人工鱼群算法及其应用

合集下载

《基于多算法融合的改进人工鱼群算法及其应用》

《基于多算法融合的改进人工鱼群算法及其应用》

《基于多算法融合的改进人工鱼群算法及其应用》一、引言随着人工智能和计算机技术的快速发展,许多算法在优化问题中发挥着越来越重要的作用。

其中,人工鱼群算法(Artificial Fish Swarm Algorithm, AFS)以其良好的全局搜索能力和较快的收敛速度在多个领域得到了广泛的应用。

然而,面对复杂多变的实际问题,传统的单一算法往往难以达到理想的优化效果。

因此,本文提出了一种基于多算法融合的改进人工鱼群算法,并对其在多个领域的应用进行了研究。

二、人工鱼群算法及其发展人工鱼群算法是一种模拟鱼群行为的智能优化算法,通过模拟鱼群的觅食、聚群、追尾等行为,实现对问题的全局搜索和优化。

该算法具有较好的全局搜索能力和较快的收敛速度,被广泛应用于各种优化问题中。

然而,传统的人工鱼群算法在面对复杂问题时,可能存在收敛速度慢、易陷入局部最优等问题。

为了解决这些问题,学者们对人工鱼群算法进行了改进和优化。

三、基于多算法融合的改进人工鱼群算法针对传统人工鱼群算法的不足,本文提出了一种基于多算法融合的改进人工鱼群算法(Multiple-Algorithm Fused Improved Artificial Fish Swarm Algorithm, MAF-AFS)。

该算法结合了遗传算法(Genetic Algorithm, GA)、蚁群算法(Ant ColonyOptimization, ACO)和粒子群优化算法(Particle Swarm Optimization, PSO)等多种优化算法的特点和优势,通过融合这些算法的优点,提高算法的全局搜索能力和收敛速度。

具体而言,MAF-AFS 算法在传统人工鱼群算法的基础上,引入了遗传算法的基因变异思想、蚁群算法的信息素传递机制和粒子群优化算法的速度更新策略。

通过这些融合策略,MAF-AFS 能够在搜索过程中保持较高的多样性,避免陷入局部最优;同时,通过信息素的传递和更新策略,提高算法的全局搜索能力。

人工鱼群算法实际应用

人工鱼群算法实际应用
人工鱼群算法——实际应用
小组成员:
人工鱼群算法的应用实例
• • • • • • • • • • 组合优化问题 神经网络训练 数字滤波器设计 信号处理去噪 波达方向估计 波束成形技术 车间作业调度问题 数据模糊聚类 数据挖掘 图像处理
管理策略——最小费用问题
问题描述: 为一家小型石油转运公司作咨询,该公司 管理人员要求利用有限的空间储存不同类 型的石油,并且储存期间的储存费用最小 的管理策略。 主要考虑因素: 1.每类石油的数量 2.每类石油的成本 3.取走每种类型石油的速率 4.每类石油的储存费用 5.每类石油的储存空间
相关定义
目标函数
CiVi H i xi min f ( X ) ( ) xi 2 i 1
约束条件:
Hale Waihona Puke ks.t . T 5
t x
i 1 i
k
i
T
Ci 1.5i 20
Vi 0.5(i 5)2 14
Thank You !

