人教版数学高二B版选修2-2教学案 合情推理(归纳推理)
高二数学选修2-2(B版)_总结归纳:推理与证明

推理与证明对于数学的学习,应具备“能力”,其中本章的“推理与证明”就是一种重要的“逻辑思维”能力形式.通过本章的复习,要有着扎实的推理、论证能力,以增强对问题的敏锐的观察,深刻的理解、领悟能力.一.推理部分1.知识结构:2.和情推理:归纳推理与类比推理统称为和情推理.①归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或有个别事实概括出一般结论的推理,称为归纳推理.②类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.③定义特点;归纳推理是由特殊到一般、由部分到整体的推理;而类比推理是由特殊到特殊的推理;都能由已知推测、猜想未知,从而推理结论.但是结论的可靠性有待证明.例如:已知2()53f n n n =-+-,可以(1)10f =>,(2)30,f =>(3)30,(4)10f f =>=>,于是推出:对入任何n N *∈,都有()0f n >;而这个结论是错误的,显然有当5n =时,(5)30f =-<.因此,归纳法得到的结论有待证明.例如:“在平面内与同一条直线垂直的两条直线平行”;类比线与线得到:“在空间与同一条直线垂直的两条直线平行“;显然此结论是错误的”.类比线与面得到:在空间与同一个平面垂直的两个平面平行;显然此结论是错误的.④推理过程:从具体问题出发 观察、分析、比较、联想 归纳、类比 猜想.3.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理(逻辑推理).①定义特点:演绎推理是由一般到特殊的推理;②数学应用:演绎推理是数学中证明的基本推理形式;推理模式:“三段论”:ⅰ大前提:已知的一般原理(M 是P );ⅱ小前提:所研究的特殊情况(S 是M );ⅲ结论:由一般原理对特殊情况作出判断(S 是P );集合简述:ⅰ大前提:x ∈M 且x 具有性质P ;ⅱ小前提:y ∈S 且S ⊆M ;ⅲ结论: y 也具有性质P ;例题1.若定义在区间D 上的函数()f x 对于D 上的n 个值12,,n x x x ,总满足[]12121()()()()n n x x x f x f x f x f n n ++++++≤,称函数()f x 为D 上的凸函数;现已知()sin f x x =在(0,)π上是凸函数,则ABC ∆中,sin sin sin A B C ++的最大值是 .解答:由[]12121()()()()n n x x x f x f x f x f n n ++++++≤(大前提)因为()sin f x x =在(0,)π上是凸函数 (小前提)得()()()3()3A B C f A f B f C f ++++≤ (结论)即sin sin sin 3sin 3A B C π++≤=因此,sin sin sin A B C ++的最大值是2 注:此题是一典型的演绎推理“三段论”题型4.和情推理与演绎推理的关系:①和情推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理;②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性;例2.设()2x x a a f x -+=,()2x xa a g x --=(其中0a >且1a ≠) (1)5=2+3请你推测(5)g 能否用(2),(3),(2),(3)f f g g 来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解答:(1)由(3)(2)(3)(2)f g g f +=332a a -+222a a --+332a a --222a a -+ =552a a -- 又(5)g =552a a -- 因此,(5)g =(3)(2)(3)(2)f g g f +(2)由(5)g =(3)(2)(3)(2)f g g f +即(23)g +=(3)(2)(3)(2)f g g f +于是推测()g x y +=()()()()f x g y g x f y + 证明:因为:()2x x a a f x -+=,()2x xa a g x --=(大前提) 所以()g x y +=2x y x ya a ++-, ()g y =2y y a a --,()f y =2y ya a -+,(小前提及结论) 所以()()()()f x g y g x f y +=2x x a a -+2y y a a --+2x x a a --2y ya a -+ =2x y x ya a ++-=()g x y + 解题评注:此题是一典型的由特殊到一般的推理,构造(23)g +=(3)(2)(3)(2)f g g f +是此题的一大难点,要经过观察、分析、比较、联想而得到;从而归纳推出一般结论()g x y +=()()()()f x g y g x f y +.二.证明部分1.知识结构2.