计算机视觉课程大纲
《计算机视觉》课程教学大纲

《计算机视觉》课程教学大纲课程名称:计算机视觉课程类别:任意选修课适用专业:电子信息工程考核方式:考查总学时、学分:24学时1.5学分一、课程性质、教学目标计算机视觉是电子信息工程专业的一门任意选修课,旨在拓宽学生的专业和学术视野,引导学生了解掌握计算机视觉领域基础知识和热点方向,为后续从事相关工作或学术研究奠定基础。
计算机视觉是一门研究用计算机来实现人类视觉功能的学科,其研究目标是使得计算机能够对目标进行分割、分类、识别、检测、跟踪和决策等。
计算机视觉是人工智能领域的重要领域,在工业界有广泛的应用前景,也是科学研究中的一个富有挑战性的研究方向,它包含领域广,综合性强,涉及图像处理、模式识别、计算机科学、统计学、神经生理学和认知科学等多门学科。
通过本课程的学习,使学生了解计算机视觉的发展和应用,掌握学科基础知识和经典算法,培养分析解决相关问题的能力,为后续从事相关工作或学术研究奠定基础。
具体课程教学目标如下:课程教学目标1:了解计算机视觉的发展历史、相关学科、应用领域和研究方向,培养学生学习兴趣,引导学生关注学科前沿和业界动态。
课程教学目标2:掌握基本的图像预处理和特征提取的原理和方法;掌握卷积神经网络的相关知识(损失函数、正则化和梯度下降优化算法等);为后续内容提供基础。
课程教学目标3:掌握图像分类、目标检测、语义分割、场景理解和图像生成等的原理和经典算法,使学生具备基本的方向知识和研究方法,并能够自主拓展学习或解决相关问题。
课程教学目标与毕业要求对应的矩阵关系二、课程教学要求因计算机视觉涉及领域广、研究方向多、发展日新月异,本课程选取前沿技术深度学习为切入点,讲授计算机视觉的基础知识和基于深度学习的图像分类、目标检测、语义分割、场景理解和图像生成等的原理和经典算法。
执行本大纲应注意的问题:1、计算机视觉基础知识中,涉及大量的数字图像处理知识,包含较多复杂公式,在教学过程中要注重原理,深入浅出;2、本课程的实践性较强,在教学过程中要突出理论与实践的联系,注重培养学生实践能力和综合解决问题的能力;3、计算机视觉涉及领域广、研究方向多,课程课时有限,在深度和广度不能全面覆盖,在教学过程中,要引导学习自主学习,探究感兴趣方向;4、计算机视觉是目前最为前沿和热门的研究方向之一,在教学过程中,要注意知识的更新和补充,并引导学生关注前沿动态、阅读相关论文、组织讨论分享,提高学生的科技素养。
中国海洋大学计算机视觉课程大纲(理论课程)-中国海洋大学信息科学与

中国海洋大学计算机视觉课程大纲(理论课程)英文名称:Computer Vision【开课单位】信息学院计算机系【课程模块】工作技能【课程编号】080504301305 【课程类别】选修【学时数】68 (理论51 实践17 )【学分数】3.5一、课程描述(一)教学对象计算机相关专业学生。
(二)教学目标及修读要求1、教学目标了解计算机视觉的应用领域,掌握基本的图像分割、特征检测、聚类及分类算法,理解相机模型以及相机标定方法,学会利用已有相关算法,使用OpenCV进行相关视觉应用的开发。
2、修读要求计算机视觉属于计算机专业的一门新课,和研究前沿结合的比较紧密,需要学生具有数字图像处理、计算机图形学以及线性代和概率论方面的基础。
(三)先修课程数字图像处理。
二、教学内容(一)绪论1、主要内容:介绍计算机视觉的基本概念,应用领域,发展历史等相关内容。
2、教学要求:了解计算机视觉的应用领域及学习的内容。
(二)第二章图像形成1、主要内容:几何基元和变换,光度测定学的图像形成,数字摄像机。
2、教学要求:理解图像形成的物理过程,包括相机镜头的物理特性对图像形成过程的影响,掌握3D到2D的投影变换,掌握相机内参和外参的概念。
3、重点、难点:相机内参和外参的标定。
(三)第三章图像处理1、主要内容:点算子,线性滤波器,其他邻域算子,傅里叶变换,几何变换等。
2、教学要求:掌握数字图像处理课程相关的基本内容,包括空间域的图像处理及频率域的图像处理基本方法。
