫弹溅至上一层塔板;
② 气相运动是喷射状,将液体分散并可携带一部分液沫流动。 说明:开始发生液泛时的气速称之为液泛气速 。
为了使进料保持稳定,一般入塔的原料液由高位槽供给,
以免受泵的流量波动的影响。
为了保持回流液的稳定,冷凝器常采用冷却水,而不用塔 顶蒸气预热原料液.因为塔顶蒸气量如有波动,将影响回 流液量及进料温度。从而影响整个塔的操作稳定性。有 时也把冷凝器分割为两部分,一部分预热原料液,另一 部分用冷却水使蒸气冷凝。这样可以用控制冷却水量来 控制冷凝器的操作,同时保证进料温度一定。 塔釜液体虽然温度很高,但用它来预热原料液,对液-液 传热过程其传热系数很小,则所需传热面积必然很大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板式塔设计计算说明书(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、设计任务1. 结构设计任务完成各板式塔的总体结构设计,绘图工作量折合A1图共计4张左右,具体包括以下内容:⑴各塔总图1张A0或A0加长; ⑵各塔塔盘装配及零部件图2张A1。

2. 设计计算内容完成各板式塔设计计算说明书,主要包括各塔主要受压元件的壁厚计算及相应的强度校核、稳定性校核等内容。

二、设计条件1. 塔体内径mm 2000=i D ,塔高m 299.59H i =;2.设计压力p c =MPa ,设计温度为=t 90C ︒;3. 设置地区:山东省东营市,基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类,地面粗糙度是B 类;4. 塔内装有N=94层浮阀塔盘;开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900mm ,高度为1200mm ;5. 塔外保温层厚度为δs =100mm ,保温层密度ρ2=3503m /kg ;三、设备强度及稳定性校核计算1. 选材说明已知东营的基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类;塔壳与裙座对接;塔内装有N=94层浮阀塔盘;塔外保温层厚度为δs=100mm ,保温层密度ρ2=3503m /kg ;塔体开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900mm ,高度为1200mm ;设计压力 p c =MPa ,设计温度为=t 90C ︒;壳3mm ,裙座厚度附加量2mm ;焊接接头系数取为;塔内径mm 2000=i D 。

通过上述工艺条件和经验,塔壳和封头材料选用Q345R 。

对该塔进行强度和稳定计算。

12. 主要受压元件壁厚计算本部分应包括常压塔的主要筒体及椭圆封头等重要受压元件的壁厚计算,裙座厚度先按经验值取。

l塔壳和封头材料选用Q345R[MPa 185][,325)(t .20p eL ==σR R (16<≤δ36)] 直径mm 2000=i D 段圆筒及封头: 圆筒:15.12mm 36.285.01852200036.2][2ci c =-⨯⨯⨯=-=p D p tφσδ 封头:mm 06.1536.25.085.018521200036.25.0][2ci c h =⨯-⨯⨯⨯⨯=-=p K D p tφσδ 经圆整后,塔壳厚度取为22mm ,封头厚度取为24mm ,裙座壳厚度取为18mm 。

3. 原油分馏塔质量载荷的计算质量载荷包括:塔体、裙座质量01m ;塔内件如塔盘的质量02m ;保温材料的质量03m ;操作平台及扶梯的质量04m ;操作时物料的质量05m ;塔附件如人孔、接管、法兰等质量a m ;水压试验时充水的质量w m 。

塔体、裙座质量01m =7850299.59)2044.2(414.322⨯⨯-⨯=kg 附属件质量a m =01m =kg 则01m +a m =+=kg 塔内件质量02m =kg 2213775940.242=⨯⨯⨯π保温层质量03m =725.50350)044.2244.2(422⨯⨯-⨯π=kg操作平台及扶梯的质量04m =2112150)244.2044.4(422⨯⨯⨯-⨯π+299.5940⨯ =kg操作时物料的质量05m =94050.00.243972⨯⨯⨯⨯π=kg2水压试验时充水的质量w m =69.161608)1257.12725.500.24(10002=⨯+⨯⨯⨯πkg塔设备在正常操作时的质量0m =01m +02m +03m +04m +05m +a m=kg塔设备在水压试验时的最大质量max m =01m +02m +03m +04m +w m +a m=kg塔设备在停工检修时的质量min m =01m +022.0m +03m +04m +a m=kg将塔高分成9段,每段的质量列于表1中。

表1 kg【注】塔内构件浮阀塔盘的质量每m 2质量为75kg 计算平台质量按每m 2为150kg 计算 笼式扶梯质量按每m 为40kg 计算 4. 分段相关参数说明将塔沿高度分成9段,在裙座开孔处及裙座和筒体连接处作为分段点,筒体以上每10m 平均分段。

