高三第一轮复习10----常用逻辑用语与不等式训练题
高三大一轮复习-常用逻辑用语(含答案)

绝密★启用前高三大一轮复习-常用逻辑用语一、选择题(题型注释)1.已知命题022,:2>++∈∀x x R x p ,则p ⌝是( )A .,0R x ∈∃022020<++x xB .,R x ∈∀0222<++x xC .,0R x ∈∃022020≤++x x D .,R x ∈∀0222≤++x x 2.下列说法错误..的是 ( ) A .命题“若0a =,则0ab =”的否命题是:“若0a ≠,则0ab ≠”B .如果命题“p ⌝”与命题“p 或q ”都是真命题,那么命题q 一定是真命题.C .若命题p :2,10x R x x ∃∈-+<,则2:,10p x R x x ⌝∀∈-+≥;D .“1sin 2θ=”是“30θ=︒”的充分不必要条件 3.命题“存在一个无理数,它的平方是有理数”的否定是 A .任意一个无理数,它的平方不是有理数 B .任意一个有理数,它的平方是有理数 C .存在一个有理数,它的平方是有理数 D .存在一个无理数,它的平方不是有理数4.在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A .()()p q ⌝∨⌝ B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .p q ∨5.已知命题p :“[]1,2x ∀∈, 20x a -≥”,命题q :“x R ∃∈,2220x ax a ++-=”,若命题“p q ∧”是真命题,则实数a 的取值范围是( )A. (]{},21-∞-⋃B. ][(,21,2⎤-∞-⋃⎦C. [)1,+∞D. []2,1- 6.“y x lg lg >”是“y x >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知i 是虚数单位,m ,R n ∈,则“1m n ==”是“()22m ni i -=-”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.已知圆()222:1(0)C x y r r -+=>.设条件p : 03r <<,条件q :圆C 上至多有2个点到直线30x +=的距离为1,则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件9.已知条件p :|4|6x -≤ ;条件q :22(1)0(0)x m m --≤> ,若p 是q 的充分不必要条件,则m 的取值范围是( )A .[21,+∞)B .[9,+∞)C .[19,+∞)D .(0,+∞)10.下列四个结论中正确的个数是( ) ①若,则 ②已知变量和满足关系,若变量与正相关,则与负相关③“已知直线,和平面、,若,,,则”为真命题 ④是直线与直线互相垂直的充要条件A. 1B. 2C. 3D. 4 11.已知命题:将函数的图像向右平移个单位,得到函数的图像,则函数在区间上单调递增;命题:定义在上的函数满足,则函数图像关于直线对称,则正确的命题是( ) A. B. C. D.12.已知命题p : R x ∃∈,使2254x x ++≤;命题q :当0,2x π⎛⎫∈ ⎪⎝⎭时, ()4sin sin f x x x=+的最小值为4.下列命题是真命题的是( ) A. p q ∧ B. ()()p q ⌝∧⌝ C. ()p q ⌝∧ D. ()p q ∧⌝第II 卷(非选择题)二、填空题(题型注释)13.已知命题,命题,若命题是真命题,则实数的取值范围是__________.14.“若a >b ,则ba22>”的逆否命题为 .15.“||2b <是“直线y b +与圆2240x y y +-=相交”的______________条件.16.设有两个命题, p :关于x 的不等式1xa >(0a >,且1a ≠)的解集是{|0}x x <; q :函数()2lg y ax x a =-+的定义域为R .如果p q ∨为真命题, p q ∧为假命题,则实数a的取值范围是____.17.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题;②命题“若4x ≥且2y ≥,则6x y +≥”的否命题为“若4x <且2y <,则6x y +<”;③在ABC ∆中,“030A >”是“1sin 2A >”的充要条件; ④已知条件043:2≤--x x p ,条件096:22≤-+-m x x q ,若q ⌝是p ⌝的充分不必要条件,则m 的取值范围是(][)+∞⋃-∞-,44,;18.已知命题:p “方程2191x y k k +=--表示焦点在x 轴上的椭圆”, 命题:q “方程2212x y k k+=-表示双曲线”.(1)若p 是真命题,求实数k 的取值范围; (2)若q 是真命题,求实数k 的取值范围; (3)若“p q 或”是真命题,求实数k 的取值范围.19.设p :实数x 满足x 2-4ax+3a 2<0,其中a≠0,命题q :实数x 满足,(1)若a=1,且p∧q 为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围。
高考数学一轮复习第一章 集合与常用逻辑用语、不等式答案

第一章 集合与常用逻辑用语、不等式第1讲 集合及其运算链教材·夯基固本 激活思维 1. D 2. A 3.ABD【解析】 因为x 2-3x +2≤0,所以1≤x ≤2,所以A ={x |1≤x ≤2}.因为2<2x ≤8,所以1<x ≤3,所以B ={x |1<x ≤3},所以A∪B ={x |1≤x ≤3},A ∩B ={x |1<x ≤2},(∁R B )∪A ={x |x ≤2或x >3},(∁R B )∪(∁R A )={x |x ≤1或x >2}.4.4【解析】因为集合A 必须含有元素5,元素1和3不确定,所以集合A 的本质是{1,3}的所有子集与元素5组成的集合,共4个.5.7【解析】A ={x∈Z |-1≤x ≤4}={-1,0,1,2,3,4},B ={x |1<x <e 2},所以A ∩B ={2,3,4},所以A ∩B 的真子集的个数为23-1=7.知识聚焦1. (1) 确定性 互异性 无序性2. 2n 2n -1 4. U A 研题型·融会贯通 分类解析【答案】 (1) D (2) B (3) A 【题组·高频强化】 1. C 2. C3. C【解析】 由题意知A ∩B 中的元素满足⎩⎪⎨⎪⎧y ≥x ,x +y =8,且x ,y ∈N *,所以满足条件的有(1,7),(2,6),(3,5),(4,4),故A ∩B 中元素的个数为4.故选C.4.B【解析】由x 2-4≤0,得A ={x |-2≤x ≤2}.由2x +a ≤0,得B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≤-a 2.因为A ∩B ={x |-2≤x ≤1},所以-a2=1,解得a =-2.故选B.5. B【解析】 由图可知,阴影区域为∁U (A∪B ).由题知A ∪B ={1,3,5},U ={1,3,5,7},则由补集的概念知,∁U (A ∪B )={7}.故选B.(1) 【答案】 {1,-1} 【解析】若集合{x |x 2+2kx +1=0}中有且仅有一个元素,则方程x 2+2kx +1=0有且只有一个实数根,即Δ=(2k )2-4=0,解得k =±1,所以k 的取值集合是{1,-1}.(2) 【答案】 -1 【解析】因为A ∩B 中只有一个元素,又a ≠0且a ≠2.若a =1,则a 2-a =0,不满足题意;若a ≠1,显然a 2-a ≠0,故a 2-a =2或a 2-a =a ,解得a =-1.综上,a =-1.(3) 【答案】 [0,+∞) ∅ 【解析】由题知集合A 是函数y =x 2的定义域,即A =R ,集合B 是函数y =x 2的值域,即B =[0,+∞),所以A ∩B =[0,+∞),集合C 是函数y =x 2的图象上的点集,故A ∩C =∅.(1) 【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,14 【解析】 当k =0时,A ={-1},符合题意;当k ≠0时,若集合A 只有一个元素,由一元二次方程判别式Δ=1-4k =0,得k =14.综上,当k =0或k =14时,集合{x |kx 2+x +1=0}中有且只有一个元素.(2) 【答案】 -2或1 【解析】因为集合A ={-1,1,2},B ={a +1,a 2-2},A ∩B ={-1,2},所以⎩⎪⎨⎪⎧a +1=-1,a2-2=2或⎩⎪⎨⎪⎧a +1=2,a2-2=-1,解得a =-2或a =1.(1) 【答案】 D【解析】 当B =∅时,a =0,此时B ⊆A .当B ≠∅时,则a ≠0,所以B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =-1a . 又B ⊆A ,所以-1a∈A ,所以a =±1.综上可知,实数a 的所有可能取值的集合为{-1,0,1}. (2) 【答案】 [2,3]【解析】 由A ∩B =B 知,B ⊆A .(例3(2))又B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,解得2≤m ≤3,则实数m 的取值范围为[2,3].【答案】 B【解析】 由log 2(x -1)<1,得0<x -1<2,所以A =(1,3). 由|x -a |<2得a -2<x <a +2,即B =(a -2,a +2). 因为A ⊆B ,所以⎩⎪⎨⎪⎧a -2≤1,a +2≥3,解得1≤a ≤3.所以实数a 的取值范围为[1,3].【解答】 (1) 由题知⎩⎪⎨⎪⎧x<0,⎝ ⎛⎭⎪⎪⎫12x -3<1或⎩⎪⎨⎪⎧x ≥0,x<1,解得-2<x <0或0≤x <1, 所以A ={x |-2<x <1}. (2) 因为A ∪B =A ,所以B ⊆A .(ⅰ) 当B =∅时,2a >a +1,所以a >1满足题意;(ⅱ) 当B ≠∅时,⎩⎪⎨⎪⎧2a ≤a +1,2a>-2,a +1<1,解得-1<a <0.综上,a ∈(-1,0)∪(1,+∞). 课堂评价1. BCD 【解析】 对于选项A ,因为xy >0⇔⎩⎪⎨⎪⎧x>0,y>0或⎩⎪⎨⎪⎧x<0,y<0,所以集合{(x ,y )|xy >0}表示直角坐标平面内第一、三象限的点的集合,故A 正确;对于选项B ,方程|x -2|+|y +2|=0的解集为{(2,-2)},故B 错误; 对于选项C ,集合{(x ,y )|y =1-x }表示直线y =1-x 上的点, 集合{x |y =1-x }表示函数y =1-x 中x 的取值范围,故集合{(x ,y )|y =1-x }与{x |y =1-x }不相等,故C 错误;对于选项D ,A ={x ∈Z |-1≤x ≤1}={-1,0,1},所以-1.1∉A ,故D 错误. 2. ABC3. B 【解析】 由x 2-3x -4>0得x <-1或x >4, 所以集合A ={x |x <-1或x >4}.由x 2-3mx +2m 2<0(m >0)得m <x <2m , 所以集合B ={x |m <x <2m }. 又B ⊆A ,所以2m ≤-1(舍去)或m ≥4. 故实数m 的取值范围是[4,+∞). 4. [2 020,+∞)【解析】 由x 2-2 021x +2 020<0,解得1<x <2020,故A ={x |1<x <2 020}.