华中师大《概率论基础》练习题库及答案

合集下载

华中师范大学《概率论基础(华师)》期末考试题集汇总

华中师范大学《概率论基础(华师)》期末考试题集汇总

华中师范大学《概率论基础(华师)》奥鹏期末考试题库合集本套合集为考前突击题集汇总,含答案单选题:1.题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:A2.题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:C3.题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:D(4)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:A(5)工厂每天从产品中随机地抽查50件产品,已知这种产品的次品率为0.1%,,则在这一年内平均每天抽查到的次品数为A.0.05B. 5.01C.5D.0.5标准答案:A(6)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:C(7)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:B(8)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项选择图中D选项标准答案:B(9)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:B(10)设A,B为两个互斥事件,且P(A)0,P(B)0,则下列结论正确的是A.P(B|A)0B.P(A|B)=P(A)C.P(A|B)=0D.P(AB)=P(A)P(B)标准答案:C(11)在[0,1]线段上随机投掷两点,两点间距离大于0.5的概率为A.0.25B.0.5C.0.75D.1标准答案:A(12)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:D(13)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:B(14)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:C(15)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:C(16)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:A(17)题面见图片:C.选择图中C选项D.选择图中D选项标准答案:C(18)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:C(19)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:C(20)题面见图片:A.选择图中A选项B.选择图中B选项C.选择图中C选项D.选择图中D选项标准答案:C(21)题面见图片:A.选择图中A选项B.选择图中B选项标准答案:B(22)假定某工厂甲、乙、丙3个车间生产同一种螺钉,产量依次占全厂的45%、35%、20%。

概率论考试题及答案

概率论考试题及答案

概率论考试题及答案导言:概率论是数学中的一门基础学科,主要研究随机现象的规律性和不确定性。

它广泛应用于统计学、金融、工程学、计算机科学等领域。

本文将给出一些概率论考试题及答案,旨在帮助读者加深对概率论知识的理解和掌握。

题目一:计算概率已知一副扑克牌,共有52张牌,其中13张为红心。

从中任意抽取5张牌,求至少一张红心的概率。

解答:首先计算没有红心的情况,即全是黑桃、方片和梅花的概率。

抽取第一张牌时,没有红心的概率为39/52;抽取第二张牌时,没有红心的概率为38/51;以此类推,抽取第五张牌时,没有红心的概率为35/48。

将每次抽取没有红心的概率相乘,即可得到全是非红心牌的概率为(39/52) * (38/51) * (37/50) * (36/49) * (35/48) ≈ 0.359。

