人教版八年级数学上册教案《全等三角形》

合集下载

人教版八年级上册12.1全等三角形教学设计

人教版八年级上册12.1全等三角形教学设计

人教版八年级上册12.1全等三角形教学设计前言全等三角形是初中数学中的重要知识点之一,其概念与性质是高中几何学习的基础。

因此,对全等三角形的学习十分重要,可以培养学生的逻辑思维能力、几何直观与美感。

本教学设计旨在通过反思学生的学习状况,制定出一套高效的教学方案。

教学目标1.掌握全等三角形的概念和标志。

2.掌握在不同条件下判定三角形全等的方法。

3.培养学生的几何直观和逻辑思维能力。

教学重点1.全等三角形的概念和标志。

2.判定三角形全等的方法。

教学难点判定三角形全等的方法。

教学内容及流程1.概念讲解(时长:15分钟)–引导学生从生活常识中认识全等三角形。

–定义全等三角形,明确其概念和标志。

–通过示意图向学生直观展示全等三角形的特征。

2.判定全等三角形的方法(时长:30分钟)–分别介绍边-角-边、角-边-角和边-边-边三种判定方法。

–生动的比喻和实际演示,帮助学生理解三种判定方法的本质。

–请同学们进行练习题。

3.练习题解析(时长:15分钟)–将练习题的解法及步骤进行详细讲解。

–同时呈现一些容易出错和易混的问题进行分析和解释。

4.设计小实验(时长:30分钟)–为了让学生更好地理解全等三角形的概念和性质,我们准备了一个小实验。

–在学生面前放置一些木制三角板,让学生自行组合出全等三角形,并进行学习的验证。

–学生可以利用手中的尺子进行测量,来验证三角形的边长、角度等是否相等。

5.课堂小结(时长:10分钟)–对本节课的要点进行复述,并与学生一起总结本堂课的收获和不足。

教学评价及小结本节课通过多角度的讲解和生动的示例,让学生更好地理解了全等三角形的概念和性质,特别是三种判定方法。

同时,通过小实验的方式,让学生能够在实际操作中更好地体验全等三角形的特征。

学生的几何直观能力得到提升,学习积极性也得到很好的体现,达到了预期的教学目标。

在未来的教学中,可以考虑使用更多案例来让学生更好的理解全等三角形的知识点。

《人教版八年级上册全册数学教案》.pdf

《人教版八年级上册全册数学教案》.pdf

2 .这时它们的三个顶点、三条边和三个内角分别重合了.
3 .完全重合说明三条边对应相等,三个内角对应相等,
?对应顶点在相对应的位置.
【教师活动】根据学生交流的情况,给予补充和语言上的规范.
1 .概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,
?重合的边叫做对应边,重合的
角叫做对应角.
2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,
? 到角的两边的距离相等的点在角的平分线上. (判定定理)
教学内容 本节课主要内容是探索三角形全等的条件( SSS), ?及利用全等三角形进行证明. 教学目标 1 .知识与技能 了解三角形的稳定性,会应用“边边边”判定两个三角形全等. 2 .过程与方法 经历探索“边边边”判定全等三角形的过程,解决简单的问题. 3 .情感、态度与价值观 培养有条理的思考和表达能力,形成良好的合作意识. 重、难点与关键 1 .重点:掌握“边边边”判定两个三角形全等的方法. 2 .难点:理解证明的基本过程,学会综合分析法. 3 .关键:掌握图形特征,寻找适合条件的两个三角形. 教具准备 一块形状如图 1 所示的硬纸片,直尺,圆规.
培养观察、操作、分析能力,体会全等三角形的应用价值.
重、难点与关键
1 .重点:会确定全等三角形的对应元素.
2 .难点:掌握找对应边、对应角的方法.
3 .关键: 找对应边、对应角 有下面 两种方法 :( 1)全等三角形对应角所对的边是对应边,两个对应角
所夹的边是对应边; ( 2)对应边所对的角是对应角, ?两条对应边所夹的角是对应角.
?如果本图 11. 1─2△ ABC和
△ DBC全等,点 A 和点 D,点 B 和点 B,点 C 和点 C 是对应顶点, ?记作△ ABC≌△ DBC.