又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 020.(第4题)5.(-∞,2]【解析】当a >1时,A =(-∞,1]∪[a ,+∞),B =[a -1,+∞),当且仅当a -1≤1时,A ∪B =R ,故1<a ≤2;当a =1时,A =R ,B ={x |x ≥0},A ∪B =R ,满足题意;当a <1时,A =(-∞,a ]∪[1,+∞),B =[a -1,+∞),又因为a -1<a ,所以A ∪B =R ,故a <1满足题意.综上可知a ∈(-∞,2].第2讲 充分条件、必要条件、充要条件链教材·夯基固本 激活思维 1. A 2. B 3. BCD【解析】由x 2-x -2<0,解得-1<x <2,所以(-1,2)(-2,a ),所以a ≥2,所以实数a 的值可以是2,3,4.4. [-2,1] 【解析】 因为綈p :x ≤-1或x ≥3,綈q :x ≤m -2或x ≥m +5,且綈p 是綈q 的必要不充分条件,所以⎩⎪⎨⎪⎧m -2≤-1,m +5≥3,且等号不能同时取到,解得-2≤m ≤1.5. 充要 必要 【解析】 因为q ⇒s ⇒r ⇒q ,所以r 是q 的充要条件.又q ⇒s ⇒r ⇒p ,所以p 是q 的必要条件.知识聚焦1. (1) 充分 必要 非充分 非必要 (2) ①充分不必要 ②必要不充分 ③充要 ④既不充分也不必要研题型·融会贯通 分类解析(1) 【答案】 A【解析】 因为1x >1,所以x ∈(0,1).因为e x -1<1,所以x <1,所以“1x >1”是“e x -1<1”的充分不必要条件.(2) 【答案】 A 【解析】当a >0,b >0时,得4≥a +b ≥2ab ,即ab ≤4,充分性成立;当a =4,b =1时,满足ab ≤4,但a +b =5>4,不满足a +b ≤4,必要性不成立.故“a +b ≤4”是“ab ≤4”的充分不必要条件.【题组·高频强化】 1. A 【解析】 由a 2>a 得a >1或a <0,据此可知“a >1”是“a 2>a ”的充分不必要条件.故选A.2.B【解析】由2-x ≥0,得x ≤2;由|x -1|≤1,得-1≤x -1≤1,即0≤x ≤2.所以“2-x ≥0”是“|x -1|≤1”的必要不充分条件.故选B.3.C【解析】当存在k∈Z ,使得α=k π+(-1)k β时,若k 为偶数,则sin α=sin(k π+β)=sin β;若k 为奇数,则sin α=sin(k π-β)=sin[(k -1)π+π-β]=sin(π-β)=sin β.当sin α=sin β时,α=β+2m π或α+β=π+2m π,m ∈Z ,即α=k π+(-1)k β(k =2m )或α=k π+(-1)k β(k =2m +1),亦即存在k ∈Z ,使得α=k π+(-1)k β,所以“存在k∈Z ,使得α=k π+(-1)k β”是“sin α=sin β”的充要条件.故选C.4. B【解析】 依题意知m ,n ,l 是空间不过同一点的三条直线,当m ,n ,l 在同一平面内时,可能m ∥n∥l ,故不一定得出m ,n ,l 两两相交.当m ,n ,l 两两相交时,设m ∩n =A ,m ∩l =B ,n ∩l =C ,可知m ,n 确定一个平面α,而B ∈m ⊂α,C ∈n ⊂α,可知直线BC 即l ,l ⊂α,所以m ,n ,l 在同一平面内.综上所述,“m ,n ,l 在同一平面内”是“m ,n ,l 两两相交”的必要不充分条件.故选B.(1) 【答案】 (-∞,-2]∪[2,+∞) 【解析】由y =x +1x在⎝ ⎛⎭⎪⎪⎫12,1上单调递减,在(1,2)上单调递增,得2≤y <52,所以A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎪2≤y<52. 由x +m 2≥6,得x ≥6-m 2,所以B ={x |x ≥6-m 2}. 因为“x ∈A ”是“x ∈B ”的充分不必要条件, 所以A B ,所以6-m 2≤2,解得m ≥2或m ≤-2, 故实数m 的取值范围是(-∞,-2]∪[2,+∞). (2) 【答案】 (2,+∞)【解析】 A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, 因为x ∈B 成立的一个充分不必要条件是x ∈A , 所以A B ,所以m +1>3,即m >2.(1) 【答案】 (0,2]【解析】 由|2x +1|<m (m >0),得-m <2x +1<m ,所以-m +12<x <m -12,且-m +12<0.由x -12x -1>0,得x <12或x >1. 因为p 是q 的充分不必要条件, 所以m -12≤12,所以0<m ≤2.(2) 【答案】 (0,2]【解析】 由题可得p :x >3或x <-1,q :x 2-2x +1-a 2≥0,[x -(1-a )]·[x -(1+a )]≥0, 因为a >0,所以1-a <1+a ,解得x ≥1+a 或x ≤1-a . 因为q 是p 的必要不充分条件, 所以⎩⎪⎨⎪⎧1+a ≤3,1-a ≥-1,a>0,解得0<a ≤2.【解答】 因为mx 2-4x +4=0是一元二次方程,所以m ≠0. 又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都有实根, 所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎢⎢⎡⎦⎥⎥⎤-54,1. 因为两方程的根都是整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m2-4m -5∈Z ,所以m 为4的约数.又因为m ∈⎣⎢⎢⎡⎦⎥⎥⎤-54,1,所以m =-1或1. 当m =-1时,第一个方程x 2+4x -4=0的根不是整数;当m =1时,两方程的根均为整数.所以两方程的根均为整数的充要条件是m =1. 课堂评价 1. A 2. A【解析】 “∀x ∈[-1,1],|x |<a 恒成立”等价于“∀x ∈[-1,1],a >|x |max ”,所以a >1.故充要条件为a >1.3. A 【解析】 因为f (x )是偶函数,所以f (x )=f (|x |). 又y =f (x )在[0,+∞)上单调递增,若a >|b |,则f (a )>f (|b |)=f (b ),即充分性成立; 若f (a )>f (b ),则等价于f (|a |)>f (|b |),即|a |>|b |, 即a >|b |或a <-|b |,故必要性不成立.则“a >|b |”是“f (a )>f (b )”的充分不必要条件. 4. ABC【解析】 对于选项A ,由 A ∩B =A ,可得A ⊆B . 由 A ⊆B可得A ∩B =A ,故A 满足条件.对于选项B ,由∁S A ⊇∁S B 可得A ⊆B ,由A ⊆B 可得∁S A ⊇∁S B ,故∁S A ⊇∁S B 是A ⊆B 的充要条件,故B 满足条件.对于选项C ,由∁S B ∩A =∅,可得A ⊆B ,由A ⊆B 可得∁S B ∩A =∅,故∁S B ∩A =∅是A ⊆B 的充要条件,故C 满足条件.对于选项D ,由∁S A ∩B =∅,可得B ⊆A ,不能推出A ⊆B ,故∁S A ∩B =∅不是A ⊆B 的充要条件,故D 不满足条件.故选ABC.5.(-∞,0]【解析】由⎝ ⎛⎭⎪⎪⎫13x 2-x -6≤1,得x 2-x -6≥0,解得x ≤-2或x ≥3,则A ={x |x ≤-2或x ≥3}.由log 3(x +a )≥1,得x +a ≥3,即x ≥3-a ,则B ={x |x ≥3-a }.由题意知B A ,所以3-a ≥3,解得a ≤0.第3讲 全称量词和存在量词链教材·夯基固本 激活思维 1. C 2. B 3.(-∞,2)【解析】设f (x )=⎝ ⎛⎭⎪⎪⎫12x+1,x ∈[0,+∞),若p 为真命题,则a <f (x )max =f (0)=2.4. (-∞,2] 【解析】 若“∃x 0∈(0,+∞),λx >x 2+1”是假命题,则“∀x ∈(0,+∞),λx ≤x 2+1”是真命题,所以当x ∈(0,+∞)时,λ≤x +1x恒成立.又x +1x≥2x ·1x =2,当且仅当x =1时取“=”,所以实数λ的取值范围是(-∞,2]. 5.⎝ ⎛⎦⎥⎥⎤54,2【解析】当命题p 为真命题时,x 2+x +a >1恒成立,即x 2+x +a -1>0恒成立,所以Δ=1-4(a -1)<0,解得a >54.当命题q 为真命题时,2a ≤(2x 0)max ,x 0∈[-2,2],所以a ≤2.故54<a ≤2,所以实数a 的取值范围是⎝ ⎛⎦⎥⎥⎤54,2. 知识聚焦1. 全体 全称量词 ∀x ∈M ,p (x )2. 部分 ∃ 存在量词 ∃x 0∈M ,p (x 0)3. ∃x ∈M ,綈p (x )4. 不是 不一定是 不都是 小于或等于 大于或等于 或 一个也没有 至多有n -1个 至少有两个 存在一个x 不成立研题型·融会贯通 分类解析【解答】 (1) 綈p :∃x ∈R ,x 2-x +14<0,假命题.(2) 綈q :至少存在一个正方形不是矩形,假命题. (3) 綈r :所有的实数都有平方根,假命题.(4) 綈s :存在一个末位数字是0或5的整数不能被5整除,假命题.(1) 【答案】 C(2) 【答案】 ∀x ∈R ,x 2-x +1≠0 (1) 【答案】 (-∞,-2] 【解析】由命题p 为真,得a ≤0.由命题q 为真,得Δ=4a 2-4(2-a )≥0,即a ≤-2或a ≥1,所以a≤-2.(2) 【答案】 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪⎪a ≤52【解析】 若命题p :∃x ∈[2,3],x 2-ax +1<0为假命题,则“∀x ∈[2,3],x 2-ax +1≥0,即a ≤x +1x ”为真命题.令g (x )=x +1x ,易知g (x )在[1,+∞)上单调递增,所以当x ∈[2,3]时,g (x )∈[g (2),g (3)].又∀x ∈[2,3],a ≤x +1x恒成立等价于∀x ∈[2,3],a ≤g (x )min ,而g (x )min =g (2)=52,所以“∀x ∈[2,3],x 2-ax +1≥0”为真命题时,a ≤52.(1) 【答案】 ⎝ ⎛⎭⎪⎪⎫56,+∞ 【解析】由“∀x∈R ,x 2-5x +152a >0”的否定为假命题,可知原命题必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方,故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝ ⎛⎭⎪⎪⎫56,+∞. (2) 【答案】 (-2,-1]【解析】 由命题p :∃x 0∈R ,(m +1)(x 20+1)≤0为真命题,可得m ≤-1;由命题q :∀x ∈R ,x 2+mx +1>0恒成立为真命题,得Δ=m 2-4<0,可得-2<m <2.综上,m ∈(-2,-1].【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫14,+∞ ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 ①当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,对任意x 1∈[0,3],存在x 2∈[1,2],使得f (x 1)≥g (x 2)等价于f (x 1)min ≥g (x 2)min ,即0≥14-m ,所以m ≥14.