随机变量函数的概率分布

合集下载

随机变量的函数的概率分布

随机变量的函数的概率分布
《概率论与数理统计》 第二章 随机变量与概率分布
随机变量的函数的概率分布: 1.离散型的求法 设离散型随机变量 X 的分布律为: Y P g(x1) p1 X P x1 x2 p1 p2 … xk … … pk … , 则 X 的 函 数 Y=g(X) 的 分 布 律 为 :
g(x2) …g(xk) … , 当 g(xj)有相同情况时,概率为相应之和。 p2 … pk …
例 2 设随机变量 X 的分布函数为 FX(x),求随机变量 Y=3X+2 的分布函数 FY(y). y-2 y-2 [解]:FY(y)=P{Yy}= P{3X+2y}= P{X }= FX( ) 3 3 3 2 x 例 3 设随机变量 X 的密度函数为 fX(x)= 2 0 -1<x<1 其它 ,求随机变量 Y=3X+2 的密度函数 fY(y). y-2 3 y-2 , -1< <1 -1<y<5, 3 1 3
[解]:用公式法:设 y=g(x)=3x+2, y=g(x)的反函数为 x=h(y)= 则 Y=g(X)的密度函数为
|h(y)|=
2 1 3 y-2 1 (y-2) ( ) -1<y<5 fX(h(y))|h(y)| <y< 3 fY(y)= = 2 3 = 18 0 其它 0 0 其它
2
3
3
1 dx,fY(y)= F Y(y)= 0 2
y
1 1 2 3 1
2 (y) 3 =
2 3 1 3 ,当 y8 时, FY(y)=P{Yy}= P{X y}= P{X y}= dx =1,fY(y)= FY(y)= 0. fY(y)= 3 2 02 6 y 1 0<y<8 其它

随机变量函数的概率分布

随机变量函数的概率分布

§2.4 随机变量函数的概率分布1.随机变量函数的概念:设是已知连续函数,为随机变量,则函数也是一个随机变量,称之为随机变量的函数.2.离散型随机变量的概率分布设离散型随机变量的分布律为则在随机变量的取值,,不同的情况下,其分布律为但是,若有相同的情况,则需要合并为一项.故Y的分布律为有时我们只求Y=g(X)在某一点y处取值的概率,有,即把满足的所对应的概率相加即可。

3.连续型随机变量函数的概率密度定理:设为连续型随机变量,其密度函数为 .设是严格单调的可导函数,其值域为,且.记的反函数,则的概率密度为.证明:略解:利用例2-27所得的结论,f x(x)=(1),则(2)·即.例2-28说明两个重要结论:当时,,且随机变量称为X的标准化。

另外,正态随机变量的线性变换仍是正态随机变量,即aX+b~,这两个结论十分有用,必须记住。

第二章小结一、内容分布律二、试题选讲1.(1016)抛一枚硬币5次,记正面向上的次数为,则=____________.【答疑编号:12020308针对该题提问】答案:2.(0404)设随机变量的概率密度为则=().A.B.C.D. 1【答疑编号:12020309针对该题提问】答案:A3.(1004)设随机变量的概率密度为则常数等于().A. -1B.C.D. 1【答疑编号:12020310针对该题提问】答案:D4.(1003)设随机变量在区间[2,4]上服从均匀分布,则=().A. B. C. D.【答疑编号:12020311针对该题提问】答案:C5.(1015)设随机变量,已知标准正态分布数值,为使,则常数 ___________.【答疑编号:12020312针对该题提问】答案:36.(0704)设每次试验成功的概率为,则在3次独立重复试验中至少成功一次的概率为().A.B.C.D.【答疑编号:12020313针对该题提问】答案:A7.(0715)已知随机变量,且,则___________.【答疑编号:12020314针对该题提问】答案:58.(0716)设随机变量的分布函数为,则常数____________.【答疑编号:12020315针对该题提问】答案:19.(0727)设随机变量服从参数为3的指数分布,试求:(1)的概率密度;【答疑编号:12020316针对该题提问】(2) .【答疑编号:12020317针对该题提问】解:10.(1028)司机通过某高速路收费站等候的时间(单位:分钟)服从参数为的指数分布,(1)求某司机在此收费站等候时间超过10分钟的概率;【答疑编号:12020318针对该题提问】(2)若该司机一个月要经过此收费站两次,用表示等候时间超过10分钟的次数,写出的分布律,并求 .【答疑编号:12020319针对该题提问】解:(注:文档可能无法思考全面,请浏览后下载,供参考。

概率分布与随机变量的分布函数计算

概率分布与随机变量的分布函数计算

概率分布与随机变量的分布函数计算随机变量是概率论和统计学中一个重要的概念,它被用来描述随机试验的结果。

概率分布是随机变量的可能取值及其相应概率的分布。

在本文中,我们将讨论如何计算概率分布和随机变量的分布函数。

一、概率分布的计算概率分布可以通过概率质量函数(probability mass function,简称PMF)或概率密度函数(probability density function,简称PDF)来描述。