综合法与分析法①综合法;利用已知条件和某些数学定义、公理、定理等出发,经过一系列推理论证,推导出所要证明的结论成立.②分析法:从要证明的结论出发逐步寻求使它成立的充分条件,直至把要证明的结论归结为判别一个明显成立的条件为止.③综合应用:在解决问题时,经常把综合法与分析法和起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.例3.已知:0a b >>,求证:22()()828a b a b a b ab a b-+-<-< 证明:因为0a b >> 所以22()()828a b a b a b ab a b-+-<< ⇔222()()()44a b a b a b a b--<< ⇔|22a b a b<< ⇔2a b a b a b<< ⇔121b a a b < ⇔1b a a b<又由已知0a b >>1b a a b<<成立. 由于以上分析步步等价,因此步步可逆.故结论成立.解题评注:(1)以上解答采用恒等变形,其实质从上往下属于分析法,反之属于综合法.(2)1b a a b<,(0a b >>)是结论成立的充要条件,当然找到了结论成立的充分条件就可以了.例4.求证抛物线22(0)y px p =>,以过焦点的弦为直径的圆必与2p x =-相切. 证明:(如图)作AA /、BB /垂直准线,取AB 的中点M ,作MM /垂直准线. 要证明以AB 为直径的圆与准线相切只需证|MM /|=12|AB | 由抛物线的定义:|AA /|=|AF |,|BB /|=|BF |所以|AB |=|AA /|+|BB /|因此只需证|MM /|=12(|AA /|+|BB /|) 根据梯形的中位线定理可知上式是成立的. 所以以过焦点的弦为直径的圆必与2p x =-相切. 以上解法同学们不难以综合法作出解答.解题评注:分析法是从结论出发寻找证题思路的一种重要的思维方法,特别是题设和结论相结合,即综合法与分析法相结合,可使很多较为复杂的问题得到解决.3.数学归纳法一般地,证明一个与正整数n有关的命题的步骤如下:(1)(归纳奠基)证明当n取第一个值n0时命题成立;(2)(归纳递推)假设n=k (0(,)k n k n ≥∈*时命题成立,证明当1n k =+ 时命题也成立。
2.1.合情推理-人教B版选修2-2教案

2.1.合情推理-人教B版选修2-2教案教学目标1.了解合情推理的概念和基本方法;2.掌握用合情推理的方法解决问题的技巧;3.培养学生合情推理的能力,提高其思维能力。
教学重难点1.合情推理的概念及基本方法;2.合情推理在实际问题中的应用。
教学内容1. 合情推理的概念及基本方法合情推理是根据人们在实际生活中的判断和推理过程,利用合理的假设、合情的情感、常识和经验来进行推理的一种方法。
具体方法为:先根据具体情况,简要总结出一些规律和特点;再从这个规律和特点中开展推理。
主要应用于解决实际生活问题和诸如“选择题”及“判断题”等考试中。
2. 合情推理在实际问题中的应用合情推理最为常见的应用是在日常生活中解决实际问题。
例如,如果发现夜间街上的烟囱吐出的烟雾比白天多,可以推测是否有某家工厂晚上在生产。
在考试中,合情推理也是常见的题型。
例如,“晴天放暑热,雨天放凉爽”这句话出现在某个广告语中,推断这则广告出现的季节和天气状况等。
教学方法1.讲授法:通过举例讲解和讲解实际问题,使学生更好地理解合情推理的基本概念和方法;2.合作探究法:以小组的形式进行问题讨论,让学生们发挥出团队合作的精神,并体验合情推理的实际应用过程;3.诊断性评估法:通过在实际生活场景中提供问题,让学生展示其所学的合情推理知识及技能。
教学过程安排1. 导入环节首先,教师可以找一些具体的实例讲解,例如汽车行驶前后的噪音变化或是交通堵塞的原因。
引导学生从实例中发掘规律以及寻找可能的与这些规律相对应的假设。
然后,教师可以让学生从实例中推测规律和特点,学会进行合情推理。
让学生了解到合情推理的具体思考过程。
2. 学习环节教师在讲授时,可以引导学生总结合情推理的基本方法,并对一些常见的合情推理问题进行讲解和解答。
例如温度变化、传统节日等。
3. 练习环节让学生在小组内进行讨论。
提出一些具有实际应用意义的问题,让学生搜集信息、分析问题,在解答问题时运用所学的合情推理知识。
(完整word版)人教版高中数学选修2-2教学案2.1合情推理与演绎推理(教师版)