②当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )max =g (1)=12-m ,对任意x 1∈[0,3],任意x 2∈[1,2],有f (x 1)≥g (x 2)等价于f (x 1)min ≥g (x 2)max ,即0≥12-m ,所以m ≥12.【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 依题意知对x 1∈⎣⎢⎢⎡⎦⎥⎥⎤12,1,x 2∈[2,3],f (x 1)max ≤g (x 2)max . 因为f (x )=x +4x 在⎣⎢⎢⎡⎦⎥⎥⎤12,1上是减函数, 所以f (x )max =f ⎝ ⎛⎭⎪⎪⎫12=172.又g (x )=2x +a 在[2,3]上是增函数,所以g (x )max =8+a , 因此172≤8+a ,则a ≥12.课堂评价 1. ABC 2. D3. A 【解析】 因为命题“∃x ∈[1,2],x 2+ln x -a ≤0”为假命题,所以当x ∈[1,2]时,x 2+ln x >a 恒成立,只需a <(x 2+ln x )min ,x ∈[1,2].又函数y =x 2+ln x 在[1,2]上单调递增,所以当x =1时,y min =1,所以a <1.故选A.4. B 【解析】 由题可知,命题“∀x ∈R ,(k 2-1)x 2+4(1-k )x +3>0”是真命题. 当k 2-1=0,得k =1或k =-1.若k =1,则原不等式为3>0,恒成立,符合题意;若k =-1,则原不等式为8x +3>0,不恒成立,不符合题意. 当k 2-1≠0时,依题意得⎩⎪⎨⎪⎧k2-1>0,16(1-k )2-4(k 2-1)×3<0,即⎩⎨⎧(k +1)(k -1)>0,(k -1)(k -7)<0,解得1<k <7. 综上所述,实数k 的取值范围为{k |1≤k <7}. 5.(-3,+∞) 【解析】 假设∀x ∈[1,2],x 2+2ax +2-a ≤0.设f (x )=x 2+2ax +2-a ,则⎩⎪⎨⎪⎧f (1)≤0,f (2)≤0,所以⎩⎪⎨⎪⎧1+2a +2-a ≤0,4+4a +2-a ≤0,解得a ≤-3.因为假设成立,所以a >-3,所以实数a 的取值范围是(-3,+∞).第4讲 不等式的性质、一元二次不等式链教材·夯基固本 激活思维 1. AC 2.ACD【解析】由1a<1b<0,得a <0,b <0且a >b ,所以a +b <0,ab >0,A 正确;|a |<|b |,B 错误;a 3>b 3,C 正确;因为函数y =2x 在R 上单调递增,故D 正确.故选ACD.3. ABD4. -112 7125.(-∞,-2)∪(2,+∞)【解析】由x 2-2x +k 2-2>0,得k 2>-x 2+2x +2.设f (x )=-x 2+2x +2=-(x -1)2+3,当x ≥2时,f (x )max =2,则k 2>f (x )max =2,所以k >2或k <-2.知识聚焦2. {x |x <x 1或x >x 2} R {x |x 1<x <x 2} ∅ ∅ 研题型·融会贯通 分类解析(1) 【答案】 AC【解析】 因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以B 错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln4>0,所以D 错误.因为1a <1b<0,所以a +b <0,但ab >0,所以1a +b <1ab ,A 正确;a -1a -⎝ ⎛⎭⎪⎪⎫b -1b =a -b -⎝ ⎛⎭⎪⎪⎫1a -1b =a -b -⎝ ⎛⎭⎪⎪⎫b -a ab =(a -b )⎝ ⎛⎭⎪⎪⎫1+1ab ,因为1a<1b <0,所以0>a >b ,所以a -b >0,1+1ab>0,所以a -1a-⎝ ⎛⎭⎪⎪⎫b -1b >0,所以a -1a >b -1b ,C 正确. (2) 【答案】 B 【解析】 p -q =b2a +a2b -a -b=b2-a2a +a2-b2b =(b 2-a 2)·⎝ ⎛⎭⎪⎪⎫1a -1b =(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab , 因为a <0,b <0,所以a +b <0,ab >0. 若a =b ,则p -q =0,故p =q ; 若a ≠b ,则p -q <0,故p <q . 综上,p ≤q .故选B. (3) 【答案】 ⎝ ⎛⎭⎪⎪⎫-π,π8 【解析】 设2α-β=m (α+β)+n (α-β),则⎩⎪⎨⎪⎧m +n =2,m -n =-1,所以⎩⎪⎨⎪⎧m =12,n =32,即2α-β=12(α+β)+32(α-β).因为π<α+β<5π4,-π<α-β<-π3,所以π2<12(α+β)<5π8,-3π2<32(α-β)<-π2,所以-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,所以2α-β的取值范围是⎝ ⎛⎭⎪⎪⎫-π,π8. 【题组·高频强化】 1.A【解析】 若a >b ,则a +c >b +c ,故B 错;设a =3,b =1,c =-1,d =-2,则ac <bd ,a c<bd,所以C ,D 错,故选A. 2.C【解析】因为a +b +c =0,且a <b <c ,所以a <0,c >0.因为b <c ,a <0,所以ab >ac ,所以B 不成立;因为a <b ,c >0,所以ac <bc ,所以C 成立;当b =0时,A ,D 都不成立.故选C.3. BD4. ABC 【解析】 取a =13,b =12,可知A ,B ,C 错误.因为0<a <b <1,所以b -a∈(0,1),所以lg(b -a )<0,故D 正确.故选ABC.5.(-4,2) (1,18)【解析】因为-1<x <4,2<y <3,所以-3<-y <-2,所以-4<x -y <2.因为-3<3x <12,4<2y <6,所以1<3x +2y <18.【解答】(1)原不等式转化为6x 2+5x -1>0,因为方程6x 2+5x -1=0的解为x 1=16,x 2=-1,所以根据二次函数y =6x 2+5x -1的图象可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<-1或x>16.(2) 若a =0,原不等式转化为-x +1<0,即x >1. 若a <0,原不等式转化为⎝ ⎛⎭⎪⎪⎫x -1a (x -1)>0, 此时对应方程⎝ ⎛⎭⎪⎪⎫x -1a (x -1)=0的两个根为x 1=1a ,x 2=1, 所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<1a 或x>1.若a >0,原不等式转化为⎝ ⎛⎭⎪⎪⎫x -1a (x -1)<0, 此时对应方程⎝ ⎛⎭⎪⎪⎫x -1a (x -1)=0的两个根为x 1=1a ,x 2=1. 当1a=1,即a =1时,原不等式的解集为∅; 当1a >1,即0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1<x<1a ;当1a <1,即a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1a <x<1. 综上所述,当a =0时,原不等式的解集为{x |x >1}; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x<1a 或x>1;当0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1<x<1a ;当a =1时,原不等式的解集为∅; 当a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|1a <x<1.【解答】 (1) 由不等式x -3x >-2,可得x >2或x <1.由x>2,得x >4;由x<1,得x <1且x ≥0,即0≤x <1.所以不等式的解集为{x |x >4或0≤x <1}.(2)原不等式转化为(x -a )(x -a 2)<0.当a 2>a ,即a >1时,不等式的解集为{x |a <x <a 2};当a 2<a ,即0<a <1时,不等式的解集为{x |a 2<x <a };当a 2=a ,即a =1时,不等式的解集为∅.(1) 【答案】 [0,4] 【解析】当a =0时,原不等式变为1≥0,恒成立,符合题意;当a ≠0时,由ax 2-ax +1≥0恒成立,得⎩⎪⎨⎪⎧a>0,Δ=a2-4a ≤0,解得0<a ≤4.综上,实数a 的取值范围为[0,4].(2) 【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫12,+∞ 【解析】 方法一:当a =0时,原不等式可化为x <0,易知不合题意;当a ≠0时,令f (x )=ax 2-x +a ,要满足题意,需⎩⎪⎨⎪⎧a>0,12a ≤1,f (1)≥0或⎩⎪⎨⎪⎧a>0,12a>1,f ⎝ ⎛⎭⎪⎪⎫12a >0,解得a ≥12,所以a 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫12,+∞. 方法二:ax 2-x +a >0⇔ax 2+a >x ⇔a >x x2+1,因为x ∈(1,+∞)时,x x2+1=1x +1x<12,所以a ≥12. (3) 【答案】 ⎝ ⎛⎭⎪⎪⎫-1+72,1+32 【解析】已知不等式可化为(x 2-1)m +(1-2x )<0.设f (m )=(x 2-1)m +(1-2x ),这是一个关于m 的一次函数(或常数函数),从图象上看,要使f (m )<0在-2≤m ≤2时恒成立,其等价条件是⎩⎨⎧f (2)=2(x 2-1)+(1-2x )<0,f (-2)=-2(x 2-1)+(1-2x )<0,即⎩⎪⎨⎪⎧2x2-2x -1<0,2x2+2x -3>0,解得-1+72<x <1+32,所以实数x 的取值范围是⎝ ⎛⎭⎪⎪⎫-1+72,1+32. 【解答】 (1) 因为当x ∈R 时,x 2+ax +3-a ≥0恒成立, 所以Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,所以实数a 的取值范围是[-6,2].(2) 由题意,可转化为x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立, 则(x 2+ax +3-a )min ≥0(x ∈[-2,2]). 令g (x )=x 2+ax +3-a ,x ∈[-2,2], 函数图象的对称轴方程为x =-a2.当-a 2<-2,即a >4时,g (x )min =g (-2)=7-3a ≥0,解得a ≤73,舍去;当-2≤-a 2≤2,即-4≤a ≤4时,g (x )min =g⎝ ⎛⎭⎪⎪⎫-a 2=-a24-a +3≥0,解得-6≤a ≤2,所以-4≤a ≤2;当-a2>2,即a <-4时,g (x )min =g (2)=7+a ≥0,解得a ≥-7,所以-7≤a <-4.