平面向量与基本不等式(练习题)2016-高考-数学

合集下载

高考数学压轴专题(易错题)备战高考《不等式》难题汇编含答案

高考数学压轴专题(易错题)备战高考《不等式》难题汇编含答案
新高考数学《不等式》练习题
一、选择题
1.设 , 满足 ,向量 , ,则满足 的实数 的最小值为()
A. B. C. D.
【答案】B
【解析】
【分析】
先根据平面向量垂直的坐标表示,得 ,根据约束条件画出可行域,再利用 的几何意义求最值,只需求出直线 过可行域内的点C时,从而得到 的最小值即可.
【详解】
解:不等式组表示的平面区域如图所示:因为 , ,
6.已知 、 满足约束条件 ,若 ,则实数 的最小值为()
A. B. C. D.
【答案】C
【解析】
【分析】
作出不等式组所表示的可行域,利用目标函数的几何意义求出 的最小值,进而可得出实数 的最小值.
【详解】
作出不等式组 所表示的可行域如下图所示,
表示原点到可行域内的点 的距离的平方,
原点到直线 的距离的平方最小, .
10.已知实数 , 满足 ,且 ,则 的最小值为().
A. B. C. D.
【答案】B
【解析】
【分析】
令 ,用 表示出 ,根据题意知 ,利用 的代换后根据基本不等式即可得 的最小值.
【详解】

令 ,解得 ,则 , ,
当且仅当 ,即 ,即
即 时取等号.
故选:B.
【点睛】
本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.
【详解】
当 时,即当 时,则有 ,该不等式恒成立,合乎题意;
当 时,则 ,解得 .
综上所述,实数 的取值范围是 .
故选:D.
【点睛】
本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.

高三数学平面向量基本定理及坐标表示试题答案及解析

高三数学平面向量基本定理及坐标表示试题答案及解析

高三数学平面向量基本定理及坐标表示试题答案及解析1.已知向量_________.【答案】10【解析】所以答案应填:10.【考点】1、平面向量的坐标运算;2、向量的模;3、向量的数量积.2.如图,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,,则的取值范围是.【答案】【解析】解:建立平面直角坐标系如图所示,则因为,所以所以,,所以,故答案应填.【考点】1、平面向量基本定理;2、向量的坐标表示;3、向量的数量积;4、一元二次函数的最值.3.在△ABC中,D为边BC上任意一点,=λ+μ,则λμ的最大值为( )A.1B.C.D.【答案】D【解析】依题意得,λ+μ=1,λμ=λ(1-λ)≤2=,当且仅当λ=1-λ,即λ=时取等号,因此λμ的最大值是,选D.4.在下列条件中,使M与A,B,C一定共面的是()A.=2--B.=++C.++=0D.+++=0【答案】C【解析】++=0,即=-(+),所以M与A,B,C共面.5.已知A(2,-2),B(4,3),向量p的坐标为(2k-1,7)且p∥,则k的值为()A.-B.C.-D.【答案】D【解析】=(2,5),由p∥得5(2k-1)-2×7=0,所以k=.6.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,则tan(α-)等于()A.3B.-3C.D.-【答案】B【解析】选B.∵a=(cosα,-2), b=(sinα,1)且a∥b,∴=(经分析知cosα≠0),∴tanα=-.∴tan(α-)===-3,故选B.【方法技巧】解决向量与三角函数的综合题的方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.7.平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),回答下列问题:(1)求3a+b-2c.(2)求满足a=mb+nc的实数m,n.(3)若(a+kc)∥(2b-a),求实数k.【答案】(1) (0,6 (2) (3)k=-.【解析】(1)3a+b-2c=3(3,2)+(-1,2)-2(4,1)=(9,6)+(-1,2)-(8,2)=(0,6).(2)∵a=mb+nc,∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2m+n).∴解得(3)∵(a+kc)∥(2b-a),又a+kc=(3+4k,2+k),2b-a=(-5,2).∴2×(3+4k)-(-5)×(2+k)=0,∴k=-.8.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.9.设向量,若,则实数的值为 .【答案】【解析】根据向量平行的坐标表示,由得,,解得.【考点】向量平行的坐标表示.10.定义平面向量之间的一种运算“”如下,对任意的,,令,下面说法错误的是()A.若与共线,则B.C.对任意的,有D.【答案】B【解析】根据题意可知,对于任意的,,令,则可知对于A.若与共线,则成立,对于 B.显然不相等,故错误,对于C.对任意的,有,验证成立,对于D. 同样满足向量的数量积运算,故选B.【考点】新定义点评:主要是考查了向量的计算,属于基础题。

高考数学(理)真题专题汇编:平面向量

高考数学(理)真题专题汇编:平面向量

高考数学(理)真题专题汇编:平面向量一、选择题1.【来源】2019年高考真题——理科数学(北京卷)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件2.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3 B .-2C .2D .33.【来源】2019年高考真题——理科数学(全国卷Ⅰ) 已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π64.【来源】2018年高考真题——理科数学(天津卷)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅AE BE 的最小值为(A) 2116(B) 32(C) 2516(D) 35.【来源】2018年高考真题——理科数学(全国卷II ) 已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )= A .4B .3C .2D .06.【来源】2018年高考真题——理科数学(全国卷Ⅰ) 在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A.43AB -41ACB. 41AB -43AC C. 43AB +41AC D. 41AB +43AC7.【来源】2016年高考真题——理科数学(天津卷)已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为( )(A )85-(B )81(C )41(D )8118.【来源】2017年高考真题——数学(浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OB OA ⋅,I 2=OC OB ⋅,I 3=OD OC ⋅,则A .I 1<I 2<I 3B .I 1<I 3 <I 2C .I 3<I 1<I 2D . I 2<I 1<I 39.【来源】2017年高考真题——理科数学(全国Ⅲ卷)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为()A .3B .22C 5D .210.【来源】2017年高考真题——理科数学(全国Ⅱ卷)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是( )A.-2B.23-C. 43-D.-111.【来源】2016年高考真题——理科数学(新课标Ⅱ卷)12.【来源】2014高考真题理科数学(福建卷)在下列向量组中,可以把向量()2,3=a 表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e二、填空题13.【来源】2019年高考真题——数学(浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.14.【来源】2019年高考真题——理科数学(天津卷)在四边形ABCD 中,,23,5,30ADBC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅= . 15.【来源】2019年高考真题——理科数学(全国卷Ⅲ)已知a ,b 为单位向量,且a ·b =0,若25=-c a b ,则cos ,<>=a c ___________. 16.【来源】2019年高考真题——理科数学(全国卷Ⅰ)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.17.【来源】2019年高考真题——数学(江苏卷)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.18.【来源】2018年高考真题——数学理(全国卷Ⅲ)已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________. 19.【来源】2018年高考真题——数学(江苏卷)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 20.【来源】2017年高考真题——数学(浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是_______.21.【来源】2017年高考真题——数学(江苏卷)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若20≤⋅PB PA ,则点P 的横坐标的取值范围是 .22.【来源】2017年高考真题——数学(江苏卷)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°。

专题04 基本不等式 高考数学多题一解篇(文理通用)(解析版)

专题04 基本不等式 高考数学多题一解篇(文理通用)(解析版)

高考数学二轮复习微专题(文理通用)多题一解之基本不等式篇【知识储备】1、基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0。

(2)等号成立的条件:当且仅当a =b 时等号成立。

(3)其中a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数。

: 2、利用基本不等式求最大、最小值问题(1)如果x ,y ∈(0,+∞),且xy =P (定值),那么当且仅当x =y 时,x +y 有最小值2P 。

(简记:“积定和最小”)(2)如果x ,y ∈(0,+∞),且x +y =S (定值),那么当且仅当x =y 时,xy 有最大值S 24。

(简记:“和定积最大”)3.常用的几个重要不等式(1)a +b a >0,b >0); (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R )。

(3)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ); (4)b a +a b ≥2(a ,b 同号)。

以上不等式等号成立的条件均为a =b 。

4、条件最值的求解通常有两种方法一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解; 二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值. 【走进高考】【例】【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标. 【答案】(1)p =2,准线方程为x =−1;(2)最小值为31+,此时G (2,0). 【解析】(1)由题意得12p=,即p =2.所以,抛物线的准线方程为x =−1. (2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t -=+,代入24y x =,得()222140t y y t---=, 故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t -+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t -=-,得()21,0Q t -.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0, 1221322213433424S m S m m m m m m=-=--=+++++⋅+….当3m =时,12S S 取得最小值1+,此时G (2,0). 【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.【例】.【2019年高考天津卷文数】设0,0,24x y x y >>+=,则(1)(21)x y xy++的最小值为__________.【答案】92【名师点睛】使用基本不等式求最值时一定要验证等号是否能够成立.【例】【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln , 1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x -=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立,令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减,则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题. 【典例分析】 基本题型: 题型一:一元问题【例】(2013四川)已知函数()4(0,0)af x x x a x=+>>在3x =时取得最小值,则a =__. 【答案】36【解析】因为0,0x a >>,()44a f x x a x =+≥=,当且仅当4ax x=,即3x ==,解得36a = 题型二:二元问题【例】(2012浙江)若正数,x y 满足35x y xy +=,则34x y +的最小值是A .B .C .5D .6 【答案】C【解析】35x y xy +=,,. 245285Q 135y x+=113131213(34)()()555x y x y y x y x +⋅+=++≥1132555⨯=【例】(2018天津)已知,a b ∈R ,且360a b -+=,则128ab+的最小值为 . 【答案】14【解析】法一:由360a b -+=,得36a b =-,所以36331112222824ab b b --+=+=⨯=≥, 当且仅当363122b b-=,即1b =时等号成立. 法二:由360a b -+=,得36a b -=-,所以3112=2284-++≥==a a b b 当且仅当322-=ab,即36322--=b b ,即1b =时等号成立.题型三:多元问题【例】(2013山东)设正实数满足.则当取得最大值时, 的最大值为( ) A .0 B .1 C .D .3 【答案】B【解析】由,得.所以,当且仅当,,,x y z 22340x xy y z -+-=xyz212x y z+-94即时取等号此时,.。

平面向量高考试题精选含详细答案)

平面向量高考试题精选含详细答案)