因此,至少一张红心的概率为1 - 0.359 ≈ 0.641。

题目二:条件概率在一批产品中,有30%的次品。

已知次品中的20%是由机器A生产的,而合格品中的15%是由机器A生产的。

现从这批产品中随机选取一件,发现该件品质合格。

求此件产品是由机器A生产的概率。

解答:设事件B表示所选产品是由机器A生产的,事件A表示所选产品是合格品。

根据题意,已知P(B) = 0.3,P(A|B) = 0.15,需要求的是P(B|A)。

根据条件概率的定义,我们有P(B|A) = P(A∩B) / P(A)。

首先计算P(A∩B),即既是合格品又是由机器A生产的概率,即P(A∩B) = P(B) * P(A|B) = 0.3 * 0.15 = 0.045。

其次,计算P(A),即产品为合格品的概率。

合格品中由机器A生产的概率为0.15,由机器B生产的概率为1 - 0.15 = 0.85。

所以,P(A) = P(A∩B) + P(A∩B') = 0.045 + 0.85 * (1 - 0.2) ≈ 0.881。

最后,根据条件概率的公式,可得P(B|A) = P(A∩B) / P(A) = 0.045 / 0.881 ≈ 0.051。

概率论基础-华中师范大学20年春季考题库及答案

概率论基础-华中师范大学20年春季考题库及答案
[二级属性]:
[难度]:
[公开度]:
5.题面见图片:
A. A
B. B
C. C
D. D
[答案]:B
[一级属性]:
[二级属性]:
[难度]:
[公开度]:
6.题面见图片:
A. A
B. B
C. C
D. D
[答案]:D
[一级属性]:
[二级属性]:
[难度]:
[公开度]:
7.题面见图片:
A. A
B. B
C. C
D. D
B. 0.073
C. 0.146
D. 0.292
[答案]:C
[一级属性]:
[二级属性]:
[难度]:
[公开度]:
20.题面见图片:
A. A
B. B
C. C
D. D
[答案]:B
[一级属性]:
[二级属性]:
[难度]:
[公开度]:
21.袋中有5个白球,3个黑球。从中任取两个球,则取出的两个球都是白球的概率为()。
1.题面见图片:
A. A
B. B
C. C
D. D
[答案]:A
[一级属性]:
[二级属性]:
[难度]:
[公开度]:
2.题面见图片:
A. A
B. B
C. C
D. D
[答案]:C
[一级属性]:
[二级属性]:
[难度:
[公开度]:
3.假设一个小孩是男是女是等可能的,若某家庭有三个孩子,在已知至少有一个女孩的条件下,求这个家庭中至少有一个男孩的概率为()。
A. 2/3
B. 13/21
C. 3/4
D. 1/2

华中师大《概率论基础》练习题库及答案

华中师大《概率论基础》练习题库及答案

华中师范大学职业与继续教育学院 《概率论基础》练习题库及答案填空题1.设随机变量ξ的密度函数为p(x), 则 p(x) ≥0;⎰∞∞-dx x p )(= ;Eξ= 。

考查第三章2.设A,B,C 为三个事件,则A,B,C 至少有一个发生可表示为: ;A,C 发生而B 不发生可表示 ;A,B,C 恰有一个发生可表示为: 。

考查第一章3.设随机变量)1,0(~N ξ,其概率密度函数为)(0x ϕ,分布函数为)(0x Φ,则)0(0ϕ等于π21,)0(0Φ等于 。

考查第三章 4.设随机变量ξ具有分布P{ξ=k}=51 ,k=1,2,3,4,5,则Eξ= ,Dξ= 。

考查第五章5.已知随机变量X ,Y 的相关系数为XY r ,若U=aX+b,V=cY+d, 其中ac>0. 则U ,V 的相关系数等于 。

考查第五章6.设),(~2σμN X ,用车贝晓夫不等式估计:≥<-)|(|σμk X P 考查第五章7.设随机变量ξ的概率函数为P{ξ=i x }=i p ,...,2,1=i 则 i p ≥ ;∑∞=1i ip= ;Eξ= 。