综上,满足条件的实数a 的取值范围是[-7,2]. (3) 令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立, 只需⎩⎪⎨⎪⎧h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x2+4x +3≥0,x2+6x +3≥0,解得x ≤-3-6或x ≥-3+6, 所以实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).课堂评价 1.C【解析】 (特值法)取a =-2,b =-1,n =0,逐个检验,可知A ,B ,D 项均不正确;C 项,|b||a|<|b|+1|a|+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,因为a <b <0,所以|b |<|a |成立,故选C. 2. C3. ABCD 【解析】 关于实数x 的一元二次不等式a (x -a )(x +1)>0,则a ≠0. 当a =-1时,原不等式的解集为∅,故A 正确;当a >0时,原不等式的解集为(-∞,-1)∪(a ,+∞),故D 正确; 当-1<a <0时,原不等式的解集为(-1,a ),故B 正确; 当a <-1时,原不等式的解集为(a ,-1),故C 正确. 4.BCD【解析】对于A ,因为2x 2-x -1=(2x +1)(x -1),所以由2x 2-x -1>0得(2x +1)(x -1)>0,解得x>1或x <-12,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x>1或x<-12,故A 错误;对于B ,因为-6x 2-x +2≤0,所以6x 2+x -2≥0, 所以(2x -1)(3x +2)≥0,所以x ≥12或x ≤-23,故B 正确;对于C ,由题意可知-7和-1为方程ax 2+8ax +21=0的两个根,所以-7×(-1)=21a,所以a =3,经检验符合题意,故C 正确; 对于D ,依题意知q,1是方程x 2+px -2=0的两个根,则q +1=-p ,即p +q =-1,故D 正确.故选BCD.5.-3【解析】因为函数f (x )=-x 2+ax +b (a ,b∈R )的值域为(-∞,0],所以Δ=0,即a 2+4b =0,所以b =-14a 2.又关于x 的不等式f (x )>c -1的解集为(m -4,m ),所以方程f (x )=c -1的两根分别为m -4,m ,即方程-x 2+ax -14a 2=c -1的两根分别为m -4,m .又方程-x 2+ax -14a 2=c -1的根为x =a2±1-c ,所以两根之差为21-c =m -(m -4)=4,解得c =-3.第5讲 基本不等式链教材·夯基固本 激活思维1. C 【解析】 因为x >0,y >0,所以x +y 2≥xy ,即xy ≤⎝ ⎛⎭⎪⎪⎫x +y 22=81,当且仅当x =y =9时取等号,故(xy )max =81. 2. D【解析】 因为1x +3y =1,所以x +3y =(x +3y )⎝ ⎛⎭⎪⎪⎫1x +3y =10+3y x +3x y ≥10+23y x ·3x y =16,当且仅当3y x =3x y 且1x +3y=1,即x =y =4时取等号,故选D. 3.BD【解析】A 不正确,因为a ,b 不满足同号,故不能用基本不等式;B 正确,因为lg x 和lg y 一定是正实数,故可用基本不等式;C 不正确,因为x 和4x 不是正实数,故不能直接利用基本不等式;D 正确,因为 2x 和2-x 都是正实数,且2x ≠1,2-x ≠1,故2x +2-x >22x ·2-x =2成立,故D 正确.故选BD.4. 5 【解析】 令t =sin x ∈(0,1],由y =t +4t 在(0,1]上单调递减,得y min =1+41=5.5. 1【解析】 因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎪⎫5-4x +15-4x +3≤-2+3=1,当且仅当5-4x =15-4x,即x =1时取等号,故f (x )=4x -2+14x -5的最大值为1.知识聚焦1. (1) a >0,b >02. (1) x =y 2p (2) x =yp24研题型·融会贯通 分类解析【解答】 (1) 当a =0时,xy =x +4y ,两边同除以xy 得1y+4x=1,则x +y =(x +y )⎝ ⎛⎭⎪⎪⎫1y +4x =x y +4y x +1+4≥2x y ·4y x +5=9,当且仅当xy=4y x,即x =6,y =3时取“=”,即当a =0时,x +y 的最小值为9.(2) 当a =5时,xy =x +4y +5≥24xy +5=4xy +5,即有(xy )2-4xy -5=(xy -5)(xy +1)≥0, 所以xy ≥5,即xy ≥25,当且仅当x =4y ,即x =10,y =52时取“=”,即当a =5时,xy 的最小值为25. 【题组·高频强化】 1.20【解析】 因为log 5x +log 5y =2,所以x 和y 均为正数,由指数和对数的关系可得xy =52=25,所以x +4y ≥2x ·4y=20,当且仅当x =4y ,即x =10且y =52时等号成立,所以x +4y 的最小值是20.2. 45 【解析】 因为5x 2y 2+y 4=1,所以y ≠0且x 2=1-y45y2,所以x 2+y 2=1-y45y2+y 2=15y2+4y25≥215y2·4y25=45,当且仅当15y2=4y25,即x 2=310,y 2=12时取等号,所以x 2+y 2的最小值为45.3. 5+26 【解析】 因为x +y =1,所以x +2xy =x +2(x +y )xy =3x +2y xy =2x +3y=⎝ ⎛⎭⎪⎪⎫2x +3y (x +y )=2y x +3x y +5≥5+26,当且仅当⎩⎪⎨⎪⎧2y x =3x y ,x +y =1,即⎩⎪⎨⎪⎧x =6-2,y =3-6时取等号.4. 6 【解析】 方法一(换元消元法): 由已知得x +3y =9-xy ,因为x >0,y >0, 所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎪⎫x +3y 22, 当且仅当x =3y ,即x =3,y =1时取等号, 即(x +3y )2+12(x +3y )-108≥0, 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 方法二(代入消元法):由x +3y +xy =9,x >0,y >0,得x =9-3y1+y ,所以x +3y =9-3y 1+y +3y =9-3y +3y (1+y )1+y =9+3y21+y =3(1+y )2-6(1+y )+121+y =3(1+y )+121+y-6≥23(1+y )·121+y -6=12-6=6, 当且仅当3(1+y )=121+y,即y =1,x =3时取等号,所以x +3y 的最小值为6.5. 94 【解析】 1a +1+4b +1=⎝ ⎛⎭⎪⎪⎫1a +1+4b +1·(a +1)+(b +1)4 =14⎣⎢⎢⎡⎦⎥⎥⎤1+4+b +1a +1+4(a +1)b +1≥14⎣⎢⎢⎡⎦⎥⎥⎤5+2b +1a +1·4(a +1)b +1=94,当且仅当b +1a +1=4(a +1)b +1,即a =13,b =53时取等号,所以1a +1+4b +1的最小值为94.【答案】 ⎝ ⎛⎦⎥⎥⎤-∞,174 【解析】 对于正实数x ,y ,由x +y +4=2xy , 得x +y +4=2xy ≤(x +y )22,解得x +y ≥4.不等式x 2+2xy +y 2-ax -ay +1≥0可化为(x +y )2-a (x +y )+1≥0,令t =x +y (t ≥4),则该不等式可化为t 2-at +1≥0,即a ≤t +1t 对于任意的t ≥4恒成立.令u (t )=t +1t(t ≥4),则u ′(t )=1-1t2=t2-1t2>0对于任意的t ≥4恒成立,从而函数u (t )=t +1t(t ≥4)为单调增函数,所以u (t )min =u (4)=4+14=174,所以a ≤174.(1) 【答案】 4【解析】 原不等式变形为k (x -1)+4x -1+k ≥12, 则原问题转化成不等式k (x -1)+4x -1≥12-k 在(1,+∞)上恒成立,所以只需12-k ≤⎣⎢⎡⎦⎥⎤k (x -1)+4x -1min 即可.根据均值定理可知,k (x -1)+4x -1≥2k (x -1)·4x -1=4k ,当且仅当k (x -1)=4x -1时等号成立,所以只需12-k ≤4k 成立,即(k+6)(k -2)≥0,所以k ≥4,即k min =4.(2) 【答案】 (-∞,22]【解析】 因为x >y >0,且xy =1,所以由x 2+y 2≥a (x -y ), 得a ≤x2+y2x -y.又x2+y2x -y=(x -y )2+2xyx -y =x -y +2x -y≥2(x -y )·2x -y=22,所以a ≤22.【解答】 (1) 设休闲区的宽为a m ,则长为ax m , 由a 2x =4 000,得a =2010x.则S (x )=(a +8)(ax +20) =a 2x +(8x +20)a +160=4 000+(8x +20)·2010x+160=8010⎝ ⎛⎭⎪⎪⎫2x +5x +4 160(x >1). (2) 由(1)知, S (x )=8010⎝⎛⎭⎪⎪⎫2x +5x +4 160 ≥8010×22x ×5x +4 160=1 600+4 160=5 760, 当且仅当2x =5x,即x =2.5时,等号成立,此时a =40,ax =100.所以要使公园所占面积最小,休闲区A 1B 1C 1D 1应设计为长100 m ,宽40 m.【解答】 (1) 设污水处理池的宽为x m ,则长为162x m ,总造价y =400×⎝ ⎛⎭⎪⎪⎫2x +2×162x +248×2x +80×162 =1 296x +1 296×100x +12 960=1 296⎝ ⎛⎭⎪⎪⎫x +100x +12 960 ≥1 296×2x ×100x+12 960=38 880(元),当且仅当x =100x(x >0),即x =10时取等号,所以当污水处理池的长为16.2 m ,宽为10 m 时总造价最低,最低为38 880元. (2) 由限制条件知⎩⎪⎨⎪⎧0<x ≤16,0<162x ≤16,所以818≤x ≤16.设g (x )=x +100x ⎝ ⎛⎭⎪⎪⎫818≤x ≤16,则g (x )在⎣⎢⎢⎡⎦⎥⎥⎤818,16上是增函数, 所以当x =818时,g (x )有最小值,即f (x )有最小值,即y min =1 296×⎝ ⎛⎭⎪⎪⎫818+80081+12 960=38 882(元). 所以当污水处理池的长为16 m ,宽为818 m 时总造价最低,最低为38 882元.课堂评价 1.BCD【解析】不等式a +b ≥2ab 恒成立的条件是a ≥0,b ≥0,故A 不正确;当a 为负数时,不等式a +1a≤2成立,故B 正确;由基本不等式可知C 正确;2x +1y =⎝ ⎛⎭⎪⎪⎫2x +1y (x +2y )=4+4y x +x y ≥4+24y x ·x y =8,当且仅当4y x =x y ,即x =12,y =14时取等号,故D 正确. 2. ABD 【解析】 若m ,n >0,m +n =2,则1m +2n =12(m +n )⎝ ⎛⎭⎪⎪⎫1m +2n =12⎝ ⎛⎭⎪⎪⎫3+n m +2m n ≥3+222,当且仅当n =2m =4-22时等号成立,A 正确.m +n =2≥2mn ,解得mn ≤1,所以mn 2≤12,(m+n )2=m +n +2mn ≤4,即m +n ≤2,B 正确,C 错误.m 2+n 2≥(m +n )22=2,当且仅当m =n =1时取等号,D 正确.故选ABD.3. (-1,4) 【解析】 由正实数x ,y 满足1x +4y =1,则x +y4=⎝ ⎛⎭⎪⎪⎫x +y 4⎝ ⎛⎭⎪⎪⎫1x +4y =2+4x y +y 4x≥2+24x y ·y4x=4,当且仅当y =4x =8时取等号,所以x +y 4的最小值为4.由x+y4>m2-3m恒成立,可得m2-3m<4,解得m∈(-1,4).4. 4 【解析】因为a>0,b>0,所以a+b>0,ab=1,所以12a+12b+8a+b=b2ab+a2ab+8a+b=a+b2+8a+b≥2a+b2·8a+b=4,当且仅当a+b=4时取等号,结合ab=1,解得a=2-3,b=2+3或a=2+3,b=2-3时等号成立.5. 2105【解析】因为4x2+y2+xy=1,所以(2x+y)2-3xy=1,即(2x+y)2-32·2xy=1,所以(2x+y)2-32·⎝⎛⎭⎪⎪⎫2x+y22≤1,解得(2x+y)2≤85,即2x+y≤2105。