平面向量高测试题精选〔一〕一.选择题〔共14小题〕1. 〔2021?河北〕设D 为△ ABC 所在平面内一点,前二3五,那么〔〕A疝-仁小产:豆2. 〔2021?福建〕正_L 正,|标肝, |正|二t ,假设P 点是△ ABC 所在平面内一点,A. 13B. 15C. 19D. 213. 〔2021?四川〕设四边形 ABCCfe 平行四边形,|画二6, |面=4,假设点M N 满足就二3元,而二2说,那么标•疝二〔〕A. 20B. 15C. 9D. 64. 〔2021?安徽〕△ ABC 是边长为2的等边三角形,向量 E 满足靛=2;,AC =2a +b,那么以下结论正确的选项是〔 〕 A. | b|=1 B. alb C. a?b=1 D. 〔4a+b 〕,前5. 〔2021?陕西〕对任意向量!、b,以下关系式中不恒成立的是〔 〕A. |l^b |<|a || b|B, H-b |<|| ;| 一 |E||C. 〔 a+b 〕 2=| a+b | 2D. 〔a+b 〕 ? 〔 ; Y 〕<2 -百6. 〔2021?重庆〕假设非零向量 a, 七满足|1二组1:|可,且〔1-%〕 ± 〔 3a+2b 〕,那么3 !与E 的夹角为〔〕A. —B. —C. —D.冗 4 247. 〔2021?重庆〕非零向量 * b 满足|b|=4| J ,且a ,〔2a+b 〕那么占与b A J B J C _I D __L 3 2 368. 〔2021?湖南〕在平面直角坐标系中, O 为原点,A 〔- 1, 0〕, B 〔0,立〕,C 〔3, 0〕,动点D 满足|而|=1 ,那么| OA +OB +OD l 的取值范围是〔〕且」 .「|AB| |AC| 那么再•衣的最大值等于〔A. [4, 6]B. [V19-1, V19+1]C. [2 立,2书]D.[由-1,,+1]9. 〔2021?桃城区校级模拟〕设向量%,工满足| a |= |b |=1,二后二,V ■a- c, b-c>=60° ,那么l A的最大值等于〔〕A. 2B. Vs C .& D . 110. 〔2021?天津〕菱形ABCD勺边长为2, /BAD=120 ,点E、F分别在边BGDC上,施"前,谄.,假设凝?谆1赤?正谓,那么入+尸〔〕A. B.二 C.二D 二2 3 6 1211. 〔2021?安徽〕设,,E为非零向量,|而2|十,两组向量*,离,寓,巧和宝, 斤三,斤均由2个;和2个E排列而成,假设耳?宣+中卫+E?三+五?五所有可能取值中的最小值为4| a|2,那么!与芯的夹角为〔〕A 二B 二C 二D. 0 3 3612. 〔2021?四川〕平面向量最〔1, 2〕, b= 〔4, 2〕, c=m+b 〔mGR〕,且彳与1的夹角等于W与Z的夹角,那么m=〔〕A. - 2B. - 1C. 1D. 213. 〔2021?新课标I 〕设D, E, F分别为△ ABC的三边BC CA AB的中点,那么直+而=〔〕A 二B. 一DC. : D. 一:2 214. 〔2021?福建〕设M为平行四边形ABCD寸角线的交点,O为平行四边形ABCD 所在平面内任意一点,那么赢+5S+无+而5等于〔〕A. i"B. 2 i“C. 3 i"D. 4 i"二.选择题〔共8小题〕15. 〔2021?浙江〕设司、.为单位向量,非零向量岸x q+y., x、yGR假设司、同的夹角为30.,那么集的最大值等于_________________ .lb |16. 〔2021?北京〕点A 〔1, -1〕, B 〔3, 0〕, C 〔2, 1〕.假设平面区域D由所有满足点二次/+Nm〔1<入02, 0<医01〕的点P组成,那么D的面积为.17. 〔2021?湖南〕如图,在平行四边形ABC前,APIBD垂足为P,且AP=3,那么AP .正=.18. 〔2021?北京〕己知正方形ABCD勺边长为1,点E是AB边上的动点.那么而•百的值为.19. 〔2021?天津〕直角梯形ABC前,AD// BC / ADC=90 , AD=2 BC=1, P 是腰DC上的动点,那么|位+3瓦|的最小值为 .20. 〔2021?浙江〕平面向量五,百〔五产万,五卉万〕满足IT 1=1,且五与下的夹角为120.,那么|三|的取值范围是 .21. 〔2021?天津〕如图,在^ ABC中,ADLAB,前4菽那么AC ,箴=.22. 〔2021?天津〕假设等边△ ABC的边长为2加,平面内一点M满足而^^总正,那么6 3而,而=.三.选择题〔共2小题〕23. (2021?上海)定义向量0M= (a, b)的“相伴函数〞为f (x) =asinx+bcosx , 函数f (x) =asinx+bcosx的“相伴向量〞为赢=(a, b)(其中O为坐标原点).记平面内所有向量的“相伴函数〞构成的集合为S.(1)设g (x) =3sin (x+21) +4sinx ,求证:g (x) GS; 2(2)h (x) =cos (x+a ) +2cosx,且h (x) GS,求其“相伴向量〞的模;(3)M(a, b) (b乎0)为圆C: (x - 2) 2+y2=1上一点,向量超的“相伴函数〞f (x)在x=x.处取得最大值.当点M 在圆C上运动时,求tan2x.的取值范围._一、_________ 2 n...........................24. (2007?四川)设F I、F2分别是椭圆工+,=1的左、右焦点.4(I)假设P是第一象限内该椭圆上的一点,且西・后己二-总,求点P的作标;(II)设过定点M (0, 2)的直线l与椭圆交于不同的两点A、B,且/AO的锐角 (其中O为坐标原点),求直线l的斜率k的取值范围.平面向量高测试题精选(一)参考答案与试题解析一.选择题(共14小题)1 . (2021?河北)设D为△ ABC所在平面内一点,BC-3CD,那么( )A归工:岳B折,13 0 *s, 0八一 4 一 1 - r —1 4―1 —C—,'4'. D.解:由得到如图由仙二处+8口=标亨岸冠4 国-靛)=-掷号正;应选:A.2. (2021?福建)正1京,I店|[, |正|二t,假设P点是△ ABC所在平面内一点,,那么无•五的最大值等于(A. 13B. 15C. 19D. 21解:由题意建立如下图的坐标系, 可得 A (0, 0), B (工0) , C (0, t),・•・P (1, 4),PB= (-- 1, - 4) , pc= ( - 1 , t -4),PB*PC=- (1-1) - 4 (t -4) =17-(1+4t),t由根本不等式可得l+4t>2^T^=4,.•.17-(1+4t) < 17- 4=13,当且仅当上4t即t6时取等号, .二有•五的最大值为13, 应选:A.3. 〔2021?四川〕设四边形ABCDfe平行四边形,|画二6, |初=4,假设点M N满足而二3元,而二2前,那么氤,而i=〔A. 20B. 15C. 9D. 6解:「四边形ABCM平行四边形,点M N满足面i=3元,丽二2束,.二根据图形可得:= + ?--= . : . II,4 4洲二MI -蝴,V或•而二标?〔记-讪〕二俞-嬴•福.-1|2=・"2 . : •",・小।-r -.-,-1= :."21二卜,2. ;3 4 2 '| 'B|=6 , | -1||=4 ,..」「'/二,:::「12=12-3=9应选:C4. 〔2021?安徽〕△ ABC是边长为2的等边三角形,向量京E满足屈=2£AC=2g+b,那么以下结论正确的选项是〔〕A. | b|=1B. a±bC. a?b=1D. 〔4a+b〕,前解:由于三角形ABC的等边三角形,;,E满足靛=2;,应=2:+%,又正=7B+前, 所以‘:..;,・‘,所以-=2, - ;.=1X2Xcos120 =- 1,4a・b=4X 1X2Xcos120° =- 4,寸=4,所以狐・石+]士=0,即〔4a+b〕*B=0,即〔G+E〕•前=0,所以〔4;+芯〕1BC;应选D.5. 〔2021?陕西〕对任意向量!、b,以下关系式中不恒成立的是〔〕A. |a-b|<|;|| b|B. | a-b l<ll ^l -I bllC 〔髓〕2=| a+b| 2 D. 〔a+b〕? 〔a-b〕=?- b2解:选项A正确,丁 | a p b|=| 君|| b||cos < " Z>|,又|cosv;, b>| <1,,|.讶&G| %| 恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得|g-E l >ll』-|芯|| ;选项C正确,由向量数量积的运算可得〔a+b〕2=|a+b|2;选项D正确,由向量数量积的运算可得〔彳+E〕?〔1-b〕二2-%2.应选:B6. 〔2021?重庆〕假设非零向量a, 七满足|』=竺|可,且〔:-%〕± 〔3a+2b〕,那么3!与E的夹角为〔〕A.三B.C. 12£D.冗4 2 4解:二 ( a - b) ± ( 3 a+2b),(5-b) ? ( 3 a+2b) =0,即 3.;— 2:,2- ? =0,即就=3;-2寸金2, 3即V a, E>=三, 4应选:A7. 〔2021?重庆〕非零向量b满足lbl=4| J,且a,〔2a+b〕那么祖与b的夹角为〔〕A二B二C三D三3 2 3 6解:由非零向量之,b满足lbl=4| a l ,且a,〔2a+b〕,设两个非零向量a, b的夹角为°,所以a? 〔 2 a+ b〕=0,即2$十| |b|C os9 =.,所以cos 9 =-.,9 Q0 ,九],所以eW;应选C.8. 〔2021?湖南〕在平面直角坐标系中, O为原点,A〔- 1, 0〕, B 〔0,右〕,C 〔3, 0〕,动点D满足l而l=1 ,那么l m+55+55l的取值范围是〔〕A. [4 , 6]B. [ V19- 1, V19+1] C . [2 遮,2<7] D.[邛-1,道+1]】解:•••动点D满足|而|=1 , C 〔3, 0〕,「•可设 D (3+cos 9 , sin 9 ) (6 q0 , 2 兀)).又 A ( - 1, 0), B (0,立),, + 1+ 1= 1 - - - - ■一』I 「+"+0」= 一::」二二二•,一F"船…,•:飞不、」=倔公斤京西河丁,〔其中sin 6二焉,8s小嚼- 1<sin 〔 9 +〔[〕〕 &1,•,•〔"-1〕 2= * - W748+2VV sin 〔 9 + 小〕< 8+2沂=〔^+1〕2,「.I OA+OB+OD|的取值范围是W7 - I,近+11.应选:D.9. 〔2021?桃城区校级模拟〕设向量I,工满足|l|=|b |=1,.泰-L V b-c>=60°,那么1看的最大值等于〔〕A. 2B.g C . & D . 1解:「I aI二I b |二1,乱〞二一, -W二.W, %的夹角为120° ,设赢二W, OB=b,0C=c那么不二^一与;CB=1一工贝4/AOB=120 ; / ACB=60丁./AOB+ ACB=180・•.A,O, B, C四点共圆.一2• • AB /. AB^/3由三角形的正弦定理得外接圆的直径当OC 为直径时,模最大,最大为 2 应选A10 . 〔2021?天津〕菱形 ABCD 勺边长为2, /BAD=120 ,点E 、F 分别在边BG DC 上,BE = k BC, DF =〔1DC,假设标?m =1, CE ?CF =- 贝U 入+医=〔〕3A. 'B. :C. ' D — 2 3 6 12解:由题意可得假设.•,?•, = 〔 ",+神〕?〔川+】,〕=",, '1+三二 + ■ - -,-i +^-D?' =2X2Xcos120° + 屈,■屈+ 入 75?