合情推理与演绎推理1推理根据一个或几个已知的判断来确定一个新的判断,这种思维方式叫做推理•推理一般分为合情推理与演绎推理两类•2•合情推理3•演绎推理(1) 定义:从一般性的原理岀发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理:(2) 特点:演绎推理是由一般到特殊的推理:(3) 模式:三段论•“三段论”是演绎推理的一般模式,包括:1例1设f(x)= 屛书,先分别求f(0) + f(1), f(—1) + f(2), f(-2)+ f(3),然后归纳猜想一般性结论, 并给出证明•思维启迪解题的关键是由f(x)计算各式,利用归纳推理得出结论并证明•1 * 1 1+ .3 3+ ;3同理可得:f( — 1) + f(2)=f,f(— 2) + f(3) = £,并注意到在这三个特殊式子中,自变量之和均等于 归纳猜想得:当X 1 + X 2= 1时,均为f(X 1)+ f(X 2) =3* 3 4.1.证明:设X 1+ X 2= 1 ,T f(X 1)+ f(X 2) = 1 1------------ + --------------- X 1. X23+ 3 3+ '3X 1X 23 + ,3 + 3+ 3X1X23+ 3 + 2 . 3X 1X 23+ ,'3 3+ '3X13X 2为 X 23 3 + 3 + 3X 1X 23+ 3 + 2 3X 1X 23+ 3 + 2 3;3 3X1 + 3X2f(0)+ f(1)=_1_ 31 + ■:..n n + 2*⑵f(2n )> 厂(n >2, n € N)解析 (1)由于 1 = 12,2+ 3 + 4= 9= 323+ 4 + 5 + 6+ 7 = 25= 524+ 5+ 6 + 7+ 8+ 9 + 10= 49= 72,所 以第五个等式为 5+ 6 + 7 + 8+ 9+ 10+ 11+ 12+ 13= 92= 81. ⑵由题意得 f(22)>|, f(23)>|, f(24)>|, f(25)>2, n + 2所以当n 》2时,有f(2n )> — n + 2故填 f(2n )> —(n >2, n € N *).题型二类比推理差数列{a n }的上述结论,对于等比数列 {b n }( b n >0, n € N *),若b m = c , b n = d(n — m 》2, m , n € N *), 则可以得到b m + n =.思维启迪 等差数列{a n }和等比数列{b n }类比时,等差数列的公差对应等比数列的公比, 等差数列的加减法运算对应等比数列的乘除法运算,等差数列的乘除法运算对应等比数列中的乘方开方运解析 设数列{ a n }的公差为d ,数列{b n }的公比为q.nb — ma因为 a n = a 1 + (n — 1)d , b n = b 1q n — 1, a m + n =n — mn —所以类比得b m + n =思维升华(1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.(2) 类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数 的运算与向量的运算类比;圆锥曲线间的类比等(3) 在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找例2已知数列{a n }为等差数列,若 a m = a , a n = b(n — m 》1, m ,* nb — ma _n * N),则am + n=二—7 .类比等两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等跟氐训练2 (1)给出下列三个类比结论:①(ab)n= a n b n与(a+ b)n类比,则有(a+ b)n= a n+ b n;②log a(xy)= log a x+ log a y 与sin( a+ ® 类比,则有sin( a+ 3 = sin a sin 3;③(a+ b)2= a2+ 2ab+ b2与(a+ b)2类比,则有(a + b)2= a2+ 2a b+ b2.其中结论正确的个数是()A. OB.1C.2D.3(2)把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r = 叮"(其中a, b为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a, b, c且两两垂直的三棱锥的外接球半径R= _________ .a2+ b2+ c2答案(1)B ⑵亠解析⑴①②错误,③正确•(2)由平面类比到空间,把矩形类比为长方体,从而得出外接球半径题型三演绎推理例 3 已知函数f(x) = - aX^a a(a>0,且1).(1) 证明:函数y= f(x)的图象关于点g, - 1)对称;(2) 求f( —2)+ f( —1) + f(0) + f(1) + f(2) + f(3)的值.思维启迪证明本题依据的大前提是中心对称的定义,函数y= f(x)的图象上的任一点关于对称中心的对称点仍在图象上•小前提是f(x) = —^a(a>0且1)的图象关于点&, —2)对称.(1) 证明函数f(x)的定义域为全体实数,任取一点(x, y),1 1 它关于点(2,—刁对称的点的坐标为(1 —x,—1 —y).由已知得y=—-—,则一1 —y=— 1 + -4 = ——a x+诵a x W a a x+V af(1 —)__ v a =_ v a =_ v a a x=_ a xa1-x+诵-0- +百a+T^a X a x^/a,a v••• — 1 —y= f(1 —x),即函数y= f(x)的图象关于点(1,—》对称.