3、重点、难点:傅里叶变换。
(四)第四章特征检测与匹配1、主要内容:图像的点与块,图像的边缘,直线。
2、教学要求:理解图像特征的概念,掌握几种特征(点、块、边缘、直线)的检测方法,了解特征匹配的在图像拼接及相机标定等方面的应用。
3、重点、难点:几种特征描述子的生成过程。
(五)第五章图像分割1、主要内容:活动轮廓,基于区域的分割。
2、教学要求:掌握几种流行的图像分割方法,包括基本的阈值方法,活动轮廓方法,基于聚类的方法。
计算机视觉-教学大纲

《计算机视觉》教学大纲一、课程信息课程名称:计算机视觉课程类别:素质选修课/专业基础课课程性质:选修/必修计划学时:64计划学分:4先修课程:无选用教材:《计算机视觉》,韩建平,周梦熊,张海平主编,2021年,电子工业出版社教材。
适用专业:本课程可供计算机科学与技术、软件工程、多媒体处理和信号处理等领域中关注计算机视觉、图像处理、模式识别及其应用的工程技术人员人员和科研教学人员学习,也可作为研究生和大学高年级学生学习的课程。
课程负责人:二、课程简介计算机视觉是目前研究最为活跃的领域之一,很多新的技术和方法在计算机视觉中得到了成功的应用。
本课程以计算机视觉相关技术和模型为主线,讨论当前这个领域的传统技术和方法。
本课程叙述了计算机视觉相关的一些基本理论和技术,主要包括人类视觉系统的建模、则D模型和显著性模型、图像的形成过程及相关的坐标交换、图像的底层特征提取与检测、图像中物体运动与关联分析等。
三、课程教学要求体描述。
“关联程度”栏中字母表示二者关联程度。
关联程度按高关联、中关联、低关联三档分别表示为“H”“M”或“L”。
“课程教学要求”及“关联程度”中的空白栏表示该课程与所对应的专业毕业要求条目不相关。
四、课程教学内容五、考核要求及成绩评定注:此表中内容为该课程的全部考核方式及其相关信息。
六、学生学习建议(一)学习方法建议1.依据专业教学标准,结合岗位技能职业标准,通过案例展开学习,将每个项目分成多个任务,系统化地学习。
2.通过每个项目最后搭配的习题,巩固知识点。
3.了解行业企业技术标准,注重学习新技术、新工艺和新方法,根据教材中穿插设置的智能终端产品应用相关实例,对已有技术持续进行更新。
4.通过开展课堂讨论、实践活动,增强的团队协作能力,学会如何与他人合作、沟通、协调等等。
(二)学生课外阅读参考资料《计算机视觉》,韩建平,周梦熊,张海平主编,2021年,电子工业出版社教材。
七、课程改革与建设(1)通俗易懂,方便学习,课程叙述了计算机视觉相关的一些基本理论和技术,主要包括人类视觉系统的建模、JND模型和显著性模型、图像的形成过程及相关的坐标交换、图像的底层特征提驭与检测、图像中物体运动与关联分析等。
计算机视觉课程教学大纲

计算机视觉课程教学大纲一、课程简介计算机视觉是计算机科学领域的一个重要分支,它致力于让计算机系统具备人类视觉系统的能力,实现对图像和视频的理解、分析和处理。
本课程将带领学生深入了解计算机视觉的基本理论和应用技术,培养学生的图像处理和模式识别能力,为他们今后在人工智能领域的发展奠定坚实的基础。
二、教学目标1. 掌握计算机视觉的基本概念和原理;2. 熟悉常用的图像处理和分析技术;3. 能够应用计算机视觉技术解决实际问题;4. 培养学生的创新和实践能力。
三、教学内容1. 计算机视觉概述- 计算机视觉的定义和历史发展- 计算机视觉的基本任务和应用领域2. 数字图像处理基础- 数字图像的表示与存储- 图像的增强和滤波- 边缘检测和图像分割3. 特征提取与描述- 图像特征的概念和分类- 霍夫变换及其在图像检测中的应用- 图像描述符和局部特征4. 目标检测与识别- 感兴趣区域检测- 目标定位和识别算法- 目标追踪和运动分析技术5. 三维计算机视觉- 立体视觉基础- 三维重建和视觉SLAM技术- 深度学习在三维视觉中的应用四、教学方法1. 理论讲授:讲解计算机视觉的基本理论和方法;2. 实践操作:开展图像处理和分析实验,提升学生的实践能力;3. 课程设计:组织学生开展计算机视觉项目设计,培养其独立思考和解决问题的能力;4. 案例分析:引导学生深入了解计算机视觉在各领域的应用案例。