菽+入标?医 7S = 一 2+4医+4入 + 入d X2X2Xcos120° =4入+4医一2入医—2=1, 「•4人+4d 一2入医=3①CE ?CF =- EC ?〔-而〕=EC*FC = 〔1 -入〕前?〔1 -医〕DC = 〔1 -入〕而?〔1 -医〕总=〔1 一入〕〔1 —医〕X2X2Xcos120° = 〔1一入一医+入医〕〔一2〕= - 2, 3即一人一〔1 +入[L = ~ —②.3 由①②求得入+医=总 故答案为:!11 .〔2021?安徽〕设己,b 为非零向量,| b|=2| a| ,两组向量工,器,工,V?和行, 々,¥3' V/均由2个日和2个b 排列而成,假设町?为+工2?方+工3?%+%?%所有可 能取值中的最小值为4|;|2,那么:与E 的夹角为〔解:由题意,设!与E 的夹角为民, 分类讨论可得]? y I + X?? y ?+工3?y § + Xq ?% =为?为+ a ?2+b ?b+b? b=10| 君| ,不满足2KA — B.3 C. D. 0②T^^T+T^r+F?丁+『??=:?;+:?%+%?:+Z?Z=5| a|1 2+4| a| 2cos 民,不满足;1 J12 J23 734 J4③7j?元+7;?卫+三?同+3?耳=4!?岸8| a| 2cos a =4| a| :满足题意,此时COS a」2・•. W与E的夹角为—. 3应选:B.12. (2021?四川)平面向量短(1, 2), b= (4, 2), c=m+b (m GR),且W与;的夹角等于W与E的夹角,那么m=( )A. - 2B. - 1C. 1D. 2解:二向量a= (1, 2), b= (4, 2),=m + = (m+4, 2m+2 ,又丁[与;的夹角等于1与Z的夹角,k I • | a | I c |* |b |•••飞一’ — f )lai |b|二’解得m=2应选:D13. (2021?新课标I )设D, E, F分别为△ ABC的三边BC CA AB的中点,那么冠+而= ( )A. . ।B. DC. :,D.2 2【解答】解::D, E, F分别为AABC的三边BC, CA, AB的中点, .•.而+而=(丽+丽+ ( FE+EC) =FB+EC=1 (屈+近)=15,应选:A14. 〔2021?福建〕设M为平行四边形ABCD寸角线的交点,O为平行四边形ABCD所在平面内任意一点,那么加+而+枳+而等于〔〕A. I"B. 2 i"C. 3 I" D〕. 4 I"解:丁0为任意一点,不妨把A点看成O点,那么加+无+权+玩=1+/+而+元,・「M是平行四边形ABCD勺对角线的交点,,0 + AB+AC+AD=2AC=4OM应选:D.二.选择题〔共8小题〕15. 〔2021?浙江〕设二司为单位向量,非零向量E=x6+y G,x、yGR.假设]、, 的夹角为30.,那么集的最大值等于 2 .Ib| -------解:为单位向量,T和U的夹角等于30° ,,U・£=1X1X cos30.二亚•「非零向量Z=x4+y',•./而后二J/+ 2工y T] W +产J X2+我盯旷,. 44=,.—=I」= | I 2 = I1 2 ,旧寸J+V^v+v? *+行中+,,l打巧工0〕V〔7垮〕£故当2=-立时,&取得最大值为2,x 2 |b故答案为2 .16. 〔2021?北京〕点A 〔1, -1〕, B 〔3, 0〕, C 〔2, 1〕.假设平面区域D由所有满足获:人五+P•豆〔1<入02, 0<医01〕的点P组成,那么D的面积为 3 .解:设P的坐标为〔x, y〕,那么靛二(2, 1), AC= (1, 2), AP= (x—1, y+1), < 7?二工m+U 正,\ - 1=2 + |A 宿万一/ 日_解N得,y+l= X+2Uy+11<?|工-当-1<2,- K入02, 0<医01, ..•点P坐标满足不等式组,04 - £工+"|^1<1作出不等式组对应的平面区域,得到如图的平行四边形CDE极其内部其中C (4, 2), D (6, 3), E (5, 1), F (3, 0)二|CF|二;一丁一卜:二 _ 二,,点E (5, 1)到直线CF: 2x—y—6=0的距离为d1上士工^1二■还V5 5「•平行四边形CDEF勺面积为S=|CF|X d=V^x2四=3,即动点P构成的平面区域D 5的面积为3故答案为:317. (2021?湖南)如图,在平行四边形ABC前,APIBD垂足为P,且AP=3,那么族•近二18 .【解答】解:设AC与BD交于点O,那么AC=2AO/APIBD AP=3,在Rt^APO中,AOcos/ OAP=AP=3・•・I 面cos /OAP=2|瓦| XcosZOAP=2|AP|=6 ,由向量的数量积的定义可知, 6•正二|6||正|cos/PAO=3 6=18故答案为:1818. (2021?北京)己知正方形ABCD勺边长为1,点E是AB边上的动点.那么DE-CB 的值为1 .【解答】解:由于血,后=而瓜=应卜iXlcosC正♦瓦>=5丁=1.故答案为:119. (2021?天津)直角梯形 ABC 前,AD// BG / ADC=90 , AD=2 BC=1, P是腰DC 上的动点,那么|位+3瓦|的最小值为 5 .解:如图,以直线 DA DC 分另U 为x, y 轴建立平面直角坐标系,那么 A (2, 0), B (1, a), C (0, a), D (0, 0)设 P (0, b) (0<b<a)那么m =(2, - b), PB = (1, a- b),PA+3PB = (5, 3a-4b)•- IPA+3PB l =/25+ (3a-4b) 2>5-故答案为5.20. (2021?浙江)平面向量 五,J (五通,五产下)满足|T 1=1,且五与 方-五的夹角为120° ,那么|无|的取值范围是 (0,当鸟_.3解:令用 屈二无、AC =T,如以下图所示:那么由萩书-五,又二云与E-W 的夹角为120° ,・ ./ABC=60又由AC=|下一-:| 向 G (0, ^p ] 故|五|的取值范围是(0, 二]故答案:(0,芋]21. (2021?天津)如图,在4ABC 中,ADLAB,前一画,|75 I =1,那么说・75=_立【解答】解:AC-A S=|AC IHADicosZDAC,■-n ,由正弦定理sinC sin60.得:..一•一■. .. ■:: II-,.-- . .A,,cos/DAC=sinZ BAQAC *AD= lAC |-|AD|cosZDAC= | AC|-cosZDAC= | AClsinZBAC ,在△ ABC中,由正弦定理得里L=变形得|AC|sin / BAC=|BC|sinB, sinB sin/BACAC*AD=| AC !* | AD|cosZEAC= | AC |-cosZDAC= | AC|sinZBAC ,二|BC|sinB= |BC|・-需-=V5,故答案为V3 •22. 〔2021?天津〕假设等边△ ABC的边长为273,平面内一点M满足而卫司+2而,那么6 3瓦,诬=-2 .解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得C 10,01, R 〔2"^,.〕,B〔V3,3〕,• • CB =三〕,CA二〔2^3 〕.〕,••乐翔翁二〔¥,y,“:■ , 1,"」1,MA*MB=〔亚,--〕?〔-近,-〕=-2.2 2 2 2故答案为:-2.三.选择题〔共2小题〕23. (2021?上海)定义向量 0M = (a, b)的“相伴函数〞为 f (x) =asinx+bcosx , 函数f (x) =asinx+bcosx 的“相伴向量〞为 赢=(a, b)(其中O 为坐标原点).记 平面内所有向量的“相伴函数〞构成的集合为 S.(1)设 g (x) =3sin (x+21) +4sinx ,求证:g (x) GS; 2(2)h (x) =cos (x+a ) +2cosx,且h (x) GS,求其“相伴向量〞的模; (3)M(a, b) (b 乎0)为圆C: (x - 2) 2+y 2=1上一点,向量超的“相伴函数〞 f (x)在x=x .处取得最大值.当点 M 在圆C 上运动时,求tan2x .的取值范围.【解答】 解:(1) g (x) =3sin (x+—) +4sinx=4sinx+3cosx ,其‘相伴向量'0M = (4, 3), g (x) GS.(2) h (x) =cos (x+a) +2cosx =(cosxcos a - sinxsin a ) +2cosx =-sin a sinx+ (cos a +2) cosx 函数 h (x)的‘相伴向量’ 丽=(-sin a , cos a +2).那么 | 皿=q (一式11al —= ( cos a+2)―2=5+4曲口 .(3) OM 的'相伴函数'f ( x) =asinx+bcosx= ^^^sin (x+([)),其中cos 小=> ^ sin 小=Va 2 + b Z —,kGZ 时,f (x)取到最大值,故 x0=2k % +—-小,kGZ. 2 2-'.tanx 0=tan (2k % +- -([)) =cot ([)—, 2 b2tan x 口tan2x 0二 1-tan x o 1-(① b 也为直线OM 勺斜率,由几何意义知:-q -VI, 0) u (0, a a 3a 2 + b 2当 x+([)=2k % +___= r a b令m=,贝U tan2x0=—mq —亚,0) U ( 0,立}.③川」 3 3rr当-亚0m<0 时,函数tan2xo=—J单调递减,,0< tan2xo<Vs;3IT当0Vm<立时,函数tan2x 0=—片单调递减,/.- 加&tan2x0<0.rr综上所述,tan2x°q -遮,0) U (0,a]. .............. 、 c 24. (2007?四川)设Fi、F2分别是椭圆工+/=1的左、右焦点.4(I)假设P是第一象限内该椭圆上的一点,且可■玩二-求点P的作标;(II)设过定点M (0, 2)的直线l与椭圆交于不同的两点A、B,且/AO的锐角(其中O为坐标原点),求直线l的斜率k的取值范围.】解:(I)易知a=2, b=1,钎我.•• Fi (一〃,0),F2(如,0) •设P 那么PF;・PF;二(-百一工,-y)(伤一小x +y =4 x2=i m联立,2 ,解得" 2 3n a,P?儿卜=4(n)显然x=0不满足题设条件.可设l V..V 2联立,瓦+y n = (kx+2) gn (1+£y=kx+2. 一12 * 16k1 • #1 K n- °,及i + 乂力一r.1^1+4/ 1上l+4k Z^△= (16k) 2-4? (1+4k2) ?12>016k2- (x, y) (x>0, y>0).2一/二K./- 3二- "1,又亍+yJl,£1,喙)•的方程为y=kx+2,设 A (x1, y., B (x2, Ik") z2+16kx+12=03 (1+4k2) >0, 4k2- 3>0,得①),又yM二(kxi+2) (kx2+2) =k2XiX2+2k(X1+X2) +4 ..xiX2+yiy2= (1 +k2) xiX2+2k (X1+X2) +4=(1+k2) ,—(--^5) +4 1+41 1+4 k 2_12 (1+ k2) 2k*16k .------------ 2- ------------ r+4l+4k2l+4k2l+4k2综①②可知••.k的取值范围是(-2, -亨)U (亨2)•。