考查第一章8.设A,B,C 为三个事件,则A,B,C 都发生可表示为: ;A 发生而B,C 不发生可表示为: ;A,B,C 恰有一个发生可表示为: 。

9.)4,5(~N X ,)()(c X P c X P <=>,则=c 。

考查第三章10.设随机变量ξ在[1,6]上服从均匀分布,则方程012=++x x ξ有实根的概率为 。

考查第三章 较难11.若随机变量X ,Y 的相关系数为XY r ,U=2X+1,V=5Y+10 则U ,V 的相关系数= 。

考查第三章12.若 θ服从[,]22ππ-的均匀分布, 2ϕθ=,则ϕ的密度函数 ()g y = 。

考查第五章13.设4.0)(=A P ,7.0)(=+B A P ,若A 与B 互不相容,则=)(B P ;若A 与B 相互独立,则=)(B P 。

概率论基础试题

概率论基础试题

第一章 概率论基础一、填空题1.设7.0)(,4.0)(==B A P A P Y ,若A ,B 互不相容,则=)(B P , 若A ,B 相互独立,则=)(B P .2.设31)()()(321===A P A P A P ,321,,A A A 相互独立,则321,,A A A 至少出现一个的概率为 ;321,,A A A 恰好出现一个的概率为 ;321,,A A A 最多出现一个的概率为 .3.一袋中有50个乒乓球,其中20个是黄球,30个是白球.今有两人依次随机 地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .4.设在一次试验中,事件A 发生的概率为p .现进行n 次独立试验,则事件A 至少发生一次的概率为 ;而事件A 至多发生一次的概率为 .5.三个人独立破译密码,他们能单独译出的概率分别为41,31,51,则此密码被译 出的概率为 . 二、选择题1.设A 、B 为两个事件,则))((B A B A ++表示 ( ).(A ) 必然事件; (B) 不可能事件;(C ) A 与B 恰有一个发生; (D) A 与B 不同时发生.2.对事件A 、B ,下列命题正确的是 ( ).(A ) 如果A 、B 互不相容,则A 、B 也互不相容;(B ) 如果A 、B 相容,则A 、B 也相容;(C ) 如果A 、B 互不相容,且0)(>A P ,0)(>B P ,则A 、B 相互独立;(D )如果A 、B 相互独立,则A 、B 也相互独立.3.设C AB ⊂,则 ( ).(A ) C AB ⊃ ; (B ) C A ⊂且C B ⊂;(C ) C B A ⊃Y ; (D )C A ⊂或C B ⊂.4.设A 、B 是任意两个事件,则=-)(B A P ( ).(A ) )()(B P A P -; (B ) )()()(AB P B P A P +-;(C ) )()(AB P A P -; (D ) )()()(AB P B P A P -+.5.设A 、B 是任意两个事件,则一定有=+)(B A P ( ).(A ) )()(B P A P +; (B ) )()()()(B P A P B P A P -+;(C ) )()(1B P A P -; (D ) )()()(AB P B P A P -+.三、计算与证明题1.指明在下列各条件下,事件A ,B ,C 之间的包含关系:(1)若A 和B 同时发生,则C 必发生;(2)A 和B 有一个发生,则C 必发生;(3)若A 发生,则B 必不发生;(4)A 和B 同时发生的充分必要条件是C 不发生;(5)A 发生的充分必要条件是B 不发生.2.对任意的随机事件C B A ,,,证明:)()()()(A P BC P AC P AB P ≤-+.3.将3个球随机地投入4个盒子中,求下列事件的概率:(1)A 是任意3个盒子中各有1个球;(2)B 是任意1个盒子中有3个球;(3)C 是任意1个盒子中有2个球,其它任意1个盒子中有1个球.4.把一个表面涂着颜色的立方体等分成1000个小立方体,从这些小立方体中任意取出一个,求它有k面涂着颜色的概率(k = 0, 1, 2, 3).5.设OA是Ox轴上长为1的线段,B为OA的中点,C为OA上任一点,求线段OC,CA,OB三线段能构成一个三角形的概率.6.已知在1000个灯泡中坏灯泡的个数从0到5是等可能的,试求:(1)从1000个灯泡中任意取出的100个灯泡都是好灯泡的概率;(2)如果任意取出的100个灯泡都是好的,则1000个灯泡都是好灯泡的概率.7.发报台分别以概率0.6及0.4发出信号“·”及“—”.由于通信系统受到干扰,当发出信号“·”时,收报台以概率0.8及0.2收到信号“·”及“—”;又当发出信号“—”时,收报台以概率0.9及0.1收到信号“—”及“·”.求:(1)收报台收到信号“·”的概率;(2)收报台收到信号“—”的概率;(3)当收报台收到信号“·”时,发报台确系发出信号“·”的概率;(4)当收报台收到信号“—”时,发报台确系发出信号“—”的概率.8.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在一昼夜内到达的时刻是等可能的.如果甲船的停泊时间是一小时, 乙船的停泊时间是两小时, 求它们中的任何一艘都不需等候码头空出的概率.。

概率论基础第一版课后练习题含答案

概率论基础第一版课后练习题含答案

概率论基础第一版课后练习题含答案第一章试验与事件习题1.1在一家商店的百货部有不少于三只铅笔和不多于五只铅笔。

一名顾客在不知道这一点的情况下购买两只铅笔。

试问顾客买到至少一枝铅笔的概率是多少?答案:假设所有可能购买的铅笔数量为N,并设顾客购买的两支铅笔为A和B。

1. 所有购买方式:- 购买一枝铅笔的情况有3+4+5=12种 - 购买两枝不同的铅笔的情况有$C_{3}^{3} \\times C_{4}^{4} \\times C_{5}^{5} = 1$ 种 - 购买两枝相同的铅笔的情况有C32+C42+C52=20种2. 至少购买一枝铅笔的情况是,购买两枝不同的铅笔、购买两枝相同的铅笔、只购买一枝铅笔。

即(1+20+12)种。

因此,顾客买到至少一枝铅笔的概率为:$P=\\dfrac{1+20+12}{3+4+5 \\choose 2}=0.9$。

习题1.2小明受邀参加某微信群的聚会,詹嫣是这个群的一员。

在该群中,除了詹嫣外,其他人不能辨别出小明和任何一位其他人是否是同一人。

试问,如若只在詹嫣的帮助下,做到让三位不知情的其他成员分不清他与其他成员之间的关系,则考虑以下概率事件: - 以A表示小明与已知一人不是同一人 - 以B表示小明与已知两人不是同一人 - 以C表示已知两人中,至少一人就是小明 - 以D表示已知的三个人均不是小明那么事件A,B,C,D中,哪些是不可能发生的?哪些是必然发生的?哪些是可能发生的?答案:- 不可能发生的事件:B和D。