五、考核方式1. 平时成绩(包括课堂参与和作业)占总成绩的30%;2. 实验及项目报告占总成绩的40%;3. 期末考试占总成绩的30%。
六、教材及参考书目教材:《计算机视觉:算法与应用》参考书目:1. Richard Szeliski, "Computer Vision: Algorithms and Applications"2. David A. Forsyth, Jean Ponce, "Computer Vision: A Modern Approach"七、师资力量本课程将由计算机视觉领域资深教授授课,具备丰富的理论知识和实践经验,能够为学生提供专业的指导和支持。
cs231n课程大纲

cs231n课程大纲CS231n是斯坦福大学开设的一门计算机视觉课程,以下是该课程的详细课程大纲:Lecture 1:计算机视觉的概述、历史背景以及课程计划。
Lecture 2:图像分类——包括数据驱动方法,K近邻方法和线性分类方法。
Lecture 3:损失函数和优化,分为三部分内容:1. 继续上一讲的内容介绍了线性分类方法;2. 介绍了高阶表征及图像的特点;3. 优化及随机梯度下降。
Lecture 4:神经网络,包括经典的反向传播算法、多层感知机结构以及神经元视角。
Lecture 5:卷积神经网络,分为三部分内容:1. 卷积神经网络的历史背景及发展;2. 卷积与池化;3. ConvNets的效果。
Lecture 6:如何训练神经网络I,介绍了各类激活函数,数据预处理,权重初始化,分批归一化以及超参优化。
Lecture 7:如何训练神经网络II,介绍了优化方法,模型集成,正则化,数据扩张和迁移学习。
Lecture 8:深度学习软件基础,包括详细对比了CPU和GPU,TensorFlow、Theano、PyTorch、Torch、Caffe实例的具体说明,以及各类框架的对比及用途分析。
Lecture 9:卷积神经网络架构,该课程从LeNet-5开始到AlexNet、VGG、GoogLeNet、ResNet等由理论到实例详细描述了卷积神经网络的架构与原理。
Lecture 10:循环神经网络,该课程先详细介绍了RNN、LSTM和GRU的架构与原理,再从语言建模、图像描述、视觉问答系统等对这些模型进行进一步的描述。
Lecture 11:检测与分割,在图像分类的基础上介绍了其他的计算机视觉任务,如语义分割、目标检测和实例分割等,同时还详细介绍了其它如R-CNN、Fast R-CNN、Mask R-CNN等架构。
Lecture 12:可视化和理解,讲述了特征可视化和转置,同时还描述了对抗性样本和像DeepDream 那样。
计算机视觉大纲

计算机视觉大纲一、计算机视觉的定义与背景计算机视觉,简单来说,就是让计算机像人类一样能够“看”懂和理解图像或视频中的内容。
它是一门涉及多个学科领域的交叉学科,融合了计算机科学、数学、物理学、生物学等知识。
在当今数字化的时代,计算机视觉的应用无处不在。
从智能手机中的人脸识别解锁,到自动驾驶汽车对道路环境的感知;从医疗领域的医学影像诊断,到工业生产中的质量检测,计算机视觉都发挥着至关重要的作用。
二、计算机视觉的工作原理计算机视觉的实现依赖于一系列复杂的技术和算法。
首先,图像或视频数据被输入到计算机系统中。
然后,通过预处理步骤,如去噪、增强对比度等,提高数据的质量。
接下来,特征提取是关键环节。
这就好比我们人类在观察事物时会关注其某些显著的特征,计算机也需要从图像中提取出有价值的信息,例如边缘、纹理、颜色等。
在特征提取之后,使用分类、检测或分割等算法对图像中的对象进行识别和理解。
这些算法会根据提取的特征,判断图像中包含的物体类别、位置和形状等。
三、计算机视觉的关键技术1、图像分类图像分类是指将图像归为不同的类别。
例如,判断一张图片是猫还是狗,是汽车还是飞机。