平面向量选择题100题

平面向量选择题100题

绝密★启用前平面向量小题题库选择题-1试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3yx上,线段AB 为圆C 的直径,则PA PB ⋅的最小值为()A .2B .52C .3D .72【答案】B 【解析】 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值.【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.2.已知向量a,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .0【答案】B 【解析】分析:根据向量模的性质以及向量乘法得结果.试卷第2页,总71页○…………外○…………内……详解:因为22(2)22||(1)213,a a b a a b a ⋅-=-⋅=--=+= 所以选B.点睛:向量加减乘: 221212(,),||,cos ,a b x x y y a a a b a b a b ±=±±=⋅=⋅3.在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是 A .9 B .10 C .11 D .12【答案】D 【解析】 【分析】由题意结合向量共线的充分必要条件首先确定,m n 的关系,然后结合均值不等式的结论整理计算即可求得最终结果. 【详解】由题意可知:3AP mAB nAC mAB nAE =+=+,,,A B E 三点共线,则:31m n +=,据此有:()3131936612n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当11,26m n ==时等号成立. 综上可得:31m n+的最小值是12.本题选择D 选项. 【点睛】本题主要考查三点共线的充分必要条件,均值不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.4.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD -D .1324AB AD -【答案】D 【解析】 【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案. 【详解】利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+--又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力. 向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是: (1)平行四边形法则(平行四边形的对角线分别是两向量的和与差); (2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).5.已知2OA OB ==,点C 在线段AB 上,且OC 的最小值为1,则OA tOB - (t R ∈)的最小值为( ) A B C .2D 【答案】B 【解析】分析:由2OA OB ==可得点O 在线段AB 的垂直平分线上,由结合题意可得当C试卷第4页,总71页是AB 的中点时OC 最小,由此可得OB 与OC 的夹角为60︒,故,OA OB 的夹角为120︒.然后根据数量积可求得2OA tOB -,于是可得所求.详解:∵2OA OB ==,∴点O 在线段AB 的垂直平分线上. ∵点C 在线段AB 上,且OC 的最小值为1, ∴当C 是AB 的中点时OC 最小,此时1OC =, ∴OB 与OC 的夹角为60︒, ∴,OA OB 的夹角为120︒.又22222OA tOB OA t OB tOA OB -=+-⋅24422cos120t t =+-⋅⋅︒ 2424t t =++214()332t =++≥,当且仅当12t =-时等号成立.∴2OA tOB -的最小值为3, ∴OA tOB -的最小值为. 故选B .点睛:求解平面向量最值或范围问题的常见方法(1)利用不等式求最值,解题时要灵活运用不等式a b a b a b ≤±≤-+. (2)利用函数思想求最值,常利用“平方技巧”找到向量的模的表达式,然后利用函数思想求最值,有时也常与三角函数知识结合求最值.(3)利用数形结合思想求最值,利用平面向量“形”的特征,挖掘向量的模所表示的几何意义,从图形上观察分析出模的最值.6.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =( )…○………………○……_____班级:_______…○………………○……A .1233AD AB - B .2133AD AB + C .2133AD AB - D .1233AD AB + 【答案】C 【解析】 【分析】画出图形,以,?AB AD 为基底将向量ED 进行分解后可得结果. 【详解】画出图形,如下图.选取,?AB AD 为基底,则()211333AE AO AC AB AD ===+, ∴()121333ED AD AE AD AB AD AD AB =-=-+=-. 故选C . 【点睛】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.7.在ABC ∆中,点D 是AC 上一点,且4AC AD =,P 为BD 上一点,向量()AP AB AC λμλμ=+>0,>0,则41λμ+的最小值为( ) A .16 B .8C .4D .2【答案】A试卷第6页,总71页【解析】 【分析】由题意结合三点共线的性质首先得到,λμ的关系,然后结合均值不等式的结论求解41λμ+的最小值即可.【详解】由题意可知:4AP AB AD λμ=+,其中B,P,D 三点共线, 由三点共线的充分必要条件可得:41λμ+=,则:()41411648816μλλμλμλμλμ⎛⎫+=+⨯+=++≥+= ⎪⎝⎭, 当且仅当11,28λμ==时等号成立, 即41λμ+的最小值为16.本题选择A 选项. 【点睛】本题主要考查平面向量基本定理的应用,基本不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.8.在ABC ∆中,1AC =,1AC AB ⋅=-,O 为ABC ∆的重心,则BO AC ⋅的值为 A .1 B .32C .53D .2【答案】A 【解析】 【分析】利用O 是ABC ∆的重心,得到()2132BO BA BC =⨯⨯+,而AC BC BA =-,由此化简BO AC ⋅的表达式,并求得它的值. 【详解】由1AC AB ⋅=-的cos 1bc A =-,而1b AC ==,由余弦定理得()2222cos 123a c b bc A -=-=--=.由于O 是ABC ∆的重心,故()2132BO BA BC =⨯⨯+,由于AC BC BA =-,所以()()()()22221111313333BO AC BC BA BC BA BC BA a c ⋅=+-=-=-=⨯=.故选A. 【点睛】本小题主要考查向量的线性运算,考查向量的数量积运算与三角形的重心的性质,属于中档题.9.已知平面内的两个单位向量OA ,OB ,它们的夹角是60°,OC 与OA 、OB 向量的夹角都为30°,且||23OC =OC OA OB λμ=+,则λμ+值为( ) A .B .C .2D .4【答案】D 【解析】 【分析】由OC 在AOB ∠的角平分线上,得到λμ=,即()OC OA OB λ=+,再由23OC =根据向量的数量积的运算列出方程,即可求解,得到答案. 【详解】由题意,可得OC 在AOB ∠的角平分线上,所以()OC k OA OB =+, 再由OC OA OB λμ=+可得λμ=,即()OC OA OB λ=+, 再由23OC = 得2222()(2)OA OB OA OA OB OB λλ=+=+⋅+=解得2λ=,故2μ=,所以4λμ+=,故选D. 【点睛】本题主要考查了平面向量的基本定理,以及向量的数量积运算,其中解答中熟记平面向量的基本定理,得到λμ=,再利用向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.10.如图,已知ABC ∆与AMN ∆有一个公共顶点A ,且MN 与BC 的交点O 平分BC ,若,AB mAM AC nAN ==,则12m n+的最小值为( )…………○………………○……A.4 B.32+C.32D.6【答案】C【解析】()12AO AB AC=+,又,AB mAM AC nAN==,22m nAO AM AN∴=+,又,,M O N三点共线,122m n∴+=,即得2m n+=,易知0,0m n>>,121222m nm n m n⎛⎫⎛⎫∴+=+⋅+=⎪ ⎪⎝⎭⎝⎭133122222n m n mm n m n⎛⎫+++=++≥+⎪⎝⎭32=+22n mm nm n⎧=⎪⎨⎪+=⎩,即24mn⎧=⎪⎨=-⎪⎩时,取等号,故选C.【易错点晴】本题主要考查平面向量基本定理的应用以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).11.在ABC中,角,,A B C的对边分別为,,a b c,若1b=,()2sina B C A=,点G是ABC的重心,且3AG=,则ABC的面积为()A B C D【答案】D【解析】【分析】利用正弦定理化简已知条件,求得sin A的值,由此求得π3A=或2π3A=,利用试卷第8页,总71页()2214AD AB AC =+和余弦定理列方程,求得面积的两种取值. 【详解】由题可知2sin sin cos cos A B A C C A =,2sin sin A B B =,则sin A =3A π=或23π.又AG =,延长AG 交BC 于点D ,所以AD =因为()12AD AB AC =+,所以()2214AD AB AC =+,即()2221||2cos 4AD b c bc A =++,当3A π=时,3c =,所以ABC ∆的面积为1sin 2bc A =23A π=时,4c =,所以ABC ∆的面积为1sin 2bc A =.故选D. 【点睛】本小题主要考查利用正弦定理解三角形,考查向量运算,考查三角形的面积公式,属于中档题.12.已知Rt ABC ∆,点D 为斜边BC 的中点,63AB =,6AC =,12AE ED =,则AE EB ⋅等于( ) A .-14 B .-9C .9D .14【答案】D 【解析】 【分析】利用向量共线及向量的加减法分别表示出()16AE AB AC +=,5166EB AB AC =-,再利用0AB AC ⋅=即可求得()221536AE EB AB AC ⋅=-,问题得解。