人教版八年级上册数学教学设计《12.1 全等三角形》

人教版八年级上册数学教学设计《12.1 全等三角形》

人教版八年级上册数学教学设计《12.1 全等三角形》一. 教材分析《12.1 全等三角形》是人教版八年级上册数学的一个重要章节,主要内容包括全等三角形的概念、全等三角形的性质、全等三角形的判定方法等。

本章通过全等三角形的学习,培养学生对几何图形的认识和理解,提高学生的空间想象力,为后续几何学习打下基础。

二. 学情分析八年级的学生已经掌握了三角形的基本知识,对三角形的性质和判定方法有一定的了解。

但全等三角形作为三角形的一个重要分支,其概念和性质较为抽象,学生理解和掌握全等三角形的难度较大。

因此,在教学过程中,要注重引导学生从实际问题中抽象出全等三角形的概念,并通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。

三. 教学目标1.了解全等三角形的概念,掌握全等三角形的性质和判定方法。

2.培养学生对几何图形的认识和理解,提高学生的空间想象力。

3.培养学生运用全等三角形的知识解决实际问题的能力。

四. 教学重难点1.全等三角形的概念及其性质。

2.全等三角形的判定方法。

3.全等三角形在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出全等三角形的概念。

2.通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。

3.运用多媒体辅助教学,提高学生的空间想象力。

4.采用小组合作学习的方式,培养学生的团队合作精神。

六. 教学准备1.准备相关教学课件和教学素材。

2.设计具有代表性的例题和练习题。

3.准备全等三角形的模型或图片,用于直观展示。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如拼图、制作模型等,引导学生思考:如何判断两个三角形是否完全相同?从而引出全等三角形的概念。