这需要计算机学习大量的图像样本,从而能够准确地对新的图像进行分类。
2、目标检测目标检测不仅要识别出图像中的物体类别,还要确定物体的位置和大小。
比如在一张城市街道的图片中,检测出汽车、行人、交通信号灯等,并给出它们在图像中的坐标范围。
3、图像分割图像分割则是将图像划分成不同的区域,每个区域具有相似的特征。
这在医学影像处理中非常有用,比如将肿瘤从正常组织中分割出来。
4、深度学习技术深度学习,特别是卷积神经网络(CNN),在计算机视觉中取得了巨大的成功。
CNN 能够自动学习图像的特征,大大提高了计算机视觉任务的准确性。
四、计算机视觉的应用领域1、安防监控通过实时分析监控摄像头拍摄的图像或视频,计算机视觉可以实现人员识别、行为分析、异常检测等功能,提高安全性。
计算机视觉课程大纲
计算机视觉(Computer Vision)是计算机科学领域中的一个重要分支,涉及到使计算机能够理解和解释视觉信息的任务。
以下是一份典型的计算机视觉课程大纲,具体内容可能因学校和教授而异,但通常包括以下主题:### 第一部分:基础概念和图像处理1. **导论**- 计算机视觉的定义和应用领域- 发展历史和里程碑2. **数字图像基础**- 像素、分辨率和颜色模型- 图像获取和表示3. **图像处理基础**- 线性滤波和非线性滤波- 图像增强和降噪技术### 第二部分:特征提取和描述4. **特征提取**- 边缘检测、角点检测- 尺度空间理论5. **特征描述**- SIFT、SURF、ORB等特征描述算法- 特征匹配方法### 第三部分:几何视觉6. **相机几何**- 相机模型- 三维几何和二维投影7. **相机标定**- 内参数和外参数- 相机标定方法### 第四部分:深度学习在计算机视觉中的应用8. **深度学习基础**- 神经网络、卷积神经网络(CNN)等- 深度学习在计算机视觉中的优势9. **目标检测和物体识别**- 目标检测算法(如YOLO、Faster R-CNN) - 物体识别任务和技术### 第五部分:图像分割和理解10. **图像分割**- 基于区域的分割- 基于边缘的分割11. **图像理解**- 图像分类和语义分割- 图像场景理解### 第六部分:高级主题12. **三维计算机视觉**- 点云处理- 三维重建13. **视觉SLAM(Simultaneous Localization and Mapping)**- 基本概念- 视觉SLAM系统### 第七部分:应用和案例研究14. **计算机视觉在实际应用中的案例**- 图像识别在医疗领域的应用- 视觉导航和无人驾驶等案例### 第八部分:最新研究和发展15. **计算机视觉领域的最新研究进展**- 强化学习在计算机视觉中的应用- 可解释性和公平性等热门主题### 实验和项目- 课程可能包括实验和项目,以帮助学生应用所学知识,并在实际问题中解决计算机视觉挑战。
计算机视觉 教学大纲
计算机视觉教学大纲
摘要:
一、计算机视觉简介
二、计算机视觉的基本原理
三、计算机视觉的应用领域
四、计算机视觉的发展历程
五、计算机视觉的未来发展趋势
正文:
计算机视觉是一门研究如何使机器能够“看”的科学。
它通过使用计算机和各种传感器来代替人眼,对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。
计算机视觉既是工程领域,也是科学领域中的一个富有挑战性重要研究领域。
计算机视觉的基本原理是通过光学、电子学和数学等学科的交叉,实现对图像的获取、处理、分析和理解。
其核心是图像处理技术,包括图像预处理、图像增强、图像分割、特征提取和图像识别等。
计算机视觉的应用领域非常广泛,包括无人驾驶、智能家居、医疗健康、工业制造、安防监控等。
其中,无人驾驶是计算机视觉应用最为广泛的领域之一,通过计算机视觉技术,无人驾驶汽车可以实现自主导航、环境感知、路径规划等功能。
计算机视觉的发展历程可以追溯到上世纪50 年代,当时的主要研究集中在图像的分析和识别。