具体参数见下图1所示。

3图15. 风载荷与风弯矩的计算因1529/>=D H 而且高度H >30m ,因此要同时计算顺风向和横风向载荷。

(1)顺风向水平风力计算塔设备第一自振周期EImH T 419.71=)(6479.144030i D D E H m -=π s 539.2)2044.2(14.310101.9159.29919.3160516479.144653=-⨯⨯⨯⨯⨯⨯⨯= 塔设备第二自振周期EI mH T 42285.0=)(64285.044030iD DE H m -=π4s 404.0)2044.2(14.310101.9159.29919.31605164285.044653=-⨯⨯⨯⨯⨯⨯⨯=塔设备第三自振周期EImH T 43102.0=)(64102.044030i D D E H m -=π s 145.0)2044.2(14.310101.9159.29919.31605164102.044653=-⨯⨯⨯⨯⨯⨯⨯= 因地面粗糙度是B 类,基本风压01q q =塔设备中第i 计算段所受的水平风力按下式计算:ei i i i i D l q f K K P 021=式中各参数按线性插值由标准查得,计算结果列于表2表2(2)顺风向弯矩计算 0-0截面风弯矩:2(.....)2()2(2456789912331221100l l l l l l P l l l P l l P l P M w ++++++++++++=- =N.mm 10100.69⨯ I-I 截面风弯矩:5)2(.....)2(223456789923322l l l l l l l lP l l P l P M W +++++++++++=I -I =N.mm 10964.59⨯ II-II 截面风弯矩:)7800176602(.....)7800176602/5(5)2780017660(5678994-+++++++-++-=II -II l l l l l P l P P M W =N.mm 10806.49⨯III-III 截面风弯矩:)8500176002(.....)8500176602(2850017660567899554-+++++++-++-=III -III l l l l l P lP P M W =N.mm 10700.49⨯ (3)横风向振幅计算 临界风速计算:tac S T D v 11=2.0539.2244.2⨯=s /m 42.4= tac S T D v 22=2.0404.0244.2⨯=s /m 77.27= 共振判别:设计风速0265.1q f v v t H ==48077.1265.1⨯⨯=s /m 87.36=因为12c c v v v >>,故应同时考虑第一振型和第二振型的振动。

横风塔顶振幅:雷诺数vDa 69Re =224487.3669⨯⨯=561041071.5⨯>⨯=时,2.0=L C当α111)(/Hc c v vH H =0)87.3642.4(16.01≈=时,56.11=λ阻尼比取为01.0=ζ6截面惯性矩)(64440i D D I -=π41044mm 1014.7)20002044(6414.3⨯=-⨯=横风塔顶振幅9114211104.49-⨯=IE H v D C Y tc a L T ζλρ 910542101014.71091.101.04.4956.15929942.425.122442.0-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯= m 0319.0=(4)横风向弯矩计算共振时临界风速风压作用下的顺风向风力列于表3中表3顺风向弯矩: 0-0截面风弯矩:)2(.....)2()2(212345678991233122110l l l l l l l l lP l l l P l l P l P M cw +++++++++++++++=- =N.mm 10281.18⨯ I-I 截面风弯矩:7)2(.....)2(223456789923322l l l l l l l lP l l P l P M cw +++++++++++=I -I =N.mm 10252.18⨯ II-II 截面风弯矩:)7800176602(.....)7800176602(2780017660456789955-+++++++-++-=II-II l l l l l P lP P M cw =N.mm 10002.18⨯III-III 截面风弯矩:)8500176602(.....)8500176602(2850017660567899554-+++++++-++-=III-III l l l l l P lP P M cw =N.mm 10980.08⨯横风向弯矩: 0-0截面:19112100)2(k k k k T cah m Y T Mφπ∑=-=9210763.20319.0)539.214.32(⨯⨯⨯⨯= N.mm 10398.58⨯=I-I 截面:192121)800()2(k k k k T cah m Y T Mφπ-=∑=I-I 9210710.20319.0)539.214.32(⨯⨯⨯⨯= N.mm 10294.58⨯=II-II 截面: 194121)7800()2(k k k k T cah m Y T M φπ-=∑=II-II9210242.20319.0)539.214.32(⨯⨯⨯⨯==III-III 截面: 194121)8500()2(k k k k T cah m Y T M φπ-=∑=III-III89210195.20319.0)539.214.32(⨯⨯⨯⨯=N.mm 10288.48⨯=组合风弯矩: 0-0截面:N.mm10548.5)()(N.mm10100.6820020090000⨯=+⨯==----cw ca W ewM M M MN.mm 10100.69⨯=I-I 截面:N.mm10440.5)()(N.mm10964.58229⨯=+⨯==I -I I -I I -I I-I cw ca W ewM M M MN.mm 10964.59⨯=II-II 截面:N.mm10493.4)()(N.mm10806.48229⨯=+⨯==II -II II -II II -II II-II cw ca W ewM M M MN.mm 10806.49⨯=III-III 截面:N.mm10399.4)()(N.mm10700.48229⨯=+⨯==III -III III -III III -III III-III cwcaW ewM M M MN.mm 10700.49⨯=6. 地震弯矩计算地震设防烈度8度,取16.0max =α; 因场地土类别III 类,则特性周期s 55.0=g T 阻尼比取为01.0=ξ 阻尼调整系数ξξη7.106.005.012+-+=519.1=衰减指数ξξγ+-+=5.005.09.0=地震影响系数max 211)(αηαγT T g =0544.016.0519.1)539.255.0(978.0=⨯⨯=则0-0截面的地震弯矩:gH m mgH M E 012100135163516αα==-=592999.8 19.1316050544.03516⨯⨯⨯⨯ N.mm 10902.19⨯=I-I 截面的地震弯矩:)41410(17585.35.25.35.111I I I -I +-=h H h H Hmg M E αN.mm 10866.19⨯= II-II 截面的地震弯矩:)41410(17585.35.25.35.111II II II -II +-=h H h H Hmg M E αN.mm 10552.19⨯= III-III 截面的地震弯矩:)41410(17585.35.25.35.111III III III -III +-=h H h H Hmg M E αN.mm 10521.19⨯= 以上计算是按塔设备基本振型的结果,此塔1530/>=D H 且高度大于20m ,故还必须考虑高振型的影响。

相关文档
最新文档