2.呈现(10分钟)介绍全等三角形的定义、性质和判定方法。

通过PPT展示全等三角形的图形,让学生直观地感受全等三角形的特征。

同时,给出全等三角形的判定方法,如SSS、SAS、ASA、AAS等。

人教版八年级上册数学《全等三角形》教案

人教版八年级上册数学《全等三角形》教案

第十二章全等三角形11.2全等三角形一、教学目标1.理解全等形、全等三角形的概念.2.能熟练找出两个全等三角形的对应角、对应边.3.理解并能灵活应用全等三角形的性质.培养学生动态研究几何图形的意识.二、教学重点及难点重点:1.理解全等形、全等三角形的概念.2.理解并能灵活应用全等三角形的性质.难点:全等三角形的性质的运用三、教学用具电脑、多媒体、课件、两个完全相同的三角形硬纸板、直尺、刻度尺四、相关资源两个全等三角形平移、旋转、翻折的动画演示;全等三角形的概念与性质微课五、教学过程(一)情景导入1.下面哪些图形的形状相同、大小相等?2.你能再举出生活中的一些类似例子吗?设计意图:丰富的图形容易引起学生的注意,使他们能很快地投入到学习的情境中,同时反映了现实生活中存在着大量的全等图形.(二)探究新知1.举出现实生活中能够完全重合的图形的例子.这些形状相同、大小相等的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.结论:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.2.全等三角形的对应边、对应角以及两个三角形全等的符号表示、读法、写法.让学生把刚才得到的两个三角形,任意放置,与同桌交流.(1)任何时候两个三角形能够完全重合在一起吗?(2)此时它们的顶点、边、角,有什么特点?把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.“全等”用“≌”表示,读作“全等于”.两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如ABC△和△≌△.△,点A和点D、点B和点E、点C和点F是对应顶点,记作ABC DEFDEF(3)先让学生对全等三角形纸板进行观察,小组讨论,合作交流,观察对应边、对应角有何关系,教师再用动画进行演示,从而得出全等三角形的性质.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.用几何语言表示:如图:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF(全等三角形的对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应角相等).3.总结找对应元素的常用方法:(1)从运动角度看a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.b.旋转法:一个三角形绕某一点旋转一定角度能与另一个三角形重合,从而发现对应元素.c.平移法:沿某一方向推移使两个三角形重合来找对应元素.(2)根据位置元素来推理a.有公共边的,公共边是对应边;b.有公共角的,公共角是对应角;c.有对顶角的,对顶角是对应角;d.两个全等三角形最大的边是对应边,最小的边也是对应边;e.两个全等三角形最大的角是对应角,最小的角也是对应角.(3)对应边所对的角是对应角,对应角所对的边是对应边.设计意图:让学生通过观察图案的形状、大小,得到“全等形”的概念,进而迁移到“全等三角形”的概念,从互相重合过渡到全等三角形的对应边、对应角相等的性质,从而培养学生探索与发现问题的能力,并尝试应用知识解决问题,再一次激发学生的学习热情,掌握确定全等三角形的对应顶点、对应边、对应角的方法,帮助学生不断完善和构建正确的认知结构,完成新知识的内化.(三)课堂练习1.判断下列各组图形中的两个图形是全等形的是.(填序号)2.下列命题:①形状相同的三角形是全等三角形;②面积相等的三角形是全等三角形;③全等三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是全等三角形.其中正确的命题有().A.1个B.2个C.3个D.4个3.如图,已知△ABC≌△BAD,点A,C的对应点分别为B,D,如果AB=5 cm,BC =7 cm,AC=10 cm,那么BD等于().A.10 cm B.7 cm C.5 cm D.无法确定学生独立完成..答案:1.①②④;2.B;3.A设计意图:检查学生对本节课所学知识的掌握情况.六、课堂小结1.在自己动手实际操作中,得到了全等三角形的哪些知识?2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点.3.在运用全等三角形的定义和性质时,应注意规范书写格式.设计意图:通过小结,使学生梳理本节所学内容,理解全等形、全等三角形的概念,学会用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题.七、板书设计12.1.1 全等三角形全等三角形:能够完全重合的两个三角形叫做全等三角形对应定点对应边对应角全等三角形的性质:全等三角形的对应边相等全等三角形的对应角相等第十二章全等三角形12.2全等三角形的判定第1课时一、教学目标1.引导学生积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程.2.掌握三角形全等的“边边边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

第12章全等三角形教案

第12章全等三角形教案

八年级数学上册教案第12章 《全等三角形》教案12.1全等三角形的性质【教学目标】1.知识与技能目标掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念及表示方法。

掌握全等三角形的性质。

2.过程与方法目标:围绕全等三角形的这一中心。

让学生找出它的对应顶点、对应边、对应角,进而引入本节问题的主题,强化了本课的中心问题-----全等三角形的性质。

【重点难点】重点:全等三角形的性质难点:寻找全等三角形中的对应元素【教学过程】课前准备 :全等三角形纸片一、引入新课全等形定义:能够完全重合的两个图形叫做全等形。

全等三角形定义:能够完全重合的两个三角形叫做全等三角形“全等”用“≌”表示,读“全等于”,记作:△ABC ≌△A ′B ′C ′二、 探究1.全等三角形中的对应元素问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。

这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。

表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。

①对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

②对应边:全等三角形中互相重合的边叫做对应边。

③对应角:全等三角形中互相重合的角叫做对应角。

2.全等三角形的性质全等三角形的对应边相等。

全等三角形的对应角相等。

用几何语言表示全等三角形的性质如图:∵∆ABC ≌ ∆DEF∴AB =DE ,AC =DF ,BC =EF (全等三角形对应边相等)∠A =∠D ,∠B =∠E ,∠C =∠F (全等三角形对应角相等)3.探求全等三角形对应元素的找法1.下图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?用式子表示全等关系.并说出其中的对应关系.回答:两个全等的三角形经过一定的转换可以重合。