这取决于随机变量是离散型还是连续型。

1. 离散型随机变量的概率分布计算对于离散型随机变量,其概率分布可以通过概率质量函数来计算。

概率质量函数给出了每个可能取值的概率。

假设随机变量X的取值集合为{x1, x2, ... , xn},对应的概率分布为{P(X=x1), P(X=x2), ... , P(X=xn)}。

其中P(X=xi)表示X取值为xi的概率。

2. 连续型随机变量的概率分布计算对于连续型随机变量,其概率分布可以通过概率密度函数来计算。

概率密度函数是一个函数,描述了随机变量在某个取值点附近的概率密度。

假设随机变量X的概率密度函数为f(x),则X在区间[a, b]上的概率可以通过计算f(x)在该区间上的面积来得到,即P(a ≤ X ≤ b) = ∫(a to b)f(x)dx。

二、随机变量的分布函数计算随机变量的分布函数是一种用来描述随机变量取值分布情况的函数。

对于离散型随机变量和连续型随机变量,它们的分布函数的计算方式是不同的。

1. 离散型随机变量的分布函数计算离散型随机变量的分布函数(cumulative distribution function,简称CDF)定义为随机变量小于等于某个取值的概率。

CDF可以通过累加概率质量函数来计算。

对于随机变量X的概率分布{P(X=x1), P(X=x2), ... , P(X=xn)},其对应的分布函数为F(x) = P(X≤x) = ∑(xi≤x) P(X=xi)。

随机变量的分布函数的定义

随机变量的分布函数的定义

随机变量的分布函数的定义随机变量的分布函数是概率论中一项重要的概念,它描述了随机变量取值的概率分布情况。

本文将会从以下几个方面详细介绍随机变量的分布函数的定义。

1. 随机变量的定义在介绍随机变量的分布函数之前,需要先介绍什么是随机变量。

随机变量是指随机试验得出的结果,它可以是一个离散的数值,也可以是一个连续的数值。

例如,掷一枚骰子得到的数字就是一个随机变量。

随机变量的取值是由概率决定的。

2. 分布函数的定义分布函数是描述随机变量取值概率分布的函数,一般用大写字母F表示。

设X是一个随机变量,则X的分布函数FX(x)定义为:FX(x) = P(X ≤ x)其中,≤ 表示小于或等于。

3. 分布函数的解释分布函数的解释是将随机变量的概率分布情况用一条连续的曲线来表示,可以很直观地看出随机变量取某个值的概率大小。

例如,在掷一枚骰子时,如果要求得点数小于等于3的概率,那么分布函数FX(x)就可以表示为:FX(x) = P(X ≤ 3) = 3/6 = 1/2这个值意味着当掷出的点数小于等于3时,随机事件发生的概率为1/2。

4. 分布函数的性质分布函数有以下几个基本性质:(1)0 ≤ FX(x) ≤ 1(2)FX(x)单调不降(3)当x → -∞时,FX(x) → 0(4)当x → +∞时,FX(x) → 1这些性质是由于随机变量的取值是由概率决定的,所以分布函数必须满足这些条件。