《基于多算法融合的改进人工鱼群算法及其应用》

《基于多算法融合的改进人工鱼群算法及其应用》

《基于多算法融合的改进人工鱼群算法及其应用》一、引言随着人工智能技术的不断发展,优化算法在解决复杂问题中扮演着越来越重要的角色。

人工鱼群算法作为一种模拟鱼群行为的智能优化算法,已经在许多领域得到了广泛的应用。

然而,传统的人工鱼群算法在处理复杂问题时,往往存在收敛速度慢、易陷入局部最优等问题。

为了解决这些问题,本文提出了一种基于多算法融合的改进人工鱼群算法,并在实际应用中取得了良好的效果。

二、传统人工鱼群算法概述传统的人工鱼群算法是一种模拟鱼群行为的智能优化算法,通过模拟鱼群的游动、觅食、聚群等行为,实现全局寻优。

该算法具有简单易实现、适应性强等优点,在许多领域得到了广泛的应用。

然而,传统的人工鱼群算法在处理复杂问题时,往往存在收敛速度慢、易陷入局部最优等问题,需要进一步改进。

三、基于多算法融合的改进人工鱼群算法为了解决传统人工鱼群算法存在的问题,本文提出了一种基于多算法融合的改进人工鱼群算法。

该算法通过引入多种优化算法的思想,将不同算法的优点进行融合,从而提高算法的寻优能力和收敛速度。

具体来说,该算法包括以下步骤:1. 初始化鱼群:在搜索空间中随机初始化一定数量的“人工鱼”,每个“人工鱼”代表一个解。

2. 评价鱼群:根据问题的目标函数,计算每个“人工鱼”的适应度值。

3. 选择操作:根据适应度值的大小,选择出一定数量的优秀“人工鱼”。

4. 融合多种算法:将选出的优秀“人工鱼”与其他优化算法的思想进行融合,如遗传算法、粒子群算法等,形成新的“人工鱼”。

5. 更新鱼群:用新的“人工鱼”替换原有的鱼群中的一部分,继续进行寻优。

四、应用实例本文将基于多算法融合的改进人工鱼群算法应用于某企业的生产调度问题。

该问题涉及到多种生产资源的分配和调度,是一个典型的复杂优化问题。

通过应用该算法,企业可以有效地提高生产效率、降低生产成本。

具体应用步骤如下:1. 建立问题模型:将生产调度问题转化为一个优化问题,并建立相应的目标函数和约束条件。

人工鱼群算法及其应用模板

人工鱼群算法及其应用模板

广西民族大学硕士学位论文人工鱼群算法及其应用姓名:聂黎明申请学位级别:硕士专业:计算机应用技术指导教师:周永权200904012人工鱼群算法及改进方法2.1引言人工鱼群算法(ArtificialFishSwarmAlgorithm,AFSA)‘22。

251是李晓磊等人于2002年在对动物群体智能行为研究的基础上提出的一种新型仿生优化算法,该算法根据“水域中鱼生存数目最多的地方一般就是本水域中富含营养物质最多的地方"这一特点来模仿鱼群的觅食行为而实现寻优。

人工鱼群算法主要利用鱼的三大基本行为:觅食、聚群和追尾行为,采用自上而下的寻优模式从构造个体的底层行为开始,通过鱼群中各个体的局部寻优,达到全局最优值在群体中突现出来的目的。

2.2人工鱼群算法2.2.1算法起源经过漫长的自然界的优胜劣汰,动物在进化过程中,形成了形形色色的觅食和生存方式,这些方式为人类解决问题带来了不少鼓舞和启发。

动物个体的智能一般不具备人类所具有的综合判断能力和复杂逻辑推理能力,是通过个体或群体的简单行为而突现出来的。

动物行为具有以下几个特点嘶1:(1)盲目性:不像传统的基于知识的智能系统,有着明确的目标,人工鱼群算法中单个个体的行为是独立的,与总目标之间往往没有直接的关系;(2)自治性:动物有其特有的某些行为,在不同的时刻和不同的环境中能够自主的选取某种行为,而无需外界的控制或指导;(3)突现性:总目标的完成是在个体行为的运动过程中突现出来的;(4)并行性:各个体的行为是实时的、并行进行的;(5)适应性:动物通过感觉器官来感知外界环境,并应激性的做出各种反应,从而影响环境,表现出与环境交互的能力。