新高考2024版高考数学一轮复习:常用逻辑用语

专练2常用逻辑用语[基础强化]一、选择题1.已知命题p:∀x≥1,2x-log2x≥1,则命题p的否定为()A.∀x<1,2x-log2x<1B.∀x≥1,2x-log2x<1C.∃x<1,2x-log2x<1D.∃x≥1,2x-log2x<12.[2023·全国甲卷(理)]设甲:sin2α+sin2β=1,乙:sinα+cosβ=0,则() A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件3.[2023·福建泉州模拟]在等比数列{a n}中,公比为q.已知a1=1,则0<q<1是数列{a n}单调递减的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.设命题p:ax2+2ax+1>0的解集是实数集R;q:0<a<1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知m∈R,“函数y=2x+m-1有零点”是“函数y=log m x在(0,+∞)上为减函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.设p :|x -a |>3,q :(x +1)(2x -1)≥0,若¬p 是q 的充分不必要条件,则实数a 的取值范围是()A.-4,72B.(-∞,-4]∪72,+∞8.已知A ,B ,C 为不共线的三点,则“|AB →+AC →|=|AB →-AC →|”是“△ABC 为直角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.(多选)下列命题说法错误的是()A.∃x ∈R ,e x ≤0B.∀x ∈R ,2x >x 2C.a +b =0的充要条件是a b=-1D.若x ,y ∈R ,且x +y >2,则x ,y 中至少有一个大于1二、填空题10.关于函数f (x )=sin x +1sin x有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =π2对称.④f (x )的最小值为2.其中所有真命题的序号是________.11.记不等式x 2+x -6<0的解集为集合A ,函数y =lg (x -a )的定义域为集合B .“若x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为________.12.已知p :|1-x -13|≤2,q :x 2-2x +1-m 2≤0(m >0),若p 是q 的充分而不必要条件,则m 的取值范围为________.[能力提升]13.(多选)若“存在x ∈12,2,使得2x 2-λx +1<0成立”是假命题,则实数λ可能是()A.32B.22C.3D.9214.已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是()A.[1,+∞)B.(-∞,1]C.[-5,+∞)D.(-∞,-3)15.[2023·新课标Ⅰ卷]设S n 为数列{a n }的前n 项和,设甲:{a n }为等差数列;等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件16.已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m },若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.专练2常用逻辑用语1.D 因为全称量词命题的否定是存在量词命题,所以命题p 的否定为“∃x ≥1,2x -log 2x <1”.故选D.2.B 甲等价于sin 2α=1-sin 2β=cos 2β,等价于sin α=±cos β,所以由甲不能推导出sin α+cos β=0,所以甲不是乙的充分条件;由sin α+cos β=0,得sin α=-cos β,平方可得sin 2α=cos 2β=1-sin 2β,即sin 2α+sin 2β=1,所以由乙可以推导出甲,则甲是乙的必要条件.综上,选B.3.C a n =q n -1,当0<q <1时,0<a n +1a n=q <1,所以数列{a n }单调递减,故充分性成立,若数列{a n }单调递减,则0<a n +1a n<1,即0<q <1,故必要性成立,所以0<q <1是数列{a n }单调递减的充要条件.故选C.4.B 由x 2-5x <0可得0<x <5.由|x -1|<1可得0<x <2.由于区间(0,2)是(0,5)的真子集,故“x 2-5x <0”是“|x -1|<1”的必要而不充分条件.5.B 当a =0时,不等式ax 2+2ax +1>0的解集为R ;a ≠0时,由不等式ax 2+2ax +1>0的解集为R 知,>0,=4a 2-4a <0,得0<a <1.∴当0≤a <1时不等式ax 2+2ax +1>0的解集为R ,即p :0≤a <1,又(0,1)[0,1).∴p 是q 的必要不充分条件.6.B 由y =2x +m -1=0,得m =1-2x ,由函数y =2x +m -1有零点,则m <1,由函数y =log m x 在(0,+∞)上是减函数,得0<m <1,∴“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的必要不充分条件.7.B p :x <a -3或x >a +3,q :x ≤-1或x ≥12,¬p :a -3≤x ≤a +3.因为¬p 是q 的充分不必要条件,所以a +3≤-1或a -3≥12,得a ∈(-∞,-4]∪72,+∞8.A |AB →+AC →|=|AB →-AC →|两边平方得到AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,得AB →·AC →=0,即AB →⊥AC →,故△ABC 为直角三角形,充分性成立;若△ABC 为直角三角形,当∠B 或∠C 为直角时,|AB →+AC →|≠|AB →-AC →|,必要性不成立.故选A.9.ABC 根据指数函数的性质可得e x >0,故A 错误;x =2时,2x >x 2不成立,故B 错误;当a =b =0时,a b没有意义,故C 错误;因为“x +y >2,则x ,y 中至少有一个大于1”的逆否命题为“x ,y 都小于等于1,则x +y ≤2”,是真命题,所以原命题为真命题,故D 正确.故选ABC.10.②③解析:要使函数f (x )=sin x +1sin x有意义,则有sin x ≠0,∴x ≠k π,k ∈Z ,∴定义域为{x |x ≠kπ,k ∈Z },定义域关于原点对称.又∵f (-x )=sin (-x )+1sin (-x )=-sin x -1sin xx f (x ),∴f (x )为奇函数.∴f (x )的图象关于原点对称,∴①是假命题,②是真命题.对于③,要证f (x )的图象关于直线x =π2对称,只需证∵1sin=cos x +1cos x,1sin=cos x +1,∴令sin x =t ,-1≤t ≤1且t ≠0,∴g (t )=t +1t,-1≤t ≤1且t ≠0,此函数图象如图所示(对勾函数图象的一部分),∴函数的值域为(-∞,-2]∪[2,+∞),∴函数的最小值不为2,即f (x )的最小值不为2.∴④是假命题.综上所述,所有真命题的序号是②③.11.(-∞,-3]解析:由x 2+x -6<0得-3<x <2,即:A =(-3,2),由x -a >0,得x >a ,即:B =(a ,+∞),由题意得(-3,2)(a ,+∞),∴a ≤-3.12.[9,+∞)解析:由|1-x -13|≤2,得-2≤x ≤10,由x 2-2x +1-m 2≤0得1-m ≤x ≤1+m ,设p ,q 表示的范围为集合P ,Q ,则P ={x |-2≤x ≤10},Q ={x |1-m ≤x ≤1+m ,m >0}.因为是q 的充分而不必要条件,所以P Q .>0,m ≤-2,m ≥10,解得m ≥9.13.AB 因为“存在x ∈12,2,使得2x 2-λx +1<0成立”是假命题,所以对任意x ∈12,2,2x 2-λx +1≥0恒成立,即2x +1x≥λ对任意x ∈12,2恒成立.因为2x +1x ≥22(当且仅当x =22时,等号成立),所以λ≤2 2.故选AB.14.A 方法一设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,因此a ≥1.方法二令a =-3,则q :x >-3,则由命题q 推不出命题p ,此时q 不是p 的充分条件,排除B,C;同理,取a =-4,排除D.故选A.15.C 若{a n }为等差数列,设其公差为d ,则a n =a 1+(n -1)d ,所以S n =na 1+n (n -1)2d ,所以S n n =a 1+(n -1)·d 2,所以S n +1n +1-S n n =a 1+(n +1-1)·d 2-[a 1+(n -1)·d 2]=d 2,为常数,所以{S n n }为等差数列,即甲⇒乙;若{S n n }为等差数列,设其公差为t ,则S n n =S 11+(n -1)t =a 1+(n -1)t ,所以S n =na 1+n (n -1)t ,所以当n ≥2时,a n =S n -S n -1=na 1+n (n -1)t -[(n -1)a 1+(n -1)(n -2)t ]=a 1+2(n -1)t ,当n =1时,S 1=a 1也满足上式,所以a n =a 1+2(n -1)t (n ∈N *),所以a n +1-a n =a 1+2(n +1-1)t -[a 1+2(n -1)t ]=2t ,为常数,所以{a n }为等差数列,即甲⇐乙.所以甲是乙的充要条件,故选C.16.[0,3]解析:由x 2-8x -20≤0得-2≤x ≤10.∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .又∵S ≠∅,如图所示.m ≤1+mm ≥-2m ≤10,∴0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].。