平面向量及其应用练习题(有答案) 百度文库

平面向量及其应用练习题(有答案) 百度文库

一、多选题1.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形2.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是43.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 4.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=- 5.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S =36.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )A .2AB AB AC B .2BC CB AC C .2ACAB BDD .2BDBA BDBC BD7.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++D .AB AC BD CD -+-8.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 9.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 10.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±11.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅- 12.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-13.已知ABC ∆的面积为32,且2,3b c ==,则A =( ) A .30°B .60°C .150°D .120°14.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量15.题目文件丢失!二、平面向量及其应用选择题16.在ABC 中,若 cos a b C =,则ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等腰或直角三角形17.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b ,则()a b R λλ=∈;③()()a b c a b c ⋅⋅=⋅⋅④||||||a b a b +≥+;⑤若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥18.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:5 19.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形20.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +21.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )A .500米B .1500米C .1200米D .1000米22.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .3323B .5323C .7323D .832323.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若222sin sin sin 0A B C +-=,2220a c b ac +--=,2c =,则a =( )A .3B .1C .12D .3224.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若3a =,则边BC 所对的ABC ∆外接圆的劣弧长为( ) A .23π B .43π C .6π D .3π 25.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()()(23)a b c a c b ac +++-=+,则cos sin A C +的取值范围为A .33(,)2B .3(,3)2 C .3(,3]2D .3(,3)226.题目文件丢失!27.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 28.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2B .-2C .4D .-429.在ABC ∆中,60A ∠=︒,1b =,ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A .3B .3C .3D .30.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF的中点,若1AM =,则λμ+的最大值为( )A B .3C .2D 31.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()ab a b +>C .612abc ≤≤D .1224abc ≤≤32.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .433.在ABC 中,角A ,B ,C所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )A .4B .14C .4D .234.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形35.已知M (3,-2),N (-5,-1),且12MP MN =,则P 点的坐标为( )A .(-8,1)B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(8,-1)【参考答案】***试卷处理标记,请不要删除一、多选题 1.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查 解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.2.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc == 因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin cos 22B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确;若ABC的面积是1sin 2ab C =2a =, 由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得24sin c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.3.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】 由正弦定理可得sin sin a c A C =,所以sin sin c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=, ∴sin sin c C A a ==而a c <,∴ A C <, ∴566C ππ<<,故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.4.ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.5.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错; ABC 中,若3b =,60A =︒,三角形面积33S =11sin 3sin 603322S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,13a =,∴2sin sin 603a R A ===︒,3R =,D 错. 故选:AB .【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.6.AD【分析】根据向量的数量积关系判断各个选项的正误.【详解】对于A ,,故A 正确;对于B ,,故B 错误;对于C ,,故C 错误;对于D ,,,故D 正确.故选:AD.【点睛】本题考查三角形解析:AD【分析】根据向量的数量积关系判断各个选项的正误.【详解】对于A ,2cos AB AB ACAB AC A AB AC AB AC ,故A 正确; 对于B ,2cos cos CB CB AC CB AC C CB AC C CB AC CB AC ,故B 错误; 对于C ,2cos cos BD AB BD AB BD ABD AB BD ABD AB BD BD AB ,故C 错误; 对于D ,2cos BDBA BD BA BD ABD BA BD BD BA ,2cos BD BC BDBC BD CBD BC BD BD BC ,故D 正确. 故选:AD.【点睛】 本题考查三角形中的向量的数量积问题,属于基础题.7.BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】 对于选项:,选项不正确;对于选项: ,选项正确;对于选项:,选项不正确;对于选项:选项正确.故选:解析:BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】对于选项A :AB MB BO OM AB +++=,选项A 不正确;对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确;对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确.故选:BD【点睛】本题主要考查了向量的线性运算,属于基础题. 8.BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确;对于C ,,则或与共线,故C 错误;对于D ,在四边形中,若解析:BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,00a ⨯=,故A 错误;对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.9.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.10.ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当时,,故选项B 错误;因为,故选项C 正确;当共线同向时,,当共线反解析:ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当a b ⊥时,0a b ⋅=,故选项B 错误; 因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确;当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确.故选:ACD.【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.11.AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误;对于C 选项,解析:AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.故选:AB.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题. 12.BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量与的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为,,且, 所以,即C 结论正确;因为,解析:BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.13.BD【分析】由三角形的面积公式求出即得解.【详解】 因为,所以,所以,因为,所以或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 解析:BD【分析】由三角形的面积公式求出sin A =即得解. 【详解】因为13sin 22S bc A ==,所以13222A ⨯=,所以sin A =,因为0180A ︒︒<<, 所以60A =或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.14.AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确;若,a b b c ==,则a c =,故C 正确;温度是数量,只有正负,没有方向,故D 错误.故选:AD【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.15.无二、平面向量及其应用选择题16.A【分析】利用正弦定理边角互化思想化简可得cos 0B =,求得角B 的值,进而可判断出ABC 的形状.【详解】cos a b C =,由正弦定理得sin sin cos A B C =,即()sin cos sin sin cos cos sin B C B C B C B C =+=+,cos sin 0B C ∴=, 0C π<<,sin 0C ∴>,则cos 0B =,0B π<<,所以,2B π=,因此,ABC 是直角三角形. 故选:A.【点睛】本题考查利用正弦定理边角互化判断三角形的形状,同时也考查了两角和的正弦公式的应用,考查计算能力,属于中等题.17.A【分析】直接利用向量的基础知识的应用求出结果.对于①:零向量与任一向量平行,故①正确;对于②:若//a b ,则()a b R λλ=∈,必须有0b ≠,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅,a 与c 不共线,故③错误; 对于④:a b a b +≥+,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=,则,,A B C 为一个三角形的三个顶点,也可为0,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确.故选:A.【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.18.A【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.19.D【分析】由数量积的定义判断B 角的大小,得三角形形状.【详解】由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形.故选:D .【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 20.D根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】 该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 21.D【分析】作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC .【详解】解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,30SAE ∠=︒,1000AS =米,sin30500CD SE AS ∴==︒=米,依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒,在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒,在Rt BSD ∆中,sin75BD BS =︒2000sin15sin75=︒︒2000sin15cos15=︒︒1000sin30=⨯︒500=米, 1000BC BD CD ∴=+=米,故选:D .【点睛】本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题.22.B【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45sin 30HB =︒︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,10353v ==/秒). 故选B .【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.23.B【分析】先根据正弦定理化边得C 为直角,再根据余弦定理得角B ,最后根据直角三角形解得a.【详解】因为222sin sin sin 0A B C +-=,所以222b c 0a +-=, C 为直角,因为2220a c b ac +--=,所以2221cosB ,223a c b B ac π+-===, 因此13a ccosπ==选B.【点睛】 解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.24.A【分析】根据题意得出tan tan tan A B C a b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长.【详解】 0a OA b OB c OC ⋅+⋅+⋅=,a b OC OA OB c c∴=--, 同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C b B c C ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B Ca b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin aR A===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A. 【点睛】本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 25.A 【分析】先化简已知()()(2a b c a c b ac +++-=+得6B π=,再化简cos sin A C+)3A π+,利用三角函数的图像和性质求其范围.【详解】由()()(2a b c a c b ac +++-=+可得22()(2a c b ac +-=+,即222a cb +-=,所以222cos 2a c b B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6A C A A π+=+-553cos sin cos cos sin cos sin )66223A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336A πππ<+<,所以3)62A π<+<,故cos sin A C +的取值范围为3)2.故选A .【点睛】(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A ππ<<,不是02A π<<.26.无27.D 【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案. 【详解】利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力. 向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是: (1)平行四边形法则(平行四边形的对角线分别是两向量的和与差); (2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单). 28.D 【分析】将已知向量关系变为:12333m OA OB OC +=,可得到3mOC OD =且,,A B D 共线;由AOB ABC O S S DCD∆∆=和,OC OD 反向共线,可构造关于m 的方程,求解得到结果. 【详解】由2OA OB mOC +=得:12333mOA OB OC +=设3m OC OD =,则1233OA OB OD += ,,A B D ∴三点共线 如下图所示:OC 与OD 反向共线 3OD mm CD∴=- 734AOB ABC OD m m C S S D ∆∆∴==-= 4m ⇒=- 本题正确选项:D 【点睛】本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系. 29.A 【分析】根据面积公式得到4c =,再利用余弦定理得到13a =,再利用正弦定理得到答案. 【详解】13sin 342ABC S bc A c ∆==== 利用余弦定理得到:2222cos 11641313a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b cA B C== 故213239sin 2sin sin sin 33a b c a A B C A ++===++ 故选A 【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 30.C 【分析】 化简得到22AM AB AC λμ=+,根据1AM =得到221λμλμ+-=,得到λμ+的最大值. 【详解】()1222AM AE AF AB AC λμ=+=+, 故2222224cos1201222AM AB AC λμλμλμλμλμ⎛⎫=+=++⨯︒=+-= ⎪⎝⎭故()()()222223134λμλμλμλμλμλμ=+-=+-≥+-+,故2λμ+≤. 当1λμ==时等号成立. 故选:C . 【点睛】本题考查了向量的运算,最值问题,意在考查学生的综合应用能力. 31.A 【分析】由条件()()1sin 2sin sin 2A A B C C A B +-+=--+化简得出1sin sin sin 8A B C =,设ABC ∆的外接圆半径为R ,根据12S ≤≤求得R 的范围,然后利用不等式的性质判断即可.【详解】ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,即()()1sin 2sin sin 2A A B C A B C +-+++-=,即()()1sin 2sin sin 2A ABC A B C +--++-=⎡⎤⎣⎦, 即()12sin cos 2sin cos 2A A ABC +-=,即()()12sin cos 2sin cos 2A B C A B C -++-=,即()()12sin cos cos 4sin sin sin 2A B C B C A B C --+==⎡⎤⎣⎦,1sin sin sin 8A B C ∴=,设ABC ∆的外接圆半径为R ,则2sin sin sin a b cR A B C===, []2111sin 2sin 2sin sin 1,2224S ab C R A R B C R ==⨯⨯⨯=∈,2R ∴≤≤338sin sin sin abc R A B C R ⎡∴=⨯=∈⎣,C 、D 选项不一定正确;对于A 选项,由于b c a +>,()8bc b c abc ∴+>≥,A 选项正确;对于B 选项,()8ab a b abc +>≥,即()8ab a b +>成立,但()ab a b +>成立. 故选:A. 【点睛】本题考查了利用三角恒等变换思想化简、正弦定理、三角形的面积计算公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 32.C 【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可. 【详解】根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值, 由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=,即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥,令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以2222t t x ++≤≤,(13)m m =≤≤2(2)178m --+=,当2m =2(2)171788m --+==,所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C. 【点睛】思路点睛:该题考查了平面向量的数量积的问题,解题思路如下: (1)先根据题意,设出向量的坐标; (2)根据向量数量积的运算律,将其展开; (3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题. 33.B 【分析】利用正弦定理可得sin 2sin B C =,结合a b =和余弦定理,即可得答案; 【详解】cos cos 2sin cos sin cos 2sin c A a C c C A A C C +=⇒+=,∴sin()2sin sin 2sin A C C B C +=⇒=, ∴2b c =,又a b =,∴22222114cos 12422ba cb B ac b ⋅+-===⋅⋅,故选:B. 【点睛】本题考查正、余弦定理解三角形,考查运算求解能力,求解时注意进行等量代换求值. 34.A 【分析】利用余弦定理化角为边,得出c b ABC =, 是等腰三角形. 【详解】ABC ∆中,c cos 2a B c =,由余弦定理得,2222a c b cosB ac+-=, ∴22222a a c b c ac +-= 220c b ∴-= ,∴c b ABC =,是等腰三角形. 【点睛】本题考查余弦定理的应用问题,是基础题. 35.B 【分析】由向量相等的坐标表示,列方程组求解即可. 【详解】解:设P(x ,y ),则MP = (x -3,y +2),而12MN =12(-8,1)=14,2⎛⎫- ⎪⎝⎭, 所以34122x y -=-⎧⎪⎨+=⎪⎩,解得132x y =-⎧⎪⎨=-⎪⎩,即31,2P ⎛⎫-- ⎪⎝⎭,故选B. 【点睛】本题考查了平面向量的坐标运算,属基础题.。