2.2.2算法原理人工鱼群算法就是一种基于动物行为的自治体寻优模式,它是基于鱼类的活动特点构建起来的新型智能仿生算法。

通常人们可以观察到如下的鱼类行为:a)觅食行为:这是鱼趋向食物的一种活动,一般认为它是通过视觉或味觉来感知水中的食物量或食物浓度来选择行动方向的。

人工鱼群算法及其应用研究

人工鱼群算法及其应用研究

人工鱼群算法及其应用研究人工鱼群算法及其应用研究人工鱼群算法是近年来兴起的一种基于群体智能的优化算法,其灵感来源于鱼群觅食行为。

该算法通过模拟鱼群的觅食行为,以求解复杂的优化问题。

随着计算机技术的发展,人工鱼群算法受到广泛关注,并在多个领域得到应用。

本文将介绍人工鱼群算法的基本原理、应用情况以及存在的问题。

一、人工鱼群算法的基本原理人工鱼群算法中,鱼被模拟成具有觅食行为的个体,每条鱼都有一定的感知范围和特定的行为规则。

在觅食过程中,鱼会根据周围环境的信息对个体与群体的行为进行调整。

个体的行为规则包括觅食、逃避、追逐和交配等行为。

觅食行为主要包括鱼群个体的聚集和分散。

在算法中,每条鱼可以表示为一个解,将每个解表示为一个向量,向量的每个元素表示解的一个变量。

算法根据目标函数的值来评估每条鱼的适应度。

同时,算法会根据适应度值和鱼群中的信息进行个体的移动和调整。

通过多次迭代,鱼群逐渐趋于最佳解。

二、人工鱼群算法的应用研究人工鱼群算法在各个领域的应用研究日趋广泛。

以下将介绍几个典型的应用案例:1.优化问题求解人工鱼群算法在数学优化问题中有着广泛的应用。

例如,对于线性规划问题,可以将每个变量看作一条鱼进行建模,通过人工鱼群算法进行求解。

此外,该算法还被应用于网络流优化、组合优化、约束优化等多个领域的问题求解中,取得了较好的效果。

2.图像处理人工鱼群算法在图像处理中具有较强的适用性。

例如,在图像分割中,人工鱼群算法可以通过调整参数来达到图像分割的最佳效果。

此外,该算法还能够用于图像去噪、图像压缩等多个图像处理任务中。

3.路径规划人工鱼群算法在路径规划问题中的应用也较为广泛。

例如,对于无人驾驶车辆的路径规划问题,可以将人工鱼群算法应用于规划车辆的最短路径,并考虑到实时交通状况进行调整。

此外,该算法还可用于无线传感器网络中的路径规划问题、机器人的运动路径规划等多个领域。

三、人工鱼群算法存在的问题虽然人工鱼群算法在诸多领域有着广泛的应用,但也存在一些问题亟需解决。

人工鱼群算法(AFSA)及其简单应用举例

人工鱼群算法(AFSA)及其简单应用举例

+ 2.2 AFSA基本概念 + 假设在一个n维的目标搜索空间中,有N条组成一 + 个群体的人工鱼,每个人工鱼个体的状态可表示为 + 向量X=(x1,x2,……xn),其中xi(i=1,……n)为欲寻 + 优的变量:人工鱼当前所在位置的食物浓度表示为 + Y=f(X),其中Y为目标函数;人工鱼个体间距离表示 + 为 d=||Xi-Xj ||; visual表示人工鱼的感知范围,step + 为人工鱼移动步长,δ为拥挤度因子;trynumber + 表示人工鱼每次觅食最大试探次数。
6
8 10
x1
AFSA 迭 代 20次 8
+ 1.2 人工生命
+ 具有某些生命基本特征的人工系统。包括两方面 的内容:
+ 1、研究如何利用计算技术研究生物现象;
+ 2、研究如何利用生物技术研究计算问题。
+
+ 我们关注的是第二点。
+
如何利用生物技术研究计算问题是人工生命
研究的重要方向,现已有了很多源于生物现象的计
算技巧, 例如人工神经网络是简化的大脑模型,遗
+ 2.4 具体算法步骤 + 鉴于以上描述的人工鱼群行为,每条人工鱼探索 + 它当前所处的环境状况和伙伴的状况,从而选择一 + 种行为来实际执行,最终人工鱼集结在几个局部极 + 值周围。一般情况下,在讨论求极大问题时,拥有 + 较大的适应值的人工鱼一般处于值较大的极值域周 + 围,这有助于获取全局极值域,而值较大的极值区 + 域周围一般能集结较多的人工鱼,这有助于判断并 + 获取全局极值。具体的人工鱼群算法步骤如下:

人工鱼群算法范文

人工鱼群算法范文

人工鱼群算法范文人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)是由邹建新教授提出的一种模拟鱼群觅食行为的群体智能优化算法。

它的基本原理是模拟鱼群中鱼个体的觅食行为,通过不断地自我调整和协同合作寻找最优解。

与其他优化算法相比,人工鱼群算法具有简单、易于实现、收敛性良好等特点,因此在多个领域都取得了显著的应用效果。

AFSA的基本思想是通过模拟鱼群中鱼个体的行为来解决优化问题。

算法中的每个个体都是一个“鱼”,它们在定义的空间内移动,并通过一些确定性和随机性的行为来找到更优的解。

算法通过控制“鱼”的行为参数以及鱼群的协作方式来实现全局和局部的平衡。

在过程中,每个“鱼”以当前位置为中心进行,并根据一定的模型进行行为选择,包括追随、觅食、逃避、随机游动等行为。

通过这些行为的不断迭代调整,逐渐趋向于最优解。

AFSA算法具有多样性和记忆性的特点。

多样性是指算法能够同时多个解空间,而不仅仅局限于其中一个局部最优解。

记忆性是指算法能够根据历史信息对当前解进行调整和改进,从而提高效率和收敛性。

这些特点使得AFSA在解决复杂优化问题时具有优势。

AFSA算法的优点主要包括以下几个方面:1.灵活性:AFSA算法的行为规则可以根据不同问题进行定义和调整,使得算法具有较好的适应性和灵活性。

2.全局能力:通过多个个体协同合作的方式进行,有助于摆脱局部最优解,提高全局能力。

3.算法参数少:AFSA算法只有几个基本参数,易于调整和控制,减少了参数调整的困难。

4.基于自适应调整:AFSA算法中的个体行为是基于自适应调整的,通过不断地学习和调整行为,从而使得算法具有收敛性和自适应性。

人工鱼群算法的应用非常广泛,特别是在智能优化领域有着重要的应用价值。

在传统的函数优化问题、图像处理、机器学习等方面都取得了良好的效果。

例如,在函数优化问题中,AFSA算法可以有效地找到全局最优解,且算法具有较快的收敛速度。

淘宝网人工鱼群算法及应用

淘宝网人工鱼群算法及应用

淘宝网人工鱼群算法及应用淘宝网人工鱼群算法是一种模拟自然鱼群行为的智能优化算法,它主要应用于淘宝网的推荐系统中。

人工鱼群算法模拟了鱼群觅食行为,通过个体间的交流与合作来寻找最佳解决方案。

淘宝网作为中国最大的电商平台,每天都面临着海量的商品与用户,如何将最合适的商品推荐给用户成为了一个重要的问题。

人工鱼群算法的应用能够有效地解决这个问题。

首先,淘宝网人工鱼群算法通过模拟鱼群觅食行为来寻找最佳解决方案。

在淘宝网的推荐系统中,每个商品可以看作一个虚拟的食物源,每个用户可以看作一个鱼。

人工鱼群算法通过模拟个体的觅食行为来寻找最佳匹配的商品。

鱼群中的每个个体通过觅食行为相互影响,通过正反馈和负反馈的机制,每个个体都能够获取到一定的信息。

其次,淘宝网人工鱼群算法通过个体间的交流与合作来优化推荐结果。

在鱼群中,个体之间会通过信息素的交流来共同优化搜索过程。

这样,每个个体就能够借助其他个体的经验和信息来加速搜索最佳匹配的商品。

而在淘宝网的推荐系统中,用户的行为数据就是一种信息素。

通过分析用户的行为数据,可以将用户划分为不同的群体,并将同一群体中的用户的喜好进行统计分析。

这些统计结果就是交流与合作中的信息素,在人工鱼群算法中被用来引导每个个体的搜索行为。

最后,淘宝网人工鱼群算法通过优化推荐结果来提升用户体验。

在鱼群中,每个个体都会根据自己的目标函数来进行搜索,而目标函数的选择会对搜索效果产生影响。