人教版八年级数学上册《全等三角形》教学教案

人教版八年级数学上册《全等三角形》教学教案

《全等三角形》精品教案课题12.1全等三角形单元第十二单元学科数学年级八年级学习目标1.知识与技能(1)了解全等形和全等三角形的概念,掌握全等三角形的性质。

(2)能正确表示两个全等三角形,能找出全等三角形的对应元素。

2.过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质3.情感态度和价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

重点理解并掌握全等三角形的对应边相等,对应角相等难点正确寻找全等三角形的对应元素教学过程教学环节教师活动学生活动设计意图导入新课课件展示:问题引入。

【过渡】在日常生活中,我们总能看到这样的情景:上边的图片,相信大家都不陌生,两只米奇有什么一样或者不一样的地方吗?我们经常看到的剪纸,大家观察一下,又有什么特点?它们的大小和形状一样吗?观察图片,通过提示的问题,从形状和大小两个方面对其进行分析回答,从而对全等图形有一个初步的概念。

通过现实生活中大量的形状、大小相同的图形,注重从一般到特殊并运用贴近学生生活的图案,激发学生探究的兴趣,由此说明数学来源于生活。

(学生回答)这两种图形形状一样吗?大小一样吗?【过渡】除了这个之外,我们再来看一下这两个五角星。

【过渡】和刚刚的问题一样,你能说出这两个图形的大小和形状一样吗?(学生回答)【过渡】其实,大家的答案都是一样的,它们的大小和形状都是一样的,这就是我们今天要学习到的全等图形。

讲授新课1.全等三角形【过渡】刚刚我们看了几个不同的全等图形,谁能来总结一下什么样的图形是全等图形呢?全等图形的概念:能完全重合的图形称为全等图形。

现在我们来思考一个问题,如果两个图形全等,它们的形状大小一定都相同吗?课件展示动画。

【过渡】通过刚刚的动画,我们看到,这两个五角星是可以完全重合的,结合日常生活,大家对重合是如何理解的呢?(学生回答)【过渡】重合就意味着这两个图形的大小和形状是完全一样的。

人教版八年级上册第十二章12.1全等三角形(教案)

人教版八年级上册第十二章12.1全等三角形(教案)
一、教学内容
人教版八年级上册第十二章12.1全等三角形:
1.全等三角形的定义与性质;
2.全等三角形的判定方法:SSS、SAS、ASA、ห้องสมุดไป่ตู้AS、HL;
3.全等三角形的实际应用;
4.举例说明全等三角形在几何证明中的应用。
二、核心素养目标
1.培养学生的几何直观与空间想象能力,通过全等三角形的学习,使学生能够理解和运用全等变换,把握图形的运动和位置关系;
首先,我意识到需要更多地强调全等三角形判定方法的实际应用。学生们在理解了基本概念后,可能仍然不知道如何将这些知识运用到具体问题中。在未来的教学中,我打算引入更多与生活相关的实例,让学生们明白全等三角形不仅仅是一个几何学的概念,而是与我们的生活息息相关。
其次,我发现在小组讨论环节,有些学生参与度不高,可能是因为他们对全等三角形的应用还不够自信。为了提高学生的参与度,我考虑在下次课上进行一些小组竞赛,鼓励学生们积极思考,增强他们解决问题的信心。
举例:在证明全等三角形的过程中,学生需要明确指出哪些角是对应角,哪些边是对应边,而不是简单地比较三角形的角和边是否相等。
-难点三:将全等三角形的理论知识应用到解决实际问题中。学生在面对实际问题时,可能不知道如何将问题转化为全等三角形的问题来解决。
举例:在解决平面图形的面积问题时,学生需要能够识别图形中的全等三角形,并利用全等性质来简化计算过程。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指能够完全重合的两个三角形,它们的对应角相等,对应边相等。它是几何学中的一个重要概念,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了全等三角形在实际中的应用,以及它如何帮助我们解决问题。

人教版数学八年级上册第十二章《全等三角形》教案(全单元)