(2) 解由(1)知一1 —f(x)= f(1 —x),即f(x) + f(1 —x) = —1.••• f(—2)+ f(3) = - 1 , f( —1) + f(2) = - 1 , f(0) + f(1) = - 1.则f(- 2) + f(- 1) + f(0) + f(1) + f(2) + f(3) = - 3.思维升华演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提•跟腺训练3已知函数y= f(x),满足:对任意a, b€ R, a工b,都有af(a) + bf(b)>af(b)+ bf(a),试证明:f(x)为R上的单调增函数.证明设X1, X2€ R,取X1<X2,则由题意得X1f(X1)+ X2f(X2)>X1f(X2) + X2f(X1),•- X1[f(X1) - f(X2)] + X2[f(X2)- f(X1)]>0 ,[f(X2) —f(X1)](X2 —X1)>0 ,T X1<X2, •. f(X2) —f(X1)>0 , f(X2)>f(X1 ).所以y= f(x)为R上的单调增函数.高考中的合情推理问题典例:(1)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个n n +1 1 1三角形数为一2 =尹2+ 2n,记第n个k边形数为N(n, k)(k> 3),以下列出了部分k边形数中第n个数的表达式:1 1三角形数N( n,3) = ?n2+尹,正方形数N( n,4) = n2,3 1五边形数N(n ,5) = ?n2-刃,六边形数N(n,6) = 2n2- n可以推测N(n, k)的表达式,由此计算N(10,24) = ____________ .思维启迪从已知的部分k边形数观察一般规律写出N(n, k),然后求N(10,24).k—2 4—k 解析由N(n,4)= n2, N(n,6) = 2n2-n,可以推测:当k为偶数时,N(n, k)=一^n2+一^n,24 —2 4 —24• N(10,24) = X 100 + X 10=1 100- 100= 1 000.答案 1 0002 2(2)(5分)若P o(x o, y o)在椭圆拿+ b2= 1(a>b>0)外,过P o作椭圆的两条切线的切点为P i, P2,则切点弦P1P2所在的直线方程是X0X+翠=1,那么对于双曲线则有如下命题:若P o(x o, y o)在双曲线£—b2= 1(a>0, b>0)外,过P o作双曲线的两条切线,切点为P i, P2,则切点弦P1P2所在直线的方程是思维启迪直接类比可得• 解析设P1(x1, y1), P2(x2, y2),则P1 , P2的切线方程分别是X1X y1y X2X y2y尹—b2 = 1,歹—b2 = 1.因为P o(x o, y o)在这两条切线上,故有警-章=1,a bX2x o y2y o苜—b2 = 1, 这说明P1(X1, y1), P2(X2, y2)在直线X"2X—yoy= 1 上,a b故切点弦P1P2所在的直线方程是X^—yb y= 1.答案xo x—y°y= 1a b⑶(5分)在计算“ 1X 2+ 2X 3+-+ n(n+1)”时,某同学学到了如下一种方法:先改写第k项:1k(k+ 1) = 3【k(k+ 1)(k+ 2)—(k —1)k(k+ 1)],由此得11 x 2= 3(1 x2 x 3—o x 1 x 2),12 x 3= 3(2 x3 x 4—1 x 2x 3),1n(n + 1)=破n(n + 1)(n + 2) —(n —1)n(n+ 1)].1相加,得 1 x 2+ 2x 3 + …+ n(n + 1) = §n(n+ 1) (n + 2).类比上述方法,请你计算“ 1 x 2x 3+ 2 x 3x 4+-+ n(n+ 1) (n + 2)”,其结果为_______________ .思维启迪根据两个数积的和规律猜想,可以利用前几个式子验证1解析类比已知条件得k(k+ 1)(k + 2) = yk(k+ 1)(k+ 2)(k+ 3) —(k—1)k(k+ 1)(k+ 2)],1 由此得1 x 2x 3= 4(1 x 2x 3x 4 —o x 1 x 2x 3),n(n + 1)(n + 2) = f[n(n + 1)(n + 2)(n + 3)- (n - 1)n(n + 1)(n + 2)]. 以上几个式子相加得: 1X 2X 3 + 2 X 3X 4+ - + n(n + 1)(n + 2)1=4"(n + 1)(n + 2)(n + 3). 答案 *n(n + 1)(n + 2)( n + 3)1•判断下面结论是否正确(请在括号中打“V”或“X”)(1) 归纳推理得到的结论不一定正确,类比推理得到的结论一定正确 ( X ) (2) 由平面三角形的性质推测空间四面体的性质,这是一种合情推理 ( V ) (3) 在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(X )(4) “所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的• ( V )2. 