随着技术的不断进步,计算机视觉逐渐发展成为了一个
涉及多个学科的综合性学科,包括计算机科学、工程学、物理学、数学和神经科学等。
未来,计算机视觉将继续保持高速发展态势,并逐渐向更加智能化、精细化的方向发展。
例如,通过深度学习等人工智能技术,计算机视觉可以实现更加准确的目标检测和识别,以及更加精细的图像分割和分析。
此外,随着5G 技术的普及,计算机视觉的应用场景将更加丰富,例如远程医疗、智能交通等。
总之,计算机视觉是一个充满挑战和机遇的领域。
深度学习与计算机视觉课程大纲
深度学习与计算机视觉课程大纲一、授课内容:1.深度学习介绍人工智能、人工神经网络、人工神经网络的学习方式、卷积神经网络、卷积神经网络的功能、深度学习的意义2.卷积神经网络卷积神经网络的组成、卷积层、全连接层、卷积神经网络的训练、卷积神经网络的评估3.有名的卷积神经网络模式一般网络 (LeNet, AlexNet, SPP, VGG, NIN)、GoogLeNet (Inception-1, 2, 3, 4, Xception, MobileNet-1, 2)、残差网络 (ResNet, ResNeXt, Highway Net, Wide residual Net, DenseNet)、压缩网络 (SqueezeNet, Squeeze and Excitation, SqueezeNext, CMPE-SE)、有效率的网络 (NASNet, EfficientNet, NoisyStudent, FixEfficientNet)、二阶段侦测网络 (R-CNN, Fast, Faster R-CNN, MSCNN, FPN, CBNet)、一阶段侦测网络 (YOLO-1, 2, 3, 4, SSD)、语意分割网络 (FCN, U-Net, UNet++, SegNet, DeepLab-1~3+, PAN, DANet)、实例分割网络 (DeepMask, SharpMask, Mask R-CNN, YOLCAT)、自动编码网络 (Autoencoder, Variational AE)、生成对抗网络 (GAN, DCGAN, Wasserstein GAN, VAE+GAN)、应用生成对抗网络 (AC-GAN, ProGAN, cGAN, cycleGAN, StarGAN,perceptual transfer, style transfer, Deep photo style transfer, styleGAN, styleGAN2, AnoGAN, GANomaly, Skep-GANomaly)、变形网络 (Transformer Net)、3D定位网络 (Amodal detection)、动作侦测辨识网络 (SlowFast Network)、其他网络 (Siamese Net, Comparison Network)4.卷积神经网络专题网络训练的影响因素与改进、资料不平衡、正规化、主动学习、迁移学习、特殊运算、特殊处理5.深度学习的计算机视觉应用计算机视觉的意义、计算机视觉的技术、深度学习在计算机视觉上的应用6.先进驾驶辅助系统应用前车碰撞警示、行人碰撞警示、倒车碰撞警示、自动跟随巡航、车门开启防撞警示7.人体特征侦测与辨识应用小众人脸侦测与辨识、大众人脸侦测与辨识、手势辨识8.自动光学检测应用SMT 元件分类、电子元件的字符侦测与辨识、PCB元件定位与分类、物品表面瑕疵检测、半督导式的锡球瑕疵判定、生成/合成瑕疵影像9. 3D 物件侦测/辨识/定位应用机器手臂取放物体应用、大型衍生 (amodal) 物件侦测/辨识/定位、小型物体的侦测/辨识/与 9-DoF估计10.动态追踪与监视应用居家照护、安全监视、多相机联合监视11.其他应用影像噪声去除 (RED-Net, Noise2Noise)、影像强化 (EnlightenGAN, SID)、超级影像分辨率 (SRGAN, EDSR, WDSR)、影像修补 (IC, c2f-CA)12.深度学习的疑问与结论深度学习在模式、架构、训练、资料集、及应用上的疑问二、参考书:[1] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, TheMIT Press, MIT, MA, 2016.[2] F. Chollet, Deep Learning with Python, Manning PublicationsCo., Shelter Island, NY, 2018.。