2023版高考数学一轮总复习专题检测1-2常用逻辑用语

1.2 常用逻辑用语一、选择题1.(2022届豫北名校联盟10月联考,4)已知命题p:若x>0,y>0,则xy>0,则p的否命题是( )A.若x>0,y>0,则xy≤0B.若x≤0,y≤0,则xy≤0C.若x,y至少有一个不大于0,则xy<0D.若x,y至少有一个小于或等于0,则xy≤0答案 D 否命题应在否定条件的同时否定结论,原命题中的条件是“且”的关系,所以条件的否定形式是“x≤0或y≤0”.而结论的否定是“xy≤0”,故选D.2.(2022届贵州五校联考(二),3)已知命题p:“∀x∈N,x2<2x”的否定是“∃x0∈N,x02>2x0”;命题q:∃α0∈R,sinα0+cosα0=1.下列说法不正确的是( )A.(xp)∧q为真命题B.p∨(x q)为真命题C.p∨q为真命题D.x q为假命题答案 B 由全称命题的否定为特称命题知,命题“∀x∈N,x2<2x”的否定为“∃x0∈N,x02≥2x0”,所以命题p为假命题,x p为真命题.当α0=0时,sinα0+cosα0=1,所以命题q为真命题,x q为假命题,所以(xp)∧q为真命题,p∨(x q)为假命题,p∨q为真命题,所以A,C,D正确,B不正确,故选B.3.(2022届山西百校联盟强化训练(一),5)有下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中,是真命题的为( )A.①②B.②③C.④D.①②③答案 D ①中逆命题为“若x,y互为倒数,则xy=1”,是真命题;②中否命题为“面积不相等的三角形不是全等三角形”,是真命题;③中原命题是真命题,所以它的逆否命题也是真命题;④中原命题是假命题,所以它的逆否命题也是假命题.故选D.4.(2022届重庆西南大学附中9月考试,2)命题“∃x>0,x+1x≥3且sinx≥1”的否定是( )A.∀x≤0,x+1x<3且sinx<1B.∃x>0,x+1x<3或sinx<1C.∀x>0,x+1x<3且sinx<1D.∀x>0,x+1x<3或sinx<1答案 D 因为存在量词命题的否定是全称量词命题,所以命题“∃x>0,x+1x≥3且sinx≥1”的否定是“∀x>0,x+1x<3或sinx<1”.故选D.5.(2022届T8联考,1)“0<θ<π3”是“0<sinθ<√32”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A 由正弦函数的单调性可知,当0<θ<π3时,0<sinθ<√32,充分性成立;当0<sinθ<√32时,θ∈(2xπ,2xπ+π3)∪(2xπ+2π3,2kπ+π),k∈Z,必要性不成立,所以“0<θ<π3”是“0<sinθ<√32”的充分不必要条件,故选A.6.(2022届山东日照校际联考,2)“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B |x-1|<2的解集为{x|-1<x<3},令A={x|-1<x<3}.x(x-3)<0的解集为{x|0<x<3}.令B={x|0<x<3}.因为B⫋A,所以“|x-1|<2成立”是“x(x-3)<0成立”的必要不充分条件,故选B.7.(多选)(2022届河北武强中学月考,10)下列命题中为真命题的是( )A.“a-b=0”的充要条件是“xx=1”B.“a>b”是“1x <1x”的既不充分也不必要条件C.命题“∃x∈R,x2-2x<0”的否定是∀x∈R,x2-2x≥0”D.“a>2,b>2”是“ab>4”的必要条件答案BC 对于A,由xx =1⇒a-b=0,但a-b=0⇒/xx=1,所以“xx=1”是“a-b=0”的充分非必要条件,故A中命题错误.对于B,取a=2,b=-1,满足a>b,但1x >1x,所以a>b⇒/1x<1x;同理,取a=-1,b=2,满足1x <1x,但a<b,所以1x<1x⇒/a>b,所以“a>b”是“1x<1x”的既不充分也不必要条件,故B中命题正确.对于C,命题“∃x∈R,x2-2x<0”的否定是∀x∈R,x2-2x≥0”,故C中命题正确.对于D,因为a>2,b>2⇒ab>4,但ab>4⇒/a>2,b>2,所以“a>2,b>2”是“ab>4”的充分不必要条件,故D中命题错误.故选BC.8.(2022届重庆巴蜀中学月考(一),1)已知命题p:∀x∈(0,+∞),lnx>x-1,则命题p的否定是( )A.∀x∈(0,+∞),lnx≤x-1B.∃x∈(0,+∞),lnx>x-1C.∀x∈(0,+∞),lnx<x-1D.∃x∈(0,+∞),lnx≤x-1答案 D 命题∀x∈(0,+∞),lnx>x-1的否定是∃x∈(0,+∞),lnx≤x-1,故选D.9.(2022届河南10月调研,8)设p:∀x∈[2,3],kx>1,q:∃x∈R,x2+x+k≤0.若p或q为真,p 且q为假,则k的取值范围为( )A.(-∞,14)∪(12,+∞)B.[14,1 2 )C.(-∞,14]∪(12,+∞)D.(14,12)答案 C 若p 为真,则{2x >1,3x >1,解得k>12,若q 为真,则Δ=1-4k≥0,解得k≤14.因为p 或q 为真,p 且q 为假,所以p,q 一真一假. ①若p 假q 真,则{x ≤12,x ≤14,解得k≤14;②若p 真q 假,则{x >12,x >14,解得k>12.故k 的取值范围是(-∞,14]∪(12,+∞).故选C.10.(2022届江西新余月考(三),5)已知命题p:∃x∈R,使sinx=√52;命题q:∀x∈R,都有x 2+x+1>0.给出下列结论: ①命题“p∧q”是真命题 ②命题“p∧xq”是假命题 ③命题“xp∨q”是真命题 ④命题“xp∨xq”是假命题 其中正确的是( ) A.①②③ B.②③ C.②④ D.③④答案 B 由已知得命题p 为假命题,命题q 为真命题,所以p∧q 为假命题,p∧x q 为假命题,xp∨q 为真命题,xp∨x q 为真命题,所以正确的结论序号有②③,故选B. 二、填空题11.(2022届吉林10月月考,14)已知命题“∃x 0∈R,x 02-ax 0+a≤0”是假命题,则实数a 的取值范围是 . 答案 (0,4)解析 由已知可得,“∀x∈R,x 2-ax+a>0”是真命题,则Δ=a 2-4a<0,解得0<a<4.12.(2022届豫北名校联考(二),14)若命题“∀a>0,长为1,2,a 的三条线段不能构成三角形”是假命题,则实数a 的取值范围是 . 答案 (1,3)解析 根据题意可知,命题“∃a>0,使得长为1,2,a 的三条线段能构成三角形”是真命题,故{x >2-1,x <1+2,x >0,解得1<a<3,即实数a 的取值范围为(1,3).三、解答题13.(2022届广东湛江一中、深圳实验学校10月联考,18)函数f(x)=sinx+cosx+sin2x,x∈(0,π2)的值域为集合A,函数g(x)=ln x -x 2-√2x -x的定义域为集合B,记p:x∈A,q:x∈B.(1)若a=0,则p 是q 的什么条件?(2)若p 是q 的充分不必要条件,求实数a 的取值范围.解析 令t=sinx+cosx=√2sin (x +π4),则sin2x=t 2-1,因为x∈(0,π2),所以t∈(1,√2],函数f(x)的值域就是函数y=t 2+t-1,t∈(1,√2]的值域,根据二次函数的性质可知,函数y=t 2+t-1在(1,√2]上单调递增,于是可求得A=(1,√2+1].要使函数g(x)=ln x -x 2-√2x -x有意义,则有x -x 2-√2x -x>0,即[x-(a 2+√2)](x-a)<0.因为a 2+√2-a=(x -12)2+√2-14>0,所以B=(a,a 2+√2).(1)若a=0,则B=(0,√2),又A=(1,√2+1],所以可得p 是q 的既不充分也不必要条件. (2)若p 是q 的充分不必要条件,则A ⫋B,即{x ≤1,x 2+√2>√2+1,解得a<-1.14.(2022届山东济宁兖州期中,18)已知p:函数f(x)=(a-2m)x在R 上单调递减,q:关于x 的方程x 2-2ax+a 2-1=0的两根都大于1. (1)当m=3时,p 是真命题,求a 的取值范围;(2)若p 为真命题是q 为真命题的充分不必要条件,求m 的取值范围. 解析 (1)因为m=3,所以f(x)=(a-6)x.因为p 是真命题,所以0<a-6<1,解得6<a<7,故a 的取值范围是(6,7).(2)若p 是真命题,则0<a-2m<1,解得2m<a<2m+1.关于x 的方程x 2-2ax+a 2-1=0的两根分别为a-1和a+1.若q 是真命题,则a-1>1,解得a>2.因为p 为真命题是q 为真命题的充分不必要条件,所以2m≥2,所以m≥1.。
集合、常用逻辑用语 不等式

质量检测(一)测试内容:集合、常用逻辑用语不等式(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.(2012年福州市高三第一学期期末质量检查)已知集合A={x|x>3},B={x|2<x<4},那么集合A∩B等于( ) A.{x|x>3} B.{x|2<x<3}C.{x|3<x<4} D.{x|x<4}解析:A∩B={x|x>3}∩{x|2<x<4}={x|3<x<4},故选C.答案:C2.(2012年合肥第一次质检)集合A={-1,0,4},集合B={x|x2-2x-3≤0,x∈N},全集为U,则图中阴影部分表示的集合是( )A.{4} B.{4,-1}C.{4,5} D.{-1,0}解析:本题主要考查集合的运算与韦恩图.由图可知阴影部分表示的集合为(∁U B)∩A,因为B={x|-1≤x≤3,x∈N}={0,1,2,3},因此(∁U B)∩A={4,-1},选B.本题为容易题.答案:B3.(2012年河北省衡水中学期末检测)若集合A={0,m2},B={1,2},则“m =1”是“A∪B={0,1,2}”的( ) A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件解析:当m=1时,m2=1,A={0,1},A∪B={0,1,2},若A∪B={0,1,2},则m2=1或m2=2,m=±1或m=±2,故选B.答案:B4.若a<b<0,则下列不等式中不一定成立的是( )>1b>1b>-b D.|a|>-b解析:∵1a-1b=b-aab>0,∴A一定成立;∵a<b<0,∴-a>-b>0,∴-a>-b,即C一定成立;|a|=-a;∴|a|>-b⇔-a>-b,成立,∴D成立;当a=-2,b=-1时,1a-b=1-2+1=-1=1b,所以B不一定成立,故选B.答案:B5.设A、B是非空集合,定义A×B={x|x∈(A∪B)且x∉(A∩B)}.已知A ={x|y=2x-x2},B={y|y=2x,x>0},则A×B等于( ) A.[0,1]∪(2,+∞)B.[0,1]∪[2,+∞)C.[0,1] D.[0,2]解析:∵A=[0,2],B=(1,+∞),∴A×B={x|x∈(A∪B)且x∉(A∩B)}=[0,1]∪(2,+∞).故选A.答案:A6.(2012年厦门模拟)设命题p:若a>b,则1a<1b,q:若1ab<0,则ab<0.给出以下3个复合命题,①p∧q;②p∨q;③綈p∧綈q.