综上所述,随机变量的分布函数是描述随机变量取值概率分布的函数。

在实际问题中,掌握随机变量的分布函数可以更准确地建立数学模型,预测事件的概率,更好地解决实际问题。

随机变量及其概率分布

随机变量及其概率分布

随机变量及其概率分布随机变量是概率论和数理统计中的重要概念,描述了随机事件的数值特征。

概率分布则用于描述随机变量取值的概率情况。

本文将介绍随机变量及其概率分布的基本概念和常见的概率分布模型。

一、随机变量的定义与分类随机变量是对随机事件结果的数值化描述。

随机变量可分为离散型随机变量和连续型随机变量两种。

1. 离散型随机变量离散型随机变量只能取有限个或可数个值,常用字母X表示。

例如,抛掷骰子的点数就是一个离散型随机变量,可能取1、2、3、4、5、6之一。

2. 连续型随机变量连续型随机变量可以取某个区间内的任意值,通常用字母Y表示。

例如,测量某个物体长度的随机误差就可看作是一个连续型随机变量。

二、概率分布的概念与性质概率分布描述了随机变量取值的概率情况。

常见的概率分布包括离散型分布和连续型分布。

1. 离散型概率分布离散型概率分布描述了离散型随机变量取值的概率情况。

离散型概率分布函数可以用概率质量函数(probability mass function,PMF)来表示。

PMF表示了随机变量取某个特定值的概率。

离散型概率分布函数具有以下性质:①非负性,即概率大于等于0;②归一性,即所有可能取值的概率之和等于1。

常见的离散型概率分布有:伯努利分布、二项分布、几何分布、泊松分布等。

2. 连续型概率分布连续型概率分布描述了连续型随机变量取值的概率情况。

连续型概率分布函数可以用概率密度函数(probability density function,PDF)来表示。

PDF表示在随机变量取某个特定值附近的概率密度。

连续型概率分布函数具有以下性质:①非负性;②积分为1。

常见的连续型概率分布有:均匀分布、正态分布、指数分布等。

三、常见的1. 伯努利分布伯努利分布描述了一次随机试验中两个互斥结果的概率情况,取值为0或1。

其概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),k=0或1其中,p为成功的概率,1-p为失败的概率。

随机变量分布函数

随机变量分布函数

随机变量分布函数在概率论中,随机变量是一个实数值函数,其取值是由试验结果的概率分布所决定的。

随机变量的分布函数描述了随机变量在实数轴上的取值范围及其概率分布情况。

在数学上,随机变量分布函数可以分为离散型和连续型两种。

离散型随机变量分布函数:离散型随机变量的取值为一系列离散的数值。

随机变量的分布函数F(x)可以表示为:F(x)=P(X≤x),其中X表示随机变量,P(X≤x)表示随机变量小于或等于x的概率。

例如,考虑一个掷硬币的试验,随机变量X表示掷硬币正面朝上的次数。

X的取值范围为0、1和2,掷硬币正面朝上的概率分别为1/4、1/2和1/4、则X的分布函数为:F(x)=0(x<0)F(x)=1/4(0≤x<1)F(x)=3/4(1≤x<2)F(x)=1(x≥2)。

连续型随机变量分布函数:连续型随机变量的取值为一个连续的数值区间。

随机变量的分布函数F(x)可以表示为:F(x)=P(X≤x),其中X表示随机变量,P(X≤x)表示随机变量小于或等于x的概率。

例如,考虑一个随机变量X符合标准正态分布(均值为0,方差为1),其分布函数F(x)可以表示为:F(x) = ∫(−∞,x)f(t)dt,其中f(t)表示X的概率密度函数。

从分布函数可以推导出随机变量的概率密度函数,概率密度函数是分布函数的导数。

对于离散型随机变量,概率密度函数在取值点上的导数是0,其他点的导数是无穷大;对于连续型随机变量,概率密度函数在所有点上的导数都存在。

随机变量的分布函数具有以下性质:1.F(x)是非减函数,即对于任意x1≤x2,有F(x1)≤F(x2)。

2.F(x)的取值范围是[0,1],即0≤F(x)≤13. F(x)在负无穷处的极限为0,即lim(x→−∞)F(x) = 0。

4. F(x)在正无穷处的极限为1,即lim(x→+∞)F(x) = 1随机变量分布函数在概率论和统计学中都有广泛应用。

通过分布函数,我们可以计算出随机变量在一些特定取值上的概率,也可以计算出随机变量的期望值、方差等统计量。

数学中的概率分布正态分布与离散分布

数学中的概率分布正态分布与离散分布

数学中的概率分布正态分布与离散分布在数学中,概率分布是描述随机变量取值的规律性分布。

其中,正态分布和离散分布是两种重要的概率分布类型。

一、正态分布正态分布,也称为高斯分布,是一种连续性随机变量的概率分布。

它的概率密度函数(Probability Density Function,简称PDF)具有钟形曲线的特点,对称于均值,并由两个参数来确定:均值(μ)和标准差(σ)。

正态分布的概率密度函数为:f(x) = (1 / (σ * √(2π))) * exp(-(x-μ)² / (2σ²))在正态分布中,68%的数据落在一个标准差范围内,95%的数据落在两个标准差范围内,99.7%的数据落在三个标准差范围内。

这个规律被称为“68-95-99.7规则”。

正态分布在实际应用中经常出现。

例如,人的身高、智力测验得分等都符合近似正态分布。

在统计学和自然科学研究中,正态分布被广泛用于描述和分析数据的分布情况。

二、离散分布离散分布是一种描述离散型随机变量的概率分布。

离散型随机变量是指只取有限个或可列个数值的随机变量,例如扔硬币的结果(正面或反面)或掷骰子的结果(1到6点)等。

常见的离散分布有伯努利分布、二项分布、泊松分布等。

下面分别介绍几种常见的离散分布:1. 伯努利分布伯努利分布是最简单的离散分布之一,描述了只有两种可能结果的随机试验。

它的概率质量函数如下:P(x) = p^x * (1-p)^(1-x),其中x={0, 1},p为取得1的概率。

2. 二项分布二项分布描述了重复进行一系列相同的独立随机试验,且每次试验只有两种可能结果的情况。

它的概率质量函数如下:P(x) = C(n,x) * p^x * (1-p)^(n-x),其中C(n,x)表示组合数。

3. 泊松分布泊松分布用于描述单位时间或空间内某事件发生的次数的概率分布。

它的概率质量函数如下:P(x) = (e^(-λ) * λ^x) / x!,其中λ为单位时间或空间内事件的平均发生率。

概率论(随机变量的分布函数)