在淘宝网的推荐系统中,用户的满意度可以作为目标函数,通过优化目标函数来提升用户对推荐结果的满意度。

通过不断地调整目标函数,可以使得推荐系统更加符合用户的需求,提升用户体验。

总之,淘宝网人工鱼群算法是一种模拟自然鱼群行为的智能优化算法,它通过模拟鱼群觅食行为、个体间的交流与合作、优化推荐结果等方式来提升淘宝网的推荐系统。

通过应用人工鱼群算法,淘宝网能够更精准地向用户推荐最合适的商品,提升用户的购物体验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文的主要研究成果与贡献如下:
1)简要的回顾了智能仿生优化算法理论产生的背景.总结了仿生算法的基本理论和特点,以及仿生优化算法的共性与个性.
2)对于人工鱼群算法进行了详细的分析.人工鱼群算法是一种新兴的仿生学算法,在介绍了AFSA的基本原理、算法描述、算法参数和流程的基础上
,又介绍了其应用前景.
3)通过对六年来人工鱼群改进算法的研究,提出了四种改进思路,并介绍了几个典型的改进模型.
8.学位论文王闯人工鱼群算法的分析及改进2008
优化命题的解决存在于许多领域,对于国民经济的发展也有着巨大的应用前景.随着优化对象在复杂化和规模化等方面的提高,基于严格机理模型的传统优化方法在实施方面变得越来越困难.
人工鱼群算法(Artificial Fish-Swarm Algorithm,AFSA)是由李晓磊等在2002年提出的,源于对鱼群运动行为的研究,是一种新型的智能仿生优化算法.它具有较强的鲁棒性、优良的分布式计算机制、易于和其他方法结合等优点.目前对该算法的研究、应用已经渗透到多个应用领域,并由解决一维静态优化问题发展到解决多维动态组合优化问题.人工鱼群算法已经成为交叉学科中一个非常活跃的前沿性研究课题.
4)提出了引入免疫系统的免疫信息处理机制的两种改进的人工鱼群算法:IM-AFSA和IV-AFSA.IM-AFSA是一种基于免疫记忆和调节机制的免疫人工鱼群算法;Ⅳ-AFSA是一种基于疫苗接种的免疫人工鱼群算法.与基本人工鱼群算法相比,IM-AFSA在提高避免陷入局部最优和收敛速度方面有比较好的效果,而IV-AFSA在保持上述优点的基础上,进一步提高了算法的寻优精度.
针对约束优化问题,引入了半可行域的概念,提出竞争选择的新规则,并改进了基于竞争选择和惩罚函数的进化算法的适应度函数;同时设计了选择算子对半可行域进行操作,得到了一个利用AFSA求解约束优化问题的新方法,通过若干非线性等式约束和不等式约束问题的验证表明该算法在求解此类问题中,具有较好的稳定性和收敛精度。
5.期刊论文徐建军.王正初.XU Jian-jun.WANG Zheng-chu可靠性优化问题的人工鱼群算法求解-中国制造业信息
化2009,38(7)
为了使设计既能满足可靠度要求又使系统成本最小,提出了基于人工鱼群算法的优化方法.简单介绍了冗余优化模型和人工鱼群算法,并给出了基于人工鱼群算法的可靠性的求解策略,详细讨论了求解步骤,并对串-并联系统的可靠性分配的可靠性优化设计问题进行了分析计算.结果表明该算法具有较强的局部搜索能力,与其他方法相比,具有更高的搜索速度和搜索效率.
(4)针对神经网络需要依靠经验确定网络结构及其优化问题,设计了一种基于人工鱼群算法的网络分类器。该方法把输入属性选取和网络结构设计结合,通过人工鱼群算法寻优,同时实现了输入属性选择、神经网络结构和参数的优化。实验表明,该算法能够获得一个具有性能可靠、较好泛化能力的简单分类器,避免了一般神经网络依靠经验确定网络结构的困难,拓宽了AFSA的应用领域。