其中真命题的个数为( )A .0B .1C .2D .3解析:p 为假命题,q 为真命题,所以只有②正确,故选B. 答案:B 7.在算式“4△+1□=30□×△”的两个□、△中,分别填入两个正整数,使它们的倒数之和最小.则这两个正整数构成的数对(□,△)应为( )A .(4,14)B .(6,6)C .(3,18)D .(5,10)解析:题中的算式可以变形为“4×□+1×△=30”.设x =□,y =△,则4x +y ==(4x +y )⎝ ⎛⎭⎪⎫1x +1y =5+⎝ ⎛⎭⎪⎫y x +4x y ≥5+2y x ·4x y =9,当且仅当y x =4xy,即x =5,y =10时取等号,所求的数对为(5,10).故选D.答案:D8.若a >0,b >0,且a +b =4,则下列不等式恒成立的是 ( )>12 +1b≤1≥2D .a 2+b 2≥8解析:a +b =4≥2ab ,ab ≤2,ab ≤4 ∴1ab ≥14,故C 错,A 错. 1a +1b=a +b ab =4ab≥1,故B 错.(a +b )2=a 2+b 2+2ab ≤2(a 2+b 2) ∴a 2+b 2≥8,故选D. 答案:D9.(2012年广东番禺模拟)已知命题p :“∀x ∈[0,1],a ≥e x ”,命题q :“∃x ∈R ,x 2+4x +a =0”,若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .[e,4]B .[1,4]C .[4,+∞)D .(-∞,1]解析:若p 真,则a ≥e;若q 真,则16-4a ≥0⇒a ≤4,所以若命题“p ∧q ”是真命题,则实数a 的取值范围是[e,4].故选A.答案:A10.(2012年辽宁)设变量x ,y 满足⎩⎨⎧x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( )A .20B .35C .45D .55解析:可行域如图所示:由⎩⎨⎧y =15,x +y =20得A (5,15),A 点为最优解,∴z max =2×5+3×15=55,故选D. 答案:D11.若不等式(a -2)x 2+2(a -2)x -4<0对于x ∈R 恒成立,则a 的取值范围是( )A .(-2,2)B .[-2,2]C .(-2,2]D .[-2,2)解析:当a =2时,不等式-4<0恒成立;当a ≠2时, 由⎩⎨⎧a -2<0Δ=4a -22+4×4a -2<0,解得-2<a <2,∴符合要求的a 的取值范围是(-2,2],故选C. 答案:C 12.设A ={x |x -1x +1<0},B ={x ||x -b |<a },若“a =1”是“A ∩B ≠Ø”的充分条件,则实数b 的取值范围是( )A .-2≤b ≤2B .-2≤b <2C .-2<b <2D .b ≤2解析:A ={x |-1<x <1},当a =1时,B ={x |b -1<x <b +1}, 若“a =1”是“A ∩B ≠Ø”的充分条件, 则有-1≤b -1<1或-1<b +1≤1, 所以-2<b <2,故选C. 答案:C二、填空题(本大题共4小题,每小题5分,共20分)13.命题p :∀x ∈R ,f (x )≥m ,则命题p 的否定綈p 是______. 答案:∃x ∈R ,f (x )<m14.(2012年安徽)若x ,y 满足约束条件⎩⎨⎧x ≥0,x +2y ≥3,2x +y ≤3,则x -y 的取值范围是________.解析:①作出可行域,如图中阴影部分;②作出零线x -y =0并平移,判断A ,B 点坐标; ③由⎩⎨⎧x +2y =3,2x +y =3解得A (1,1),由⎩⎨⎧2x +y =3,x =0解得B (0,3),∴(x -y )max =1-1=0,(x -y )min =0-3=-3,∴x -y ∈[-3,0].答案:[-3,0]15.已知条件p :|x +1|>2,条件q :5x -6>x 2,则非p 是非q 的________条件.解析:∵p :x <-3或x >1,∴綈p :-3≤x ≤1. ∵q :2<x <3,∴綈q :x ≤2或x ≥3,则綈p ⇒綈q . 答案:充分不必要16.已知命题p :“∀x ∈[1,2],12x 2-ln x -a ≥0”与命题q :“∃x 0∈R ,x 20+2ax 0-8-6a =0”都是真命题,则实数a 的取值范围是______________.解析:若p 真,则∀x ∈[1,2],⎝ ⎛⎭⎪⎫12x 2-ln x min ≥a ,∴a ≤12;若q 真,则(2a )2-4×(-8-6a )=4(a +2)(a +4)≥0,∴a ≤-4或a ≥-2,∴实数a 的取值范围为(-∞,-4]∪⎣⎢⎡⎦⎥⎤-2,12.答案:(-∞,-4]∪⎣⎢⎡⎦⎥⎤-2,12三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.设全集U=R,函数y=log2(6-x-x2)的定义域为A,函数y=1x2-x-12的定义域为B.(1)求集合A与B;(2)求A∩B,(∁U A)∪B.解:(1)函数y=log2(6-x-x2)要有意义需满足6-x-x2>0,解得-3<x<2,∴A={x|-3<x<2}.函数y=1x2-x-12要有意义需满足x2-x-12>0,解得x<-3或x>4,∴B={x|x<-3或x>4}.(2)A∩B=Ø,∁U A={x|x≤-3或x≥2},∴(∁U A)∪B={x|x≤-3或x≥2}.18.我们知道,如果集合A⊆S,那么S的子集A的补集为∁S A={x|x∈S,且x∉A}.类似地,对于集合A,B,我们把集合{x|x∈A,且x∉B}叫做集合A 与B的差集,记作A-B.据此回答下列问题:(1)若A={1,2,3,4},B={3,4,5,6},求A-B;(2)在下列各图中用阴影表示集合A-B;(3)若集合A={x|0<ax-1≤5},集合B={x|-12<x≤2},有A-B=Ø,求实数a的取值范围.解:(1)根据题意知A-B={1,2}.(2)(3)A ={x |0<ax -1≤5},则1<ax ≤6, 当a =0时,A =Ø,此时A -B =Ø,符合题意; 当a >0时,A =⎝ ⎛⎦⎥⎤1a ,6a ,若A -B =Ø,则6a ≤2,即a ≥3;当a <0时,A =⎣⎢⎡⎭⎪⎫6a ,1a ,若A -B =Ø,则6a >-12,即a <-12.综上所述:实数a 的取值范围是a <-12或a ≥3或a =0. 19.(1)求函数y =2xx 2+1在x >0时的最大值;(2)已知x +y +xy =2,且x >0,y >0,求x +y 的最小值. 解:(1)因为x >0,所以y =2x x 2+1=2x +1x, 而x +1x ≥2,故0<1x +1x ≤12,则0<2x +1x≤1,当且仅当x =1x即x =1时,y 的最大值为1.(2)由xy =2-(x +y )及xy ≤⎝⎛⎭⎪⎫x +y 22得 2-(x +y )≤x +y 24,即(x +y )2+4(x +y )-8≥0.解得x +y ≥23-2或x +y ≤-2-2 3. 因为x >0,y >0,所以x +y ≥23-2, 当且仅当x =y 且x +y +xy =2,即x =y =3-1时,x +y 的最小值为23-2.20.(2013届湖北省黄冈中学高三11月月考)已知p :f (x )=1-x3,且|f (a )|<2;q :集合A ={x |x 2+(a +2)x +1=0,x ∈R },且A ≠Ø.若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.解:若|f (a )|=|1-a3|<2成立,则-6<1-a <6, 即当-5<a <7时p 是真命题;若A ≠Ø,则方程x 2+(a +2)x +1=0有实数根, 由Δ=(a +2)2-4≥0,解得a ≤-4,或a ≥0, 即当a ≤-4,若a ≥0时q 是真命题;由于p ∨q 为真命题,p ∧q 为假命题,∴p 与q 一真一假, p 真q 假时,⎩⎨⎧-5<a <7-4<a <0,∴-4<a <0.p 假q 真时,⎩⎨⎧a ≤-5或a ≥7a ≤-4或a ≥0,∴a ≤-5或a ≥7.故知所求a 的取值范围是(-∞,-5]∪(-4,0)∪[7,+∞).21.某工厂生产甲、乙两种产品,每生产一吨产品所消耗的电能和煤、所需工人人数以及所得产值如下表所示:超过160千度,消耗煤不得超过150吨,问怎样安排甲、乙这两种产品的生产数量,才能使每天所得的产值最大解:设甲、乙两种产品每天分别生产x 吨和y 吨,则每天所得的产值为z =7x +10y 万元.依题意,得不等式组⎩⎪⎨⎪⎧2x +8y ≤160,3x +5y ≤150,5x +2y ≤200,x ≥0,y ≥0.(※)由⎩⎨⎧ 2x +8y =160,3x +5y =150,解得⎩⎪⎨⎪⎧ x =2007,y =907.由⎩⎨⎧5x +2y =200,3x +5y =150,解得⎩⎪⎨⎪⎧x =70019,y =15019.设点A 的坐标为⎝ ⎛⎭⎪⎫2007,907,点B 的坐标为⎝ ⎛⎭⎪⎫70019,15019,则不等式组(※)所表示的平面区域是五边形的边界及其内部(如图中阴影部分).令z =0,得7x +10y =0,即y =-710x .作直线l 0:y =-710x .由图可知把l 0平移至过点B ⎝ ⎛⎭⎪⎫70019,15019时,即x =70019,y =15019时,z 取得最大值6 40019. 答:每天生产甲产品70019吨、乙产品15019吨时,能获得最大的产值6 40019万元. 22.某种商品原来定价每件p 元,每月将卖出n 件,假若定价上涨x 成(这里x 成即x 10,0<x ≤10),每月卖出数量将减少y 成,而售货金额变成原来的z倍.(1)设y =ax ,其中a 是满足13≤a <1的常数,用a 来表示当售货金额最大时的x 的值;(2)若y =23x ,求使售货金额比原来有所增加的x 的取值范围. 解:(1)由题意知某商店定价上涨x 成时,上涨后的定价、每月卖出数量、每月售货金额分别是p ⎝ ⎛⎭⎪⎫1+x 10元,n ⎝ ⎛⎭⎪⎫1-y 10元,npz 元, 因而npz =p ⎝ ⎛⎭⎪⎫1+x 10·n ⎝⎛⎭⎪⎫1-y 10, ∴z =1100(10+x )(10-y ),在y =ax 的条件下, z =1100⎣⎢⎡⎦⎥⎤-a ⎝ ⎛⎭⎪⎫x -51-a a 2+100+251-a 2a , 由于13≤a <1,则0<51-a a ≤10,要使售货金额最大,即使z 值最大,此时x =51-aa .(2)由z =1100(10+x )⎝⎛⎭⎪⎫10-23x >1,解得0<x <5.。
2024版高考数学一轮复习专题基础练专题一集合常用逻辑用语与不等式专题综合训练作业课件

充分也不必要条件,故C错误.对于D,当α⊥β时,若m∥α,则m∥β或m⊂β或m,β相交,若m∥β,则m∥α或m⊂α或m,α相交,
故“m∥α”是“m∥β”的既不充分也不必要条件,故D错误.故选ACD.
专题综合训练
答案
1
15.CD 对于A,集合A={x|x2+x-6=0}={-3,2},B={x|mx-1=0},∵A∪(∁UB)=R,∴B⊆A,∴当B=∅时,m=0;当B≠∅时,m=-3
1
11
或m=2.故实数m的取值构成的集合为{0,-3,2},故A错误.
因为集合M={x∈Q|(x2-2)(x2-1)=0}={-1,1},N={x∈N*|-2<x<2}={1},所以M∩N={1},A错误;M∪N={-1,1},
B错误;N⫋M,C错误,D正确.故选D.