2021年高考数学经典例题 专题四:平面向量与不等式【含解析】

2021年高考数学经典例题 专题四:平面向量与不等式【含解析】

真题四 平面向量与不等式一、单选题1.已知向量()()2332a b ==,,,,则|–|a b =( ) A 2B .2 C .2D .50【答案】A 【解析】由已知,(2,3)(3,2)(1,1)a b -=-=-, 所以22||(1)12a b -=-+=故选A2.已知向量()2,3a =,()1,b λ=-,若向量2a b -与向量a 共线,则b =( ) A .32-B .132 C 13 D .134【答案】B 【解析】由向量坐标运算得到2a b -,根据向量共线可构造方程求得λ,由模长的坐标运算得到结果. 【详解】()24,32a b λ-=-,又向量2a b -与向量a 共线,()432λλ∴=--,解得:32λ=-,()2239131124b ⎛⎫∴=-+-=+= ⎪⎝⎭. 故选:B. 【点睛】结论点睛:若()11,a x y =与()22,b x y =共线,则1221x y x y =. 3.在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C 【解析】根据向量的加减法运算法则算出即可. 【详解】()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-=故选:C4.已知,,a b c 均为单位向量,且22a b c +=,则a c ⋅=( ) A .12-B .14-C .14D .12【答案】C 【解析】由22a b c +=两边平方得14-⋅=a b ,又因为22a b c +=可得()1=22+c a b ,再计算a c ⋅即可得结果. 【详解】 由()()2222+=a bc 得222444++⋅=ab a b c因为,,a b c 均为单位向量,则1a b c ===,所以14-⋅=a b , 又()1=22+c a b ,所以()()21111122122224⎛⎫⋅=⋅+=+⋅=-= ⎪⎝⎭a c a a b a a b故选:C .5.已知,a b 是相互垂直的单位向量,与,a b 共面的向量c 满足2,a c b c ⋅⋅==则c 的模为( ) A .1 B 2C .2D .22【答案】D 【解析】根据,a b 是相互垂直的单位向量,利用坐标法以及数量积的坐标表示,建立方程进行求解即可. 【详解】,a b 是相互垂直的单位向量,不妨设()1,0a =,()0,1b =, 设(),c x y =,由2,a c b c ⋅⋅== 可得2x y ==,即()2,2c =, 则c 的模为2222822c =+==.故选:D6.若实数x ,y 满足约束条件31030x y x y -+≤⎧⎨+-≥⎩,则z =x +2y 的取值范围是( )A .(,4]-∞B .[4,)+∞C .[5,)+∞D .(,)-∞+∞【答案】B 【解析】首先画出可行域,然后结合目标函数的几何意义确定目标函数在何处能够取得最大值和最小值从而确定目标函数的取值范围即可. 【详解】绘制不等式组表示的平面区域如图所示,目标函数即:1122y x z =-+,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大, z 取得最小值时,其几何意义表示直线系在y 轴上的截距最小, 据此结合目标函数的几何意义可知目标函数在点A 处取得最小值, 联立直线方程:31030x y x y -+=⎧⎨+-=⎩,可得点A 的坐标为:()2,1A ,据此可知目标函数的最小值为:min 2214z =+⨯= 且目标函数没有最大值.故目标函数的取值范围是[)4,+∞. 故选:B.7.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b + B .2a b +C .2a b -D .2a b -【答案】D 【解析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可. 【详解】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意;D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意.故选:D.8.已知向量ab a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( ) A .3135-B .1935-C .1735D .1935【答案】D 【解析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos ,a a b <+>的值. 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=. ()22222526367a b a b a a b b +=+=+⋅+=-⨯+,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.9.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范围是( ) A .()2,6- B .(6,2)- C .(2,4)- D .(4,6)-【答案】A 【解析】首先根据题中所给的条件,结合正六边形的特征,得到AP 在AB 方向上的投影的取值范围是(1,3)-,利用向量数量积的定义式,求得结果. 【详解】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.10.若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为( ) A .−7 B .1C .5D .7【答案】C 【解析】 由题意1,11yy x y -≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C.11.设2log 3a =,24log 3b =,则2a b +,ab ,ba 的大小关系为( ) A .2ab b ab a +>> B .2a b b ab a +>> C .2a b b ab a +>> D .2b a bab a +>> 【答案】C 【解析】由已知得1,0a b >>且2a b +=,然后结合基本不等式与中间值1比较,用不等式的性质比较大小可得. 【详解】易知:0,0a b >>,12a b +=,()214a b ab +<=,1b ab a a >⇔>,显然成立. 所以2a b bab a+>>.故选:C .12.已知,a b 是平面向量,满足||2,||1a b =≤,且322b a -≤,记a 与b 的夹角为θ,则cos θ的最小值是( ) A .1116B .78C 15D 315【答案】B 【解析】先给322b a -≤两边平方然后展开,代入2a =,得到2143a b b⋅≥+,然后利用23||113||4cos 8||||2||2||b a b b a b b b θ+⋅=≥=+⋅,然后当1b ≤时,求解cos θ的最小值. 【详解】由322b a -≤得,()2223294124b ab a a b -=+-⋅≤,所以2143a b b ⋅≥+.则23||113||4cos 8||||2||2||b a b b a b b b θ+⋅=≥=+⋅⋅ 令函数13()28xf x x =+,因为()f x 在[]0,1上单调递减. 又因为1b ≤,故当1b =时,cos θ取得最小值,最小值为78. 故选:B 【点睛】本题考查向量间夹角余弦值的取值范围的计算问题,解答的一般思路为:当已知a ,b 和a b λμ+(其中,λμ为常数)时,一般采用平方法,得到2a b λμ+然后展开,得到cos θ的值.13.已知a ,b ,R c ∈,若关于x 不等式01a cx b x x≤++≤-的解集为[]{}()123321,0x x x x x x ⋃>>>,则( )A .不存在有序数组(,,)a b c ,使得211x x -=B .存在唯一有序数组(,,)a b c ,使得211x x -=C .有且只有两组有序数组(,,)a b c ,使得211x x -=D .存在无穷多组有序数组(,,)a b c ,使得211x x -= 【答案】D 【解析】根据1>0x ,不等式转化为一元二次不等式的解的问题,利用两个一元二次不等式解集有交集的结论,得出两个不等式解集的形式,从而再结合一元二次方程的根与系数关系确定结论. 【详解】由题意不等式20x bx a c x ≤++≤-的解集为[]{}()123321,0x x x x x x ⋃>>>,即220x bx a x bx a c x ⎧++≥⎨++≤-⎩的解集是[]{}123,x x x ⋃,则不等式20x bx a ++≥的解是{|x 2x x ≤或3x x ≥},不等式2x bx a c x ++≤-的解集是13{|}x x x x ≤≤, 设1x m =,21x m =+,3x n =(1)m n +<, 所以0c n -=,n c =,1m +和n 是方程20x bx a ++=的两根,则11b m n m c -=++=++,(1)a m n mc c =+=+, 又22(1)m bm a m m m c mc c c m ++=+---++=-, 所以m 是2x bx a c x ++=-的一根, 所以存在无数对(,,)a b c ,使得211x x -=. 故选:D .14.已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( ) A .a <0 B .a >0C .b <0D .b >0【答案】C 【解析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案. 【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点 为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <, 即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <. 综上一定有0b <. 故选:C15.已知22220,0,3,3a b a b ab a b >>+-=-≤,则+a b 的最小值是( )A .22B .3C .23D .4【答案】B 【解析】将223a b ab +-=,变形为223324b b a ⎛⎫-+= ⎪⎝⎭,令3233ba θθ⎧-=⎪⎪=,根据0,0a b >>确定203θπ<<,得到22a b -2323πθ⎛⎫=+ ⎪⎝⎭,然后由223a b -≤,,进一步确定62ππθ≤≤,然后由33sin 236a b πθθθ⎛⎫+=+=+ ⎪⎝⎭,利用三角函数性质求解.【详解】因为222222344b b a b ab a b ab +-=+-++, 223324b b a ⎛⎫=-+= ⎪⎝⎭,令3233ba θθ⎧-=⎪⎪=,则3sin 2sin 32sin a b πθθθθ⎧⎛⎫=+=+⎪ ⎪⎝⎭⎨⎪=⎩, 因为0,0a b >>,所以sin 03sin 0πθθ⎧⎛⎫+>⎪ ⎪⎝⎭⎨⎪>⎩,即030πθπθπ⎧<+<⎪⎨⎪<<⎩, 解得203θπ<<, 所以)()22223sin 2sin a b θθθ-=+-,2223cos 23sin cos sin 4sin θθθθθ=++-,()223cos sin 23cos θθθθ=-+3cos23sin 2θθ=,2323πθ⎛⎫=+ ⎪⎝⎭,因为203θπ<<, 所以52333ππθπ<+<,因为223a b -≤,所以33sin 23πθ⎛⎫≤+≤⎪⎝⎭ 解得242333ππθπ≤+≤, 所以62ππθ≤≤,则2363πππθ≤+≤, 所以33sin 233,236a b πθθθ⎛⎫⎡⎤+=+=+∈ ⎪⎣⎦⎝⎭, 所以+a b 的最小值是3, 故选:B关键点点睛:本题关键是将223a b ab +-=,变形为223324b b a ⎛⎫-+= ⎪⎝⎭,利用三角换元,转化为三角函数求解. 二、多选题16.已知0a b c >>>且1abc =,则下列结论中一定成立的是( ) A .1b = B .1ab >C .01bc <<D .22a c +>【答案】BCD 【解析】由0a b c >>>且1abc =,可以得到1a >,01c <<,然后结合不等式的性质容易对A ,B ,C 选项进行判断,然后利用基本不等式可对D 选项进行判断. 【详解】A :因为0a b c >>>且1abc =,所以331c abc a <=<,即1a >,01c <<,b 不一定等于1,故A 项不一定成立;B :因为01c <<,所以11ab c =>,所以B 项一定成立; C :因为1a >,所以101bc a<=<,C 项一定成立;D :22211222a a c a a ab ab b+=+≥⋅,D 项一定成立. 17.已知,a b 均为正实数,且1a b +=,则( ) A .ab 的最大值为14B .2b a b+的最小值为22C .221155a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为15D .2221a b a b +++的最小值为94 【答案】AC 【解析】对于选项A ,直接根据基本不等式可求得结果;对于选项B ,化为积为定值的形式后,根据基本不等式求出最小值可得答案; 对于选项C ,变形后利用二次函数求出最小值可得答案; 对于选项D ,变形后利用基本不等式求出最小值可得答案. 【详解】对于选项A ,2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取“=”,故A 正确;对于选项B ,22222b b a b b aa b a b a b++=+=++≥222, 当且仅当222b a ==“=”,故B 错误;对于选项C ,22222111()55525a b a b ab +⎛⎫⎛⎫++=++ ⎪⎪⎝⎭⎝⎭ 222121111()()5525555ab a b ab ab ⎛⎫=++-+=-+≥ ⎪⎝⎭,当且仅当15ab =时取“=”,故C 正确; 对于选项D ,22a a ++222(22)(11)121b a b b a b +-+-=++++ 41241221a b a b =+-+++-+++ 41221a b =+-++, 令2s a =+,1t b =+,则4s t +=,所以4121a b +++=141(4s s t ⎛⎫++ ⎪⎝⎭14)414t s t s t ⎛⎫=+++⎪⎝⎭ 1495244t s s t ⎛≥+⋅= ⎝, 当且仅当2s t =,即43t =,83s =时取“=”,所以41221a b +-++91244≥-=, 所以221214a b a b +≥++,当且仅当23a =,13b =时取“=”,故选项D 错误. 故选:AC. 【点睛】方法点睛:利用基本不等式求解最值问题常采用常数代换法,其解题步骤为:(1)根据已知条件或其变形确定定值(常数);(2)把定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值. 18.已知a >0,b >0,且a +b =1,则( ) A .2212a b +≥B .122a b ->C .22log log 2a b +≥-D 2a b 【答案】ABD 【解析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 【详解】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以11222a b-->=,故B 正确; 对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确; 对于D ,因为(21212a bab a b =+≤++=,2a b 12a b ==时,等号成立,故D 正确; 故选:ABD 三、填空题19.已知向量(),1a x =,()1,2b =-,且a b ⊥,则a b -=___________. 10【解析】由垂直的坐标表示求得x ,再由模的坐标运算求解. 【详解】由a b ⊥得20a b x ⋅=-=,2x =,则(1,3)a b -=,所以221310a b -=+= 10.20.已知点(),C x y 在线段():41,AB x y x y ++=∈R 上运动,则xy 的最大值是____________.【答案】116【解析】直接利用基本不等式计算可得; 【详解】解:由题设()41,x y x y ++=∈R 可得:4124x y xy +=≥142xy ≤, ∴144xy ≤,即116xy ≤,当且仅当142x y ==时取“=”, 故答案为:116.21.