概率论(随机变量的分布函数)
P{X a} 1 P{X a} 1 F(a) a f ( x)d x.
注: 1. 设X为连续型随机变量,对于任意可能值 a ,
P{X a} 0.
证明 x 0,则{X a} {a x X a}
0 P{X a} P{a x X a} F(a) F(a x) 0(x 0 )
试求c为待定常数又因为0x2为必然事件故1216补充定义x2处函数值为0后得到简称概率密度密度函数的概率称为其中为连续型随机变量使对任意实数非负可积函数存在的分布函数如果对于随机变量一定义probabilitydensity
第三节 随机变量的分布函数
一、概念的引入
需要知道 X 在任意有限区间(a, b)内取值的概率.
(1) 曲线关于直线 x= 对称 . 1 f(x)
2
这表明P{ h X } P{ X h}
(2) 当 x= 时,f(x)取得最大值;
O
x
(3) 在 x= 处曲线有拐点,且以x轴为渐近线 ;
(4) 对固定的,改变的值,图形沿Ox轴平移;
(5) 对固定的,改变, 越小,图形越尖.
正态分布的分布函数为: F ( x) 1
为X 的分布函数(distribution function) 记作 X ~ F(x) 或 FX(x)
如果将 X 看作数轴上随机点的坐标,那么分
布函数 F(x) 的值就表示 X落在区间
(, x] 的概率.
—X——x |——> x
三、分布函数的性质
1 单调不减 即 若 x1< x2,则F(x1) ≤F(x2);
例如 求随机变量 X 落在区间( x1, x2 ]内的概率.
P{ x1 X x2} P{ X x2}P { X x1}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.4 随机变量函数的概率分布
1.随机变量函数的概念:设是已知连续函数,为随机变量,则函数也是一个随机变量,称之为随机变量的函数.
2.离散型随机变量的概率分布
设离散型随机变量的分布律为
则在随机变量的取值,,不同的情况下,其分布律为
但是,若有相同的情况,则需要合并为一项.
故Y的分布律为
有时我们只求Y=g(X)在某一点y处取值的概率,有,
即把满足的所对应的概率相加即可。

3.连续型随机变量函数的概率密度
定理:设为连续型随机变量,其密度函数为 .设是严格单调的可导函数,其值域为,且.记的反函数,则的概率密度为
.
证明:略
解:利用例2-27所得的结论,f x(x)=
(1),则
(2)·
即.
例2-28说明两个重要结论:当时,,且随机变量称为X的标准化。

另外,正态随机变量的线性变换仍是正态随机变量,即aX+b~,这两个结论十分有用,必须记住。

第二章小结一、容分布律
二、试题选讲
1.(1016)抛一枚硬币5次,记正面向上的次数为,则=____________.
【答疑编号:12020308针对该题提问】
答案:
2.(0404)设随机变量的概率密度为则=().
A.
B.
C.
D. 1
【答疑编号:12020309针对该题提问】
答案:A
3.(1004)设随机变量的概率密度为则常数等于().
A. -1
B.
C.
D. 1
【答疑编号:12020310针对该题提问】
答案:D
4.(1003)设随机变量在区间[2,4]上服从均匀分布,则=().
A. B. C. D.
【答疑编号:12020311针对该题提问】
答案:C
5.(1015)设随机变量,已知标准正态分布数值,为使,则常数___________.
【答疑编号:12020312针对该题提问】
答案:3
6.(0704)设每次试验成功的概率为,则在3次独立重复试验中至少成功一次的概率为().
A.
B.
C.
D.
【答疑编号:12020313针对该题提问】
答案:A
7.(0715)已知随机变量,且,则___________.
【答疑编号:12020314针对该题提问】
答案:5
8.(0716)设随机变量的分布函数为,则常数____________. 【答疑编号:12020315针对该题提问】
答案:1
9.(0727)设随机变量服从参数为3的指数分布,试求:(1)的概率密度;
【答疑编号:12020316针对该题提问】
(2) .
【答疑编号:12020317针对该题提问】
解:
10.(1028)司机通过某高速路收费站等候的时间(单位:分钟)服从参数为的指数分布,
(1)求某司机在此收费站等候时间超过10分钟的概率;
【答疑编号:12020318针对该题提问】
(2)若该司机一个月要经过此收费站两次,用表示等候时间超过10分钟的次数,写出的分布律,并求 .
【答疑编号:12020319针对该题提问】
解:。

相关文档
最新文档