数字图像处理与计算机视觉实验课程大纲
数字图像处理与计算机视觉实验课程大纲一、课程简介数字图像处理与计算机视觉实验课程旨在介绍数字图像处理和计算机视觉的基本概念、原理和应用。
通过该课程的学习,学生将深入了解图像处理技术的基础知识,掌握图像处理的常用算法和工具,同时还将学习计算机视觉的相关理论和实践。
本大纲将详细说明课程的教学目标、内容和考核方式。
二、教学目标1. 了解数字图像处理和计算机视觉的基本概念和发展历程;2. 掌握数字图像的获取、表示和处理方法;3. 学习数字图像处理的基础算法,如图像增强、滤波和分割等;4. 熟悉计算机视觉的相关理论和技术,如目标检测、特征提取和图像识别等;5. 能够运用所学知识解决实际图像处理和计算机视觉问题。
三、教学内容1. 数字图像处理基础1.1 数字图像的基本概念和特性;1.2 图像获取和表示方法;1.3 图像的数学变换和编码技术。
2. 图像增强与滤波2.1 灰度增强和直方图处理;2.2 空间域滤波和频域滤波;2.3 噪声抑制和锐化处理。
3. 图像分割与描述3.1 阈值分割和边缘检测;3.2 区域生长和分水岭算法;3.3 形态学图像处理。
4. 计算机视觉基础4.1 计算机视觉的基本原理和任务;4.2 特征提取和描述方法;4.3 目标检测和跟踪技术。
5. 图像识别与机器学习5.1 图像分类和识别方法;5.2 深度学习在计算机视觉中的应用;5.3 实际案例分析和应用展望。
四、教学方法本课程将采用理论讲授、实验操作和案例分析相结合的教学方法。
1. 理论讲授:通过课堂讲解,详细介绍数字图像处理和计算机视觉的基本概念、原理和算法。
2. 实验操作:安排实验环节,让学生亲自操作图像处理和计算机视觉软件,实践所学知识。
3. 案例分析:通过实际案例分析,引导学生分析和解决实际图像处理和计算机视觉问题。
五、考核方式1. 平时成绩:包括参与度、作业完成情况和实验报告等。
2. 期中考试:对数字图像处理和计算机视觉的基础知识进行考查。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(加拿大)帕科尔 著,景丽 译,图像处理与计算机视觉算法及应用(第2版)清华大学出版社2012
参考书目
1. Dama H. Ballard, et al., Computer Vision, Prentice-Hall Inc., 1982
2. David Marr, Vision, W.H. Freeman and Company, 1982
3. Emanuele Trucco., Introductory Techniques for 3-D Computer Vision, Prentice-Hall Inc., 1998
4. 贾云得, 机器视觉,科学出版社,2000
课程内容纲要
课程名称
计算机视觉
课程编号
总学时
54
学分
3
课程层次
专业基础课
授课语言
双语
开课形式
理论讲授/实验课程
适用学科
计算机科学与技术/软件工程考试 Nhomakorabea式考试
内容简介
计算机视觉的主要研究内容:通过场景的图像或图像序列恢复原来场景的有用信息,譬如,场景中三维物体的结构、运动,表面曲率和方向,以及物体的三维状态和场景中动作的意义。在本课程中,首先介绍计算机视觉的基本概念、理论和算法。首先,回顾图像处理的基本操作,然后讨论区域、边沿检测、立体视觉、三维运动分析、轮廓、纹理、光度学、光流场、摄像机标定、三维曲面、动态视觉等等的理论和算法。