已知a ,b 为实数,则221214a b ++______2ab a +.(填“>”、“<”、“≥”或“≤”)【答案】≥ 【解析】利用作差法,配方即可比较大小. 【详解】()2222112121042a b ab a a b a ⎛⎫++--=-+-≥ ⎪⎝⎭,当且仅当1a =,2b =取等号. 故答案为:≥22.若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,,则2z x y =+的最大值是__________.【答案】8 【解析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线12y x =-,在平面区域内找到一点使得直线1122y x z =-+在纵轴上的截距最大,求出点的坐标代入目标函数中即可.【详解】不等式组表示的平面区域为下图所示:平移直线12y x =-,当直线经过点A 时,直线1122y x z =-+在纵轴上的截距最大,此时点A 的坐标是方程组121x y x y -=-⎧⎨-=⎩的解,解得:23x y =⎧⎨=⎩,因此2z x y =+的最大值为:2238+⨯=. 故答案为:8.23.若02030x x y x y ≥⎧⎪-≤⎨⎪+-≥⎩,则3z x y =-的最大值是___________.【答案】1- 【解析】根据约束条件作出可行域以及直线3z x y =-过点A 时在y 轴上的截距最小,z 有最大值,得出答案. 【详解】根据约束条件02030x x y x y ≥⎧⎪-≤⎨⎪+-≥⎩作出可行域如图所示,由2030x y x y -=⎧⎨+-=⎩解得()2,1A将目标函数3z x y =-化为133z y x =-, z 表示直线133z y x =-在y 轴上的截距的相反数的13故当直线133zy x =-在y 轴上的截距最小时,z 有最大值.当直线133zy x =-过点(2,1)时在y 轴上的截距最小,z 最大,由A (2,1)知z 的最小值为2311-⨯=- 故答案为:1-24.已知向量a ,b 满足3a b +=,0a b ⋅=.若()1c λa λb =+-,且c a c b ⋅=⋅,则c 的最大值为______. 【答案】32【解析】令M a A =,MB b =,利用已知作出以AB 为直径作直角三角形ABM 的外接圆O ,令AN MB =,连接MN .设c AC =,由已知点C 在直线MN 上,【详解】令M a A =,MB b =,则a b AM MB AB =++=,故3AB =,又0a b ⋅=,所以AM MB ⊥.以AB 为直径作直角三角形ABM 的外接圆O ,进而得出当NM AB ⊥时,AC 即c 取得最大值.令AN MB =,连接MN .设c AC =,因为()1c λa λb =+-⋅,所以点C 在直线MN 上,又c a c b ⋅=⋅,所以()0c a b ⋅-=,即0AC NM ⋅=,所以AC NM ⊥.结合图形可知,当NM AB ⊥时,AC 即c 取得最大值,且32c AO ==.故答案为:3225.已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22【解析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值. 【详解】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 故答案为:22. 26.设,a b 为单位向量,且||1a b +=,则||a b -=______________. 3【解析】整理已知可得:()2a b a b +=+,再利用,a b 为单位向量即可求得21a b ⋅=-,对a b -变形可得:222a b a a b b -=-⋅+,问题得解.【详解】因为,a b 为单位向量,所以1a b == 所以()2222221a b a ba ab b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a ba ab b -=-=-⋅+=327.平面向量OA 、OB 、OC ,满足24OA OB ==,()()20OC OA OC OB -⋅-=,0OA OB ⋅=,则对任意[]0,2θπ∈,11cos sin 42OC OA OB θθ--⋅的最大值为___________. 【答案】221 【解析】建立平面直角坐标系,可得点C 的轨迹方程为()()22112x y -+-=,然后化简所求式子,转化为两个圆的点之间的最大值问题,简单判断即可. 【详解】由0OA OB ⋅=,24OA OB ==,可设()()()4,0,0,2,,A B C x y由()()20OC OA OC OB -⋅-=,把坐标代入化简可得:()()22112x y -+-= 所以点点C 的轨迹方程为()()22112x y -+-= 又()()11cos sin ,cos ,sin 42OC OA OB x y θθθθ--⋅=-, 所以求11cos sin 42OC OA OB θθ--⋅的最大值即两个圆()()22112x y -+-=、221x y +=上动点最大值,如图所示;当过两圆的圆心时,有最大即221MN = 故答案为:22128.已知向量a ,b ,c 满足22a b c b -+==,b a -与a 的夹角为34π,则c 的最大值为______.【答案】22【解析】根据题意设OA b a =-,OB b =,OC c =,则a AB =,b a c OA OC CA --=-=,1OB =,2CA =由条件可得4OAB π∠=,1OB =后能结合正弦定理得到动点A 的轨迹,利用2CA =C 的轨迹,然后数形结合得到OC 的最大值,即c 的最大值. 【详解】 因为22a b c b -+==,所以2a b c -+=,1b =.设OA b a =-,OB b =,OC c =,则a AB =,b ac OA OC CA --=-=,1OB =,2CA =因为b a -与a 的夹角为34π,所以4OAB π∠=,OAB 的外接圆的直径为:122sin sin4OB R AOB π===∠ 则动点A 2D 中的优弧OB (不含点O ,B ), 由2CA =C 的轨迹是以A 2结合图形可知,当点O ,D ,A ,C四点共线,且C 在线段OA 的延长线上时,OC 最大,且最大值是22 故c 的最大值为22 故答案为:22【点睛】关键点睛:本题考查向量的运算和模长的最值问题,解答本题的关键是在OAB 中,根据题意得到4OAB π∠=,1OB =后能结合正弦定理得到动点A 的轨迹,利用2CA =C 的轨迹,然后数形结合得到OC 的最大值,即c 的最大值.属于中档题.29.李明自主创业,经营一家网店,每售出一件A 商品获利8元.现计划在“五一”期间对A 商品进行广告促销,假设售出A 商品的件数m (单位:万件)与广告费用x (单位:万元)符合函数模型231m x =-+.若要使这次促销活动获利最多,则广告费用x 应投入_______万元. 【答案】3 【解析】设李明获得的利润为()f x 万元,求出()f x 关于x 的表达式,利用基本不等式可求得()f x 的最小值及其对应的x 的值. 【详解】设李明获得的利润为()f x 万元,则0x ≥, 则()()()21616168832425125211111f x m x x x x x x x x x ⎛⎫⎡⎤=-=--=--=-++≤-+ ⎪⎢⎥++++⎝⎭⎣⎦25817=-=,当且仅当1611x x +=+,因为0x ≥,即当3x =时,等号成立. 故答案为:3.30.已知正实数x ,y ,a ,b 满足a bx yxy ==,其中1x >,1y >,则4911a b +--的最小值为______. 【答案】12 【解析】 解法一根据ab x y xy ==可知11()a b xy xy +=,得到a b ab +=,然后变形所求的式子并结合基本不等式可知结果. 解法二对a b x y xy ==取对数可知lg lg lg x y a x +=,lg lg lg x yb y+=,然后代入所求式子并结合基本不等式可知结果. 【详解】解法一 由abxyxy ==得1()a xy x =,1()b xy y =,所以11()a b xy xy +=,所以111a b+=,即a b ab +=,所以4949139413941311(1)(1)()1b a a b a b a b a b ab a b +-+-+===+------++. 因为111a b +=,所以114994(94)1325b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当49b a a b =时等号成立.故491211a b +≥--,所以4911a b +--的最小值为12. 解法二 对a b x y xy ==两边同时取对数,得lg lg lg x y a x +=,lg lg lg x yb y+=,所以494lg 9lg 1211lg lg x y a b y x +=+≥--,当且仅当23x y =时等号成立,所以4911a b +--的最小值为12. 故答案为:12 【点睛】关键点定睛:解法一关键在于得到111a b+=,解法二结合对数,同时两种解法都使用基本不等式. 31.已知数列{}n a 是等差数列,11a ≥-,22a ≤,30a ≥,则153z a a =-的最大值是______. 【答案】16 【解析】由等差数列得通项公式可的1111220a a d a d ≥-⎧⎪+≤⎨⎪+≥⎩设1a x =,d y =,则不等式组等价为1220x x y x y ≥-⎧⎪+≤⎨⎪+≥⎩,15324z a a x y =-=-,利用线性规划知识求最值即可.【详解】设等差数列{}n a 的公差为d ,由题设知,1111220a a d a d ≥-⎧⎪+≤⎨⎪+≥⎩,设1a x =,d y =,则不等式组等价为1220x x y x y ≥-⎧⎪+≤⎨⎪+≥⎩,对应的可行域为如图所示的三角形ABC 及其内部,由15132424a a a d x y -=-=-,由24z x y =-可得124z y x =-, 作12y x =沿着可行域的方向平移,当直线过点A 时,z 取得最大值. 由220x y x y +=⎧⎨+=⎩ 解得()4,2A -, 所以 ()max 244216z =⨯-⨯-=, 故答案为:1632.设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______. 【答案】2829【解析】利用复数模的平方等于复数的平方化简条件得1234e e ⋅≥,再根据向量夹角公式求2cos θ函数关系式,根据函数单调性求最值. 【详解】12|2|2e e -≤, 124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 四、双空题33.如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】16 132【解析】可得120BAD ∠=,利用平面向量数量积的定义求得λ的值,然后以点B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,设点(),0M x ,则点()1,0N x +(其中05x ≤≤),得出DM DN ⋅关于x 的函数表达式,利用二次函数的基本性质求得DM DN ⋅的最小值. 【详解】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC ABλλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭,∵又∵16AD BC =,则5332D ⎛ ⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,2DM x ⎛=- ⎝⎭,333,2DN x ⎛=- ⎝⎭,()22253332113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132. 五、解答题34.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x元.已知这种水果的市场售价大约15元/千克,且销售畅通供不应求,记该水果单株利润为()f x (单位:元)(1)写单株利润()f x (元)关于施用肥料x (千克)的关系式; (2)当施用肥料为多少千克时,该水果单株利润最大?最大利润是多少?【答案】(1)27530225,02()75030,251x x x f x x x x x⎧-+⎪=⎨-<⎪+⎩(2)故当施肥量为4千克时,该水果树的单株利润最大,最大利润为480元. 【解析】(1)用销售额减去成本投入得出利润()f x 的解析式;(2)分段判断()f x 的单调性,及利用基本不等式求出()f x 的最大值即可. 【详解】(1)依题意()15()1020f x W x x x =--,又()253,02()50,251x x W x xx x⎧+≤≤⎪=⎨<≤⎪+⎩ 所以27530225,02()75030,251x x x f x x x x x⎧-+⎪=⎨-<⎪+⎩.(2)当02x 时,2()7530225f x x x =-+,开口向上,对称轴为15x =, ()f x ∴在[0,1]5上单调递减,在1(5,2]上单调递增,()f x ∴在[0,2]上的最大值为()2465f =.当25x <时,2525()78030(1)78030(1)48011f x x x x x=-++-⨯+++, 当且仅当2511x x=++时,即4x =时等号成立. 因为465480<,所以当4x =时,()480max f x =.答:当投入的肥料费用为40元时,种植该果树获得的最大利润是480元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量与基本不等式(练习题)2016-高考-数学
平面向量与基本不等式(备战2016高考) 一:选择题 1.在
OAC
∆中,点
B
在线段
AC
上,且
),
,(2R n m n m mn ∈+=则2
2
4n m +的最小值为()
A.8
B.16
C.24
D.32
2.在△ABC 所在平面上有一点P ,满足
=++,则△PBC 与△ABC 面积之比是
( )
A.3
1 B.2
1 C.3
2 D.4
3
3.已知两个非零向量a =(m -1,n -1),b =(m -3,n -3),且a 与b 的夹角是钝角或直角,则m +n 的取值范围是()
A .2,2)
B .(2,6)
C .2,2]
D .[2,6]
4.1,3OA OB ==,0,OA OB =点C 在AOB ∠内,且30AOC ∠=︒,设,OC mOA nOB =+(),m n R ∈,则n
m 等于( ) A
.3
1 B .3 C .3
3
D .3
5.若两个正实数
y
x ,满足
141=+y
x ,且不等式
m m y
x 34
2-<+
有解,则实数m 的取值范围是( )
A .
)
4,1(-
B .),4()1,(+∞--∞
C
.
)
1,4(-
D
.),3()0,(+∞-∞ 6.设P 是双曲线22
14
y x
-=上除顶点外的任意一点,
1
F 、2
F 分别是双曲线的左、右焦点,△1
2
PF F 的内切圆与边1
2
F F 相切于点M ,则12
F M MF ⋅= A .5 B .4 C .2 D .1
7.若直线)0,0(022>>=+-b a by ax 被圆01422
2=+-++y x y x 截
得的弦长为4,则b
a 1
1+的最小值是( ) A .12 B .-12
C .-2
D .4
8.已知向量)1,(λ=,)1,2(+=λb a b a -=+λ
的值为
A .2
B .2
-
C .1
D .1-
9.已知点P 是边长为1的正方形ABCD 的对角线AC 上的任意一点,PE AB ⊥于E ,PF BC ⊥于F ,则PD EF ⋅等于 A.1 B.1- C.12 D.0
14.
15.定义域为[,]a b 的函数()y f x =图像的两个端点为A ,B ,(,)M x y 是
()
f x 图像上任意一点,其中
(1)[,]
x a b a b λλ=+-∈.已知向量(1)ON OA OB λλ=+-,若不等式
MN k ≤恒成立,则称函数()f x 在[,]a b 上“k 阶线性近
似”.若函数1y x x
=-在[1,3]上“k 阶线性近似”,则实数k
的取值范围为 ()
A. [0,+)
∞ B. 423[-,+)
33