专题综合训练
4. [2020全国Ⅰ卷(理)]设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=
42 + 16 < 0,
专题综合训练
9. [2023广东惠州一调]在等比数列{an}中,已知a2 020>0,则“a2 021>a2 024”是“a2 022>a2 023”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案
9.A
∵q≠0,a2 020>0,∴若a2 021>a2 024,则a2 020q>a2 020q4,∴q(1-q3)>0,∴q(1-q)(1+q+q2)>0,得q(1-q)>0,∴0<q<1;
专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)

专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
集合与常用逻辑用语,不等式测试题

《集合、逻辑、不等式》测试(满分150分)姓名 得分一、选择题:每小题5分.1.已知全集U 和集合A ,B 如图所示,则(∁U A )∩B ( )A .{5,6}B .{3,5,6}C .{3}D .{0,4,5,6,7,8}2.设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( ) A .4 B .3C .2D .13.已知M ={x |x -a =0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值为( )A .1B .-1C .1或-1D .0或1或-14.设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R }.若A ∩B =∅,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2,或a ≥4}C .{a |a ≤0,或a ≥6}D .{a |2≤a ≤4}5.定义集合运算:A ⊙B ={z |z =xy (x +y ),x ∈A ,y ∈B },设集合A ={0,1},B ={2,3},则集合A ⊙B 的所有元素之和为( )A .0B .6C .12D .186.已知命题p :∀x ∈R ,x >sin x ,则p 的否定形式为( )A .∃x 0∈R ,x 0<sin x 0B .∀x ∈R ,x ≤sin xC . ∃x 0∈R ,x 0≤sin x 0D .∀x ∈R ,x <sin x 7.已知关于x 的不等式x 2−ax −b <0的解集是{x ∣2<x <3},则a +b 的值是( )A.−11B.11C.−1D.18.已知a,b ∈R ,则“a +b <0”是“a ∣a ∣+b ∣b ∣<0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件二.多选题(每题5分)9.下列关系中正确的为() (1){};00∈(2)Ø⊆{0};(3){0,1}⊆{(0,1)};(4){(a,b )}={(b,a)};(5){a,b}={b,a}.A. (1)(2)B. (2)(3)C. (3)(4)D. (1)(5)10.下列命题中假命题是( )A.∃m∈R,使函数f(x)=x2+mx(x∈R)是偶函数B.∃m∈R,使函数f(x)=x2+mx(x∈R)是奇函数C.∀m∈R,函数f(x)=x2+mx(x∈R)都是偶函数D.∀m∈R,函数f(x)=x2+mx(x∈R)都是奇函数三.填空题(每题5分)13.已知集合{0,-1,a2}={0,a,b},则a2021+b2021的值为()14.已知函数f(x)=x2−2x+3a,g(x)=2x−1,若对任意x1∈[0,3],总存在x2∈[2,3],使得∣f(x1)∣≤g(x2)成立,则实数a的值为__________.15.已知集合A={x|x2=1},B={x|mx=1},若B⊆A,则m的取值个数为()16.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.四.解答题17.(10分)设全集U=R,A={x|2512xx+<-},B={x|x2-5x≤0,且x≠5}.求(1)∁U(A∪B);(2)(∁U A)∩(∁U B).18.(12分)已知集合A={x|-2<x ≤5},(1)若B ⊆A,B={x|m+1≤x ≤2m-1},求实数m 的取值范围; (2)若A ⊆B,B={x|m-6≤x ≤2m-1},求实数m 的取值范围.19.(12分)已知集合A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.命题p :x ∈A ,命题q :x ∈B ,并且命题p 是命题q 的充分条件,求实数m 的取值范围..(12分) 20.12 0,0, 24,..1x y x y x y >>+=++若求的最小值21.(12分)解不等式12x2-ax>a2(a∈R).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用逻辑用语与不等式训练题一、选择题:1.a 、b 、c 、d 均为实数,使不等式0a cb d>>和ad bc <都成立的一组值(a ,b ,c ,d )是 .(只要写出适合条件的一组值即可)2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真 3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个4.若命题“p q ∧”为假,且“p ⌝”为假,则( ) A .p 或q 为假 B .q 假C .q 真D .不能判断q 的真假5.若,a b R ∈,使1a b +>成立的一个充分不必要条件是( )A .1a b +≥B .1a ≥C .0.5,0.5a b ≥≥且D .1b <- 6.在△ABC 中,“︒>30A ”是“21sin >A ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.命题:p 若,a b R ∈,则1a b +>是1a b +>的充分而不必要条件;命题:q 函数y =的定义域是(][),13,-∞-+∞,则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真 8.下列各对不等式中同解的是( ) A .72<x 与 x x x +<+72 B .0)1(2>+x 与 01≠+xC .13>-x 与13>-xD .33)1(x x >+与 xx 111<+ 9.不等式|2||x x≥的解集是( ) A .(-∞,0) B .[)+∞,2 C .(-∞,0)∪[)+∞,2 D .[)[)+∞⋃-,20,210.a<b,d<c 且(c-a) (c-b)<0, (d-a) (d-b)>0,则a 、b 、c 、d 的大小关系是( )A .d<a<c<bB .a<c<b<dC .a<d<b<cD .a<d<c<b11.若122+x ≤()142x -,则函数2x y =的值域是( )A .1[,2)8B .1[,2]8C .1(,]8-∞ D .[2,)+∞12.二次方程22(1)20x a x a +++-=,有一个根比1大,另一个根比1-小, 则a 的取值范围是 ( )A .31a -<<B .20a -<<C .10a -<<D .02a << 13.设集合等于则B A x x B x x A ,31|,21|⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧<=( ) A .⎪⎭⎫ ⎝⎛2131, B .⎪⎭⎫ ⎝⎛∞+,21 C .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,3131 D .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,2131 14.关于x 的不等式22155(2)(2)22x x k k k k --+<-+的解集是 ( )A .12x >B .12x < C .2x > D .2x <15.若()a ax x x f ++-=12lg )(2在区间]1,(-∞上递减,则a 范围为( )A .[1,2)B . [1,2]C .[)1,+∞D . [2,)+∞ 16.不等式22lg lg x x <的解集是 ( ) A .1(,1)100 B .(100,)+∞ C .1(,1)100(100,)+∞ D .(0,1)(100,)+∞17.若不等式201x ax a ≤-+≤有唯一解,则a 的取值为( ) A .0 B .2 C .4 D .6 18.已知()f x 为R 上的减函数,则满足1(||)(1)f f x<的实数x 的取值范围是( ) A .(-1,1) B .(0,1) C .(-1,0)(0,1) D .(-∞,-1)(1,+∞)19.设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( ) A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)20.函数()lg()(10)x x f x a b a b =->>>,则()0f x >的解集为(1,)+∞的充要条件是( ) A .a=b+1 B .a<b+1 C .a>b+1 D .b=a+121.函数y=f(x)是圆心在原点的单位圆的两段圆弧(如图),则不等式()()f x f x x <-+的解集为( )A . {x|-552<x<0或552<x≤1} B .{x|-1≤x<-552或552<x≤1} C .{x|-1≤x<-552或552<x≤1} D .{x|-552<x<552且x≠0} 二、填空题:22.命题“2230ax ax -->不成立”是真命题,则实数a 的取值范围是_______。
23.若方程2222(1)34420x m x m mn n ++++++=有实根,则实数m =_______;且实数n =_______。
24.若*1(),()()()2f n n g n n n n N nϕ===∈,用不等号从小到大 连结起来为____________。
25. 设,,x y z 为正实数,满足230x y z -+=,则2y xz的最小值是26.不等式组222232320x x x x x x ⎧-->--⎪⎨+-<⎪⎩的解集为__________________。
27.不等式122log (21)log (22)2x x +--<的解集是_______________。
28.0xx≥的解集是________________。
29.不等式e |lnx|>x 2-2的解集为____________30.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+②)11(log )1(log aa a a +>+ ③aa a a111++< ④a a a a 111++> 其中成立的是 . 三、解答题:31.已知集合23(1)23211331|2,|log (9)log (62)2x x x A x B x x x ---⎧⎫⎧⎫⎪⎪⎛⎫=<=-<-⎨⎬⎨⎬ ⎪⎝⎭⎪⎪⎩⎭⎩⎭, 又{}2|0AB x x ax b =++<,求a b +等于多少?32.已知命题),0(012:,64:22>≥-+-≤-a a x x q x p 若非p 是q 的充分不必要条件,求a 的取值范围。
33.如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A ,B 及CD 的中点P 处.AB =20km ,BC =10km .为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A ,B 等距的一点O 处,建造一个污水处理厂,并铺设三条排污管道AO ,BO ,PO .记铺设管道的总长度为y km .(1)按下列要求建立函数关系式:(i )设BAO θ∠=(rad ),将y 表示成θ的函数;(ii )设OP x =(km ),将y 表示成x 的函数; (2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短。
34. 如图所示,某公园要在一块绿地的中央修建两个相同的矩形的池塘,每个面积为10000米2,池塘前方要留4米宽的走道,其余各方为2米宽的走道,问每个池塘的长宽各为多少米时占地总面积最少?(14’)池塘池塘走道2米走道2米走道2米4米走道4米走道走道2米走道2米常用逻辑用语与不等式训练题参考答案一、 选择题:1.解析:本题为开放题,只要写出一个正确的即可,如(2,1,-3,2). 评析:本题为开放题,考察学生对知识灵活处理问题的能力.2.D 原命题是真命题,所以逆否命题也为真命题3.A ①220a b a b >>⇒>,仅仅是充分条件 ②0a b >>⇒ba 11< ,仅仅是充分条件;③330a b a b >>⇒>,仅仅是充分条件4.B “p ⌝”为假,则p 为真,而p q ∧(且)为假,得q 为假 5.D 当1,0a b ==时,都满足选项,A B ,但是不能得出1a b +> 当0.5,0.5a b ==时,都满足选项C ,但是不能得出1a b +>6.B 当0170A =时,01sin170sin102=<,所以“过不去”;但是在△ABC 中, 0001sin 30150302A A A >⇒<<⇒>,即“回得来” 7.D 当2,2a b =-=时,从1a b +>不能推出1a b +>,所以p 假,q 显然为真 8.B 对于A .727,,2x x <<与 7272x x +≤< 对于C .31,3131x x x ->->-<-或与13>-x对于D .33)1(x x >+与xx 111<+,当10x -<<时,xx 111<+ 不成立 9.C [方法一]数形结合:作出两边函数图象,通过图象得到C ;[方法二]等价转化:将不等式转化为⎪⎩⎪⎨⎧≥≥x x x 20或⎪⎩⎪⎨⎧≥-<x x x 20,解得答案C10.A 且(c-a)(c-b)<0⇒a<c<b,(d-a)(d-b)>0⇒d<a 或d>b;由于a<b,d<c ,11.B 122+x ≤2421()24x x --=,221142,230,31,28x x x x x y +≤-+-≤-≤≤≤≤12.C 令22()(1)2f x x a x a =+++-,则(1)0f <且(1)0f -<即220,1030a a a a a ⎧+<⎪-<<⎨-+>⎪⎩13.B12112,0,,02x x x x x -<>><或 14.B 225312(1)1,1,222k k k x x x -+=-+>∴<-<15.A 令(]221,,1u x ax a =-+--∞是的递减区间,得1a ≥而0u >须恒成立,∴min 20u a =->,即2a <,∴12a ≤<;16.D 22l g l g ,l g 2l g 0,100,01x x x x x x <><><<或或 17.B 当20x ax a -+=仅有一实数根,240,04a a a a ∆=-===或,代入检验,不成立或21x ax a -+=仅有一实数根,2440,2a a a ∆=-+==,代入检验,成立!18.C 由()f x 为R 上的减函数可得:1||1x < 即:111x -<<再利用1y x=的图像得出结果。