第十二章全等三角形12.1全等三角形1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.重点探究全等三角形的性质.难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.一、情境导入一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?二、探究新知1.动手做(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?得出全等形的概念,进而得出全等三角形的概念.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.2.观察观察△ABC与△A′B′C′重合的情况.总结知识点:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.3.探究(1)在全等三角形中,有没有相等的角、相等的边呢?通过以上探索得出结论:全等三角形的性质.全等三角形的对应边相等,对应角相等.(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B 和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.三、应用举例例1如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).四、巩固练习教材练习第1题.教材习题12.1第1题.补充题:1.全等三角形是()A.三个角对应相等的三角形B.周长相等的三角形C.面积相等的两个三角形D.能够完全重合的三角形2.下列说法正确的个数是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④全等三角形的面积相等.A.1B.2C.3D.43.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE 的度数与DE的长.补充题答案:1.D2.D3.∠DFE=35°,DE=8五、小结与作业1.全等形及全等三角形的概念.2.全等三角形的性质.作业:教材习题12.1第2,3,4,5,6题.本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.12.2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC ,画一个三角形△A′B′C′,使AB =A′B′∠B =∠B ′,BC =B′C′. 教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”) [师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;(2)画线段A′B′,使A′B′=AB;(3)分别以A′,B ′为顶点,A ′B ′为一边作∠DA′B′,∠EB ′A ′,使∠DA′B′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A′D 与B′E 交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”) 这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”) 例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充.三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS );方法二:测量没遮住的一条直角边和一个对应的锐角(ASA 或AAS ). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 二、探究新知多媒体出示教材探究5.任意画出一个Rt △ABC ,使∠C =90°.再画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB.把画好的Rt △A ′B ′C ′剪下来,放到Rt △ABC 上,它们全等吗?画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB. 想一想,怎么样画呢?按照下面的步骤作一作: (1)作∠MC′N =90°;(2)在射线C′M 上截取线段B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′;(4)连接A′B′.△A ′B ′C ′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC 上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL ”. 多媒体出示教材例5如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD.求证:BC =AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,AC =BD , ∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD.想一想:你能够用几种方法判定两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评.四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边.2.直角三角形全等的所有判定方法:定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等?3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.12.3角的平分线的性质掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.重点角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.难点灵活运用角的平分线的性质和判定解题.一、复习导入1.提问角的平分线的定义.2.给定一个角,你能不用量角器作出它的平分线吗?二、探究新知(一)角的平分线的画法教师出示:已知∠AOB.求作:∠AOB的平分线.然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.(二)角的平分线的性质试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;(4)再换一个新的位置看看情况怎样?归纳总结得到角的平分线的性质.分析讨论PD=PE的理由.(三)角平分线的判定教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程.巩固应用:解决教材第49页思考(四)三角形的三个内角的平分线相交于一点1.例题:教材第50页例题.2.针对例题的解答,提出:P点在∠A的平分线上吗?通过例题明确:三角形的三个内角的平分线相交于一点.练习:教材第50页练习.三、归纳总结引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?四、布置作业教材习题12.3第1~4题.教学始终围绕着角平分线及其性质、判定的问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,让学生经历了知识的形成与应用的过程,从而更好的理解掌握角平分线的性质。