C. 4[-3,+)
3∞ D. 3[-2,+)
2

16.ABC ∆所在平面内一点,P 满足,0236=++PC PB PA 则
PCA
PBC ABC S S S ∆∆∆::为()
A.2:3:6
B.6:2:3
C.3:6:2
D.3:2:6
17.如图,O 为直线2015
1
A A 外一点,若2015
3
2
1
,,,,A A A A 中
任意相邻两点的距离相等,设,
,2015
1
b OA
a OA ==用
b a ,表
示2015
2
1
OA OA OA +++ ,其结果为
A.)
(2014b a + B.)(2015b a + C.
)(2
2014
b a +
D.)(22015b a +
17.哎哎如图,半圆的直径AB=6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则PC PB PA ⋅+)(的最小值为( )
A .29
B .2
9- C .9 D .﹣9
18.已知点P 是边长为1的正方形ABCD 的对角线AC 上任意一点,AB PE ⊥于点,E BC PC ⊥于F ,则EF PD ⋅等于
()
A.1
B.1-
C.21
D.0
19.已知双曲线
1
3
2
2
=-y x 的左、右焦点分别为2
1
,F F ,
双曲线的离心率为e ,若双曲线上一点P 使得
Q
e F PF F PF ,sin sin 2
11
2=∠∠为直线1
PF 上一点,且,31QF PQ =则1
22,F F Q F 的
值为()
A.225
B.2
10
C.2
5 D.25
二:填空题
1.已知O 是ABC ∆的外接圆圆心,且,4,3==AC AB 若存在实数y x ,使得AC y AB x AO +=,且12=+y x 则._____cos =∠BAC
2.已知{}n
a lg 是等差数列,
,
2234
a a a +=若存在两项t
s
a a ,使
得,
41a a a t s =则t
s 1
1+的最小值为._____
3.如图,已知点)0,3(P ,正方形ABCD 内接于圆N
M y x O ,,3:22
=+分别为BC AB ,的中点,当正方形ABCD
绕圆心O 旋转时,PN PM ⋅的取值范围是._____
4.双曲线
22
22
1(0,0)x y a b a b -=>>的一条渐近线方程为3y x
=-,离心率为
e
,则
22
a e b
+的最小值
为 .
5.已知向量a 、b 满足)4,2(),0,1(==b a ,则=+→

||b a . 6.
过双曲线
)0,0(12
2
22>>=-b a b y a x 的左焦点)0,(c F -作圆
2
22a y x =+的切线,切点为E ,延长FE 交抛物线cx
y
42
=于点P ,O 为原点,若)(2
1OP OF OE +=,则双曲线的离心
率为_________.
7.
已知正三角形ABC 的边长为2,点D ,E 分别在边AB ,
AC 上,且=λ,=λ .若点F 为线段BE 的中点,
点O 为△ADE 的重心,则•= .0
8.ABC ∆的外接圆半径为1,圆心为
O
,且
3450
OA OB OC ++=,则OC AB ⋅的值为.___
9.已知点
O

ABC
∆内一点,且
,
μλ+=若
OBC
ABC ∆∆,的面积之比是,1:3则.____=+μλ
10.设点P 是函数)0(4>+=x x x y 的图像上任意一点,过点P 分别向直线x y =和y 轴作垂线,垂足分别为,,B A 则.____=⋅
11.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2
z 的最大值为________. 12.已知
b
a ,均为单位向量,且夹角为
,
60o 若
b
a b a b a -=+⋅-)()(λλ,则实数.____=λ。

相关文档
最新文档