数列2,5,11,20,x,47,…中的x 等于 ()A.28B.32C.33D.27答案 B解析 5- 2= 3,11-5 = 6,20- 11 = 9, 推出 x - 20= 12,所以 x = 32. 3.观察下列各式:55=3 125,56= 15 625,57 = 78 125,…,则52 011的后四位数字为 ( )解析 55= 3 125,56= 15 625,57= 78 125,58= 390 625,59= 1 953 125,可得 59与 55 的后四位数字相同,…,由此可归纳出5叫4k 与5m (k € N *, m = 5,6,7,8)的后四位数字相同,又 2 011 = 4X 501 + 7,所以52 011与57后四位数字相同为 8125,故选D. 4.观察下列等式2 X 3X 4= 4(2X 3X 4X 5- 1 X 2X 3X 4), 3X 4X 5= X 4X 5X 6- 2X 3X 4X 5),A.3 125 答案 DB.5 625C.0 625D.8 1251 ⑸一个数列的前三项是 1,2,3,那么这个数列的通项公式是a n = n(n € N +).( X ) 数),则可以推测a = 35, b = 6. (V )12= 112-22=- 312— 22+ 32= 612— 22+ 32 — 42 = — 10照此规律,第n 个等式可为 _________ .答案 12— 22 + 32— 42+…+ (— 1)n +1n 2= (— 1)n +1 n n j 1解析 观察等式左边的式子,每次增加一项,故第 n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(一1)n + 1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },贝U a 2 — a 1= 2, a 3 — a 2= 3, a 4 — a 3= 4, a 5 — a 4= 5,…,a n — a nn n + 1—1= n ,各式相加得 a n — a 1 = 2+ 3 + 4 +…+ n ,即a n = 1 + 2 + 3+…+ n =2•所以第n 个等式5. 设等差数列{a n }的前n 项和为S n ,贝yS 4, S 8 — S 4, S 12—S 8, S 16 — S 12成等差数列.类比以上结论有设解析 对于等比数列,通过类比,有等比数列{b n }的前n 项积为T n ,贝U T 4 = a 1a 2a 3a 4, T 8 = a£2…a 8, T 12= a 1a 2…a 12,T 16= a£2 …a 16,因此T 4, Ti T 2,筈成等比数列基础巩固A 组专项基础训练(时间:40分钟)一、选择题12 — 22 + 32 — 42+ …+ (— 1)n +1 n 2= (— 1)n +1n n + 12等比数列{b n }的前n 项积为T n ,则T 4, ,芸成等比数列.答案 T 8 T 4 T 12 T? 因此 T 8T 4 =a 5a 6a 7a 8T 12 T 8 =a 9a 1o ana 12,T^兀=a 13a 14a 15a 16,而T 4 ,T 8 T 12 T 16T 4‘ T 8 , T 12的公比为q 16,1.观察下列各式:a+ b= 1, a2+ b2= 3, a3+ b3= 4, a4+ b4= 7, a5+ b5= 11,…,贝V a10+ b10等于解析观察规律,归纳推理•从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面 两个式子右端值的和,照此规律,则a 10+b 10= 123.2•定义一种运算“ * ” :对于自然数n 满足以下运算性质: (1)1*1=1 , (2) (n +1) *1= n*1+1,贝U n*1 等于 ( )A.nB.n +1C. n — 1D.n 2答案 A解析 由(n + 1)*1 = n*1 + 1,得 n*1 = (n — 1)*1 + 1 = (n — 2)*1 + 2=…=1*1+ (n — 1). 又•/ 1*1=1 ,••• n*1 = n 3. 下列推理是归纳推理的是( )A. A , B 为定点,动点 P 满足|PA|+ |PB|= 2a>|AB|,则P 点的轨迹为椭圆B. 由a 1= 1, a n = 3n — 1,求出S, S 2, S 3,猜想出数列的前 n 项和S n 的表达式C. 由圆x 2 + y 2= r 2的面积n 2,猜想出椭圆 冬+占=1的面积S = jaba b D. 科学家利用鱼的沉浮原理制造潜艇 答案 B解析 从S 1, S 2, S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以 B 是归纳推理,故 应选B.4. 已知△ ABC 中,/ A = 30° / B = 60° 求证:a<b. 证明:•••/ A = 30° / B = 60° , A< / B.