因为如果小明与已知的两人都不是同一人,那么已知的两人肯定是同一人,与已知的两人中,至少一人就是小明的条件矛盾;如果已知的三个人均不是小明,那么小明就不可能在群里。

- 必然发生的事件:C。

因为在已知的人中,肯定至少有一个人是小明。

- 可能发生的事件:A。

因为无法确定小明是与已知的哪一位不是同一人。

概率论基础试题及答案

概率论基础试题及答案

概率论基础试题及答案一、单项选择题(每题2分,共10分)1. 随机变量X服从标准正态分布,P(X≤0)的值为:A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.3,则P(X=3)的值为:A. 0.0573B. 0.05734C. 0.05735D. 0.0574答案:A3. 若随机变量X与Y相互独立,则P(X>Y)的值为:A. P(X)P(Y)B. P(X) - P(X≤Y)C. 1 - P(X≤Y)D. 1 - P(X)P(Y)答案:C4. 随机变量X服从泊松分布,其期望值为λ,若λ=5,则P(X=3)的值为:A. 0.175467B. 0.175468C. 0.175469D. 0.17547答案:A5. 随机变量X服从均匀分布U(a, b),其概率密度函数为:A. f(x) = 1/(b-a), a≤x≤bB. f(x) = 1/(a-b), a≤x≤bC. f(x) = 1/(a+b), a≤x≤bD. f(x) = 1/(a-b), b≤x≤a答案:A二、填空题(每题3分,共15分)1. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = __________,其中μ为均值,σ^2为方差。

答案:1/(σ√(2π)) * e^(-(x-μ)^2/(2σ^2))2. 已知随机变量X服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中x≥0,则其期望值为E(X) = __________。

答案:1/λ3. 若随机变量X与Y相互独立,且P(X) = 0.6,P(Y) = 0.4,则P(X∩Y) = __________。

答案:0.244. 随机变量X服从二项分布B(n, p),若n=5,p=0.2,则P(X≥3) = __________。

答案:0.031255. 随机变量X服从几何分布,其概率质量函数为P(X=k) = (1-p)^(k-1)p,其中k=1,2,3,...,则其方差Var(X) = __________。