全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。

人教版八年级上册12.1全等三角形教学设计

1.强调全等三角形判定条件的逻辑关系,帮助学生建立清晰的几何思维。
2.指出学生在课堂练习中的常见错误,提醒他们在以后的学习中注意避免。
3.鼓励学生提出对本节课知识的疑问,及时解答,确保他们对全等三角形知识的掌握。
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定条件(SSS、SAS、ASA),能够准确识别和绘制全等三角形。
人教版八年级上册12.1全等三角形教学设计
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定方法,能够准确地识别和绘制全等三角形。
-学生能够回忆起之前学过的等腰三角形、等边三角形等特殊三角形的性质,为新学习的全等三角形判定打下基础。
-通过直观演示和实际操作,让学生掌握SSS(边-边-边)、SAS(边-角-边)、ASA(角-边-角)全等三角形的判定定理,并能够运用这些定理解决具体问题。
1.采用生动的语言和形象的比喻,帮助学生理解抽象的几何概念。
2.使用教具、多媒体等教学资源,增强学生的直观感受。
3.通过与学生互动,及时解答学生的疑问,确保学生对新知识的掌握。
(三)学生小组讨论
在讲授新知后,我会组织学生进行小组讨论,让学生在合作中深入探讨全等三角形的性质和判定方法。我会给出几个具有代表性的问题,引导学生思考:
2.学会运用全等三角形的性质和判定方法解决实际问题,如计算三角形面积、证明线段或角相等。
3.掌握全等变换(平移、旋转、翻转)的基本操作,能够运用这些变换创造全等图形。
(二)过程与方法
1.通过观察、分析和归纳,培养学生逻辑思维能力。
2.设计探究活动,让学生在实践过程中掌握全等三角形的判定方法。
3.通过小组合作,培养学生的团队协作能力和沟通能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《全等三角形》
◆教材分析
本节课是新人教版义务教育课程标准实验教材数学八年级上册第十一章第一课时的内容,本章围绕全等三角形,主要学习全等三角形的有关概念和性质,三角形全等的条件以及角平分线的性质,学生在七年级教材中学过了线段、角、相交线等与三角形有关的知识和一些简单的说理内容,这为全等三角形的学习奠定了基础,并且在今后学习等腰三角形、直角三角形、线段的垂直平分线、角平分线等内容中都要通过证明两个三角形全等来加以解决。

◆教学目标
【知识与能力目标】
1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能用符号正确表示两个三角形全等,能找出全等三角形的对应元素。

【过程与方法目标】
在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,通过全等三角形有关概念的学习,提高学生数学概念的辨析能力,通过找出全等三角形的对应元素,培养学生的识图能力。

【情感态度价值观目标】
通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神,通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧,培养学生科学的学习态度及自信,互相尊重的健全人格。

【教学重点】
全等三角形的概念和性质.
【教学难点】
找出全等三角形的对应边、对应角.
多媒体课件、三角板。

一、新课导入
观察下列图案,指出这些图案中形状与大小相同的图形.
问题:你还能举出生活中一些实际例子吗?
探究:把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?从同一张底片冲洗出来的两张尺寸相同的照片上的图形,放在一起也能够完全重合吗?
这些形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.◆教学重难点

◆课前准备

◆教学过程
能够完全重合的两个三角形叫做全等三角形。

二、传授新知
在图(1)中,把△ABC 沿直线BC 平移,得到△DEF 。

在图(2)中,把△ABC 沿直线BC 翻折180°,得到△DBC 。

在图(3)中,把△ABC 旋转后得到△ADE 。

一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即两图形全等. “全等”用“≌”表示,读作“全等于”。

两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如DEF ABC ∆∆和全等时,点A 和点D ,点B 和点E ,点C 和点F 是对应顶点,记作DEF ABC ∆≅∆。

把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

观察下图,
可以得到全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。

三、随堂练习
1、如图,△OCA ≌△OBD ,点C 和点B ,点A 与点D 是对应点,则下列结论错误的是( D ).
(A ) ∠COA =∠BOD ;
(B ) ∠A =∠D ;
(C ) CA =BD ;
(D ) OB =OA .
2、△ABN ≌△ACM,∠ABN 和∠ACM 是对应角,AB和AC 是对应边.则下列结论错误的是( C )。

(A)∠AMC =∠ANB ;
(B)∠BAN =∠CAM ;
(C)BM =MN ;
(D)AM =AN .
3、如图,△ABC ≌△CDA,AB 与CD,BC与DA 是对应边,则下列结论错误的是( C )。

(A)∠ BAC =∠ DCA ;
(B)AB //DC ;
(C)∠ BCA =∠ DCA ;
(D)BC //DA .
4、如图,△EFG ≌△NMH,∠F 和∠M 是对应角。

(1)FG 与MH 平行吗?为什么?
(2)判断线段EH 与NG 的大小关系,并说明理由。

(1)平行;
(2)相等.
四、课堂小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素,这也是这节课大家要重点掌握的。

◆教学反思
略。

相关文档
最新文档