6.学位论文张梅凤人工鱼群智能优化算法的改进及应用研究2008
为能更有效地解决工业生产过程中大量存在的优化问题,自20世纪80年代以来,涌现出了一些智能优化算法,它们通过模拟某一自然现象或过程而发展起来,为解决复杂系统的优化问题提供了新的思路和手段,自诞生就引起了国内外学者的广泛关注并被应用于许多领域。人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)是源于对鱼群觅食行为研究而提出的一种新型群体智能优化算法。该算法具有对初值和参数选择不敏感、鲁棒性强、简单、易于实现,且具备并行处理能力和全局搜索能力等方面的特点。但AFSA在应用过程中还有很多不完善的地方,如:算法后期收敛速度慢,搜索精度不高,在多峰问题寻优时难以找到全部最优解等等。并且,AFSA的应用还不够深入。为此,本文着重从AFSA的改进和应用方面进行了研究。主要研究工作如下:
(5)在对AFSA研究和改进的基础上,结合国家863项目“太阳能生物制氢技术研究”,在部分实验所获得的样本数据基础上,引入全局寻优人工鱼群优化算法,通过AFSA优化神经网络结构,获得影响生物制氢的最相关因素,建立了基于优化神经网络的光合细菌制氢过程模型;再用AFSA对已确定的主要工艺条件进行优化,获得了最大制氢量的最佳工艺条件。实验结果表明所提出的优化计算方案可行,此项研究为太阳能光合细菌制氢工艺技术优化探索了一条新的途径。
本论文是在国家“十五”863计划项目“太阳能生物制氢技术研究”(编号:2004AA515010)和国家自然科学基金项目“光合生物制氢体系的热效应及其产氢机理研究”(编号:50676029)资助下开展的科学研究。
7.期刊论文黄华娟.周永权.HUANG Hua-juan.ZHOU Yong-quan最优化问题全局寻优的A硕士学位论文
人工鱼群算法及其应用姓名:聂黎明
申请学位级别:硕士专业:计算机应用技术指导教师:周永权
20090401
人工鱼群算法及其应用
作者:聂黎明
学位授予单位:广西民族大学
1.学位论文郑晓鸣人工鱼群算法的改进及应用2006
(2)针对AFSA在多峰问题寻优时难以找到全部最优解及精度不高的问题,提出了一种基于生境人工鱼群算法的多峰问题优化算法。该算法融合了模拟退火、小生境技术的思想,并加入了变异算子和自动生成合适小生境半径机制。通过对几种典型多峰函数的测试,表明该算法不仅能有效、精确找出多峰问题的全局和局部所有最优解,而且无需预先设置小生境半径,实现了真正的自适应搜索,较好地解决了复杂多峰优化问题。
9.学位论文俞洋若干智能信号处理技术的研究及应用2006
智能信号处理技术涉及到信息科学的多个领域,是现代信号处理、人工神经网络、模糊系统理论、进化计算,包括人工智能等理论和方法的综合应用,近年已经成为信息科学领域的一个研究热点。其中进化计算作为智能信号处理技术的一个重要分支,近些年来成为一个引人注目的发展方向。
3.期刊论文李晓磊.路飞.田国会.钱积新组合优化问题的人工鱼群算法应用-山东大学学报(工学版)
2004,34(5)
通过模仿鱼类的行为方式,提出了一种基于动物自治体的优化方法-人工鱼群算法(Artificial Fish_school Algorithm),并将其用于组合优化问题的求解.介绍了该算法在此类问题求解中的距离、邻域等概念,给出了具体的实现方法.最后以TSP问题为例对该算法进行仿真测试.结果表明它具有快速收敛的能力.
4.学位论文李晓磊一种新型的智能优化方法—人工鱼群算法2003