概率测试题及答案

概率测试题及答案

概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。

答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。

答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。

答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。

四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。

2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。

求事件A和事件B同时发生的概率。

答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。

五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。

答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。

例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.某公司有A、B、C三个生产基地生产同一种产品,产量分别占20%,45%和35%.三个基地的产品各有30%,20%,25%在北京市场销售.则该公司任取此产品一件,它可能在销往北京市场的概率为.
考查第二章
22. 为一维连续型随机变量 的概率密度函数,则有 ;若离散型随机变量 具有分布列 则 .
考查第三章
23.若 是相互独立的随机变量,均服从二项分布,参数为 及 ,则 服从参数为分布.
考查第四章
24.设随机变量 服从参数为 和 的正态分布 ,则 =_______; =__________.
考查第五章
25.设A,B,C为任意三个事件,则其中至少有两个事件发生应表示为。
考查第一章
27.若二维随机向量( )的联合密度函数
(A)1(B) (C) (D)
考查第五章
5.下列论述不正确的是()
(A)若事件A与B独立则 与B独立 (B)事件A B不相容则A与B独立
(C)n个事件两两独立不一定相互独立(D)随机变量 和 独立则二者不相关
考查第二章
6.甲乙两人各投掷n枚硬币,理想状态下甲乙两人掷得正面数相同的概率为()
(A)0(B) (C) (D)
31.随机变量ξ的期望为 ,标准差为 ,则 =_______.
32.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。设两人的射击是相互独立的,则目标被射中的概率为_________.
33.设连续型随机变量ξ的概率分布密度为 ,a为常数,则P(ξ≥0)=_______.
考查第三章
4.设随机变量ξ具有分布P{ξ=k}= ,k=1,2,3,4,5,则Eξ=,Dξ=。
考查第五章
5.已知随机变量X,Y的相关系数为 ,若U=aX+b,V=cY+d, 其中ac>0. 则U,V的相关系数等于。
考查第五章
6.设 ,用车贝晓夫不等式估计:
考查第五章
7.设随机变量ξ的概率函数为P{ξ= }= 则 ; =;Eξ=。
考查第二章
2.在[0,1]线段上随机投掷两点,两点间距离大于0.5的概率为()
(A)0.25(B)0.5(C)0.75(D)1
考查第一章
3.设独立随机变量X,Y分别服从标准正态分布,则X + Y服从()
(A)N(2,0)(B)自由度为2的 分布(C)N(0,2)(D)不能确定
考查第三章
4.设P(X=n)=a 且EX=1,则a为()
考查第二章
15.随机变量 服从()分布时, 。
(A)正态(B)指数
(C)二项(D)泊松(Poisson)
考查第五章
(A) (B) (C)1(D)
考查第一章
13.设A,B为两个互斥事件,且P(A)>0,P(B)>0,则下列结论正确的是()。
(A)P(B|A)>0,(B)P(A|B)=P(A)(C)P(A|B)=0(D)P(AB)=P(A)P(B)
考查第二章
14.事件A,B相互独立, ,P(A)=()。
(A) (B) (C)0(D)
考查第一章
10.设P(X=n)=a ,其中a为 ,则EX=()
(A) (B)1(C)0.5(D)3
考查第五章
11.下列论述不正确的是()
(A)n个事件两两独立不一定相互独立(B)若事件A与B独立则 与B独立
(C)事件A B不相容则A与B独立(D)随机变量 和 独立则二者不相关
考查第二章
12.掷n枚硬币,出现正面的概率为 ,至少出现一次正面的概率为()
考查第一章
8.设A,B,C为三个事件,则A,B,C都发生可表示为:;A发生而B,C不发生可表示为:;A,B,C恰有一个发生可表示为:。
考查第一章
9. , ,则 。
考查第三章
10.设随机变量 在[1,6]上服从均匀分布,则方程 有ቤተ መጻሕፍቲ ባይዱ根的概率为。
考查第三章较难
11.若随机变量X,Y的相关系数为 ,U=2X+1,V=5Y+10则U,V的相关系数=。
考查第三章
12.若 服从 的均匀分布, ,则 的密度函数 =。
考查第五章
13.设 , ,若 与 互不相容,则 ;若 与 相互独立,则 。
考查第一章
14.将数字1,2,3,4,5写在5张卡片上,任意取出三张排列成三位数,这个数是奇数的概率P(A)=。
考查第一章
15.若 , , ,最可能值 。
考查第二、五章
选择题(含答案)
1.一模一样的铁罐里都装有大量的红球和黑球,其中一罐(取名“甲罐”)内的红球数与黑球数之比为2:1,另一罐(取名“乙罐”)内的黑球数与红球数之比为2:1,今任取一罐并从中依次取出50只球,查得其中有30只红球和20只黑球,则该罐为“甲罐”的概率是该罐为“乙罐”的概率的( )
(A)2倍(B)254倍(C)798倍(D)1024倍
考查第一、二章
7.设独立随机变量X,Y分别服从标准正态分布,则X + Y服从()
(A)二项分布(B) 分布(C)N(0,2)(D)不能确定
考查第三、四章
8.对于任意事件 与 ,有 ()。
(A) (B)
(C) (D)
考查第一章
9.在[0, ]线段上随机投掷两点,两点间距离大于 的概率为()
(A)1(B)0.75(C)0.5(D)0.25
华中师范大学职业与继续教育学院
《概率论基础》练习题库及答案
填空题
1.设随机变量ξ的密度函数为p(x),则p(x) 0; =;Eξ=。
考查第三章
2.设A,B,C为三个事件,则A,B,C至少有一个发生可表示为:;A,C发生而B不发生可表示;A,B,C恰有一个发生可表示为:。
考查第一章
3.设随机变量 ,其概率密度函数为 ,分布函数为 ,则 等于 , 等于。
16.设随机变量X的概率密度为 ,则 =,
=
考查第四、五章
17.任取三线段分别长为x,y,z且均小于等于a,则x,y,z可构成一三角形的概率
考查第一章(较难)
18.设随机变量X,Y的相关系数为1,若Z=X-0.4,则Y与Z的相关系数为
考查第五章
19.若 , , .
考查第五章
20.若 , , .
考查第五章
P(x,y)=
则E =,D =, E =, D =Cov( )=.
考查第五章
28.两人相约7点到8点在某地会面,先到者等另一个人20分钟,过时就可离开,则两人能会面的概率为。
考查第一三章
29.设A、B是相互独立的随机事件,P(A)=0.5,P(B)=0.7, 则 =.
30.设随机变量 ,则n=______.
相关文档
最新文档