• a<b ,其中,画线部分是演绎推理的 ( )A.大前提B.小前提C.结论D.三段论答案 B解析由三段论的组成可得画线部分为三段论的小前提A.28B.76 答案 CC.123D.199数列{C n }是等比数列,且{d n }也是等比数列,则 d n 的表达式应为()5.若数列{a n }是等差数列, 则数列{b n }( b n = a 1+ a 2+…+n也)也为等差数列.类比这一性质可知,若正项A.d n =C 1+ C 2+・・・+CB. d n =C 1 C 2 …C n二 f2(X )= f(x x + 2)=x + 2x + 2x 3x + 4n — 1 d d2 d = ^n + a 1 — 2,即{b n }为等差数列;若{C n }是等比数列,则C i C 2…C n = c i q 1 + 2+ + (n -°=岀二d n =守C 1 C 2…C n = C 1 q~^~,即{d n }为等比数列,故选 D. 二、填空题6.仔细观察下面O 和•的排列规律:o• oo • ooo • oooo • OOOOO •OOOOOO •……若依此规律继续下去,得到一系列的o 和•,那么在前120个o 和•中,•的个数是 ________ . 答案 14解析 进行分组O ・|OO ・ |OOO ・ |OOOO ・ |OOOOO ・ |OOOOOO ・|……,n n + 3则前n 组两种圈的总数是 f(n)= 2 + 3+ 4+ •+ (n + 1) = 2—,易知 f(14) = 119, f(15) = 135,故 n = 14.7.若函数 f(x)= ------- (x>0),且 f 1(x) = f(x)= ---- ,当 n € N *且 n > 2 时,f n (x)= f[f n - 1(x)],则 f 3(x) = ____x ~H 2 x ~H 2 猜想f n (x)(n € N *)的表达式为 _________ . XX7x + 82n — 1 x + 2nxT f 1(x)=, f n (x)= f[f n — 1(x)]( n > 2),x + 2C.d n = n n nnc i + C 2 +…+ c nD.d n =址1 C 2 …C n答案解析 若{a n }是等差数列,则a i + a 2+••• + a n = na i +n n — 1 2 d ,--b n = a i +答案解析在三棱锥A — BCD 中(如图所示),平面DEC 平分二面角A — CD — B 且与AB 相交于点E ,则类比 得到的结论是 _________解析 易知点E 到平面BCD 与平面ACD 的距离相等, 故 V E -BCD = BE = 0BCD 故 V E —ACD = EA = & ACD . 三、解答题9•已知等差数列{a n }的公差d = 2,首项a i = 5. (1) 求数列{a n }的前n 项和S n ;(2) 设 T n = n(2a n — 5),求 S 1, S 2, S 3, S 4, S; T 1, T 2, T a , T 4, T 5,并归纳出 3 与 T n 的大小规律故 f n (x)=2n— 1 x + 28•在平面几何中,△ ABC 的内角平分线CE 分AB 所成线段的比为AE ACEB = BC 把这个结论类比到空间:答案 BE = S ^ BCDEA S ^ ACD解(1)由于 a 1 = 5, d = 2,(2) T T n = n(2a n — 5) = n[2(2 n + 3) — 5] = 4n 2+ n. --T 1 = 5, T 2= 4 x 2?+ 2 = 18, T 3= 4x 32+ 3 = 39, T 4= 4X 42+ 4 = 68, T 5= 4X 52+ 5= 105. S 1= 5, S 2= 2 x (2 + 4) = 12, S 3= 3X (3 + 4)= 21, S 4= 4 x (4 + 4) = 32 , S 5= 5X (5 + 4) = 45. 由此可知S 1= T 1,当n > 2时,3<T n .归纳猜想:当n = 1时,S n = T n ;当n 》2, n € N 时,S n <T n .11110.在Rt △ ABC 中,AB 丄AC , AD 丄BC 于D ,求证:2= 2+ 2,那么在四面体 ABCD 中,类AD AB AC 比上述结论,你能得到怎样的猜想,并说明理由 解如图所示,由射影定理 AD 2= BD DC , AB 2= BD BC , AC 2= BC DC ,Si = 5n +n n — 12~x 2= n(n + 4).丄- 1AD 2=BD DCBC 2 _______ BC 2BD BC DC BC = AB 2 AC 2.B 组专项能力提升 (时间:30分钟)1•给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):① “若 a , b € R ,贝U a — b = 0? a = b ” 类比推出“若 a , b € C ,贝U a — b = 0? a = b ”