该文将基于行为的人工智能思想通过动物自治体的模式引入优化命题的解决中,构造了一种解决问题的架构-鱼群模式,并由此产生了一种高效的智能优化算法-人工鱼群算法. 文中给出了人工鱼群算法的原理和详细描述,并对算法的收敛性能和算法中各参数对收敛性的影响等因素进行了分析;针对组合优化问题,给出了人工鱼群算法在其中的距离、邻域和中心等概念,并给出了算法在组合优化问题中的描述;针对大规模系统的优化问题.给出了基于分解协调思想的人工鱼群算法;给出了人工鱼群算法中常用的一些改进方法;给出了人工鱼群算法在时变系统的在线辨识和鲁棒PID的参数整定中两个应用实例;最后指出了鱼群模式和算法的发展方向.
工程与应用2009,45(1)
针对人工鱼群算法在优化后期收敛速度变慢问题,利用BFGS算法快速的局部搜索能力来改进,提出了一种最优化问题全局寻优的AFSA-BFGS混合算法
.通过8个标准函数测试结果表明,AFSA-BFGS混合算法,不仅具有全局收敛性能,而且还具有较快的收敛速度和更高的求解精度,是求解优化问题的一种有效方法.
(1)针对AFSA在较大或变化平坦的区域寻优时,收敛于全局最优解的速度减慢、搜索性能劣化,特别是在优化后期往往收敛较慢的问题,提出了一种基于变异算子与模拟退火混合的人工鱼群优化算法。该算法保持了AFSA简单、易实现的特点,同时克服了人工鱼漫无目的随机游动或在非全局极值点大量聚集的局限性,显著提高了运行效率和求解质量,为解决复杂寻优问题提供了有效方法。通过函数和实例测试验证,表明该算法是可行和有效的。
在进化计算的研究中,以粒子群算法、人工鱼群算法为代表群智能算法和新近提出的量子进化算法,以其优良的优化性能,已经成为众多学者研究的热点。但是由于这三种算法提出的时间比较短,所以有很多的问题有待解决。提高它们解决离散优化问题的能力就是一个值得研究的方向
在分析了二进制粒子群优化算法和量子进化算法的优缺点之后,受混合优化算法思想的启发,将量子进化算法和粒子群算法的思想相互结合,提出了嵌入式量子进化算法(PSEQEA)和量子二进制粒子群优化算法(QBPSO),用来分别提高了QEA和PSO的优化性能。将新的算法应用到背包问题,连续函数优化问题和多用户检测问题中,仿真结果表明,新的算法与QEA和PSO相比不仅具有更简单的算法结构,而且具有更强的全局优化能力。
鱼群算法从具体的实施算法到总体的设计理念,都不同于传统的设计和解决方法,同时它又具有与传统方法相融合的基础,相信鱼群算法有着良好的应用前景。
2.期刊论文黄华娟.周永权.HUANG Hua-juan.ZHOU Yong-quan求解全局优化问题的混合人工鱼群算法-计算机应
用2008,28(12)
把Powell算法作为人工鱼群算法的一个局部搜索算子,嵌入到自适应人工鱼群算法中,构成一种基于Powell算法和自适应人工鱼群的混合算法.该算法充分利用了自适应人工鱼群算法的全局收敛性和Powell算法的强局部搜索能力,使得混合算法的全局收敛性能得到了改善,并且减少了计算量.计算机仿真结果表明,自适应混合人工鱼群算法能够在保持较高精度的前提下快速收敛.
(3)针对连续属性样本分类挖掘时需离散化预处理,可能导致原始信息的缺失问题,提出了基于人工鱼群算法的分类规则挖掘算法,给出了适用于AFSA的分类规则编码方案、构造了新的准确提取规则集的分类规则适应值函数。该算法从优化的角度来解决分类问题,自动实现连续属性样本分类规则的挖掘,从而为连续属性样本提供了一个不需要离散化处理而直接进行数据挖掘的新方法。实验结果表明,该算法不仅能够挖掘出简洁、易于理解的规则集,而且具有较强的鲁棒性和较高的准确率,是一种可行和有效的分类规则优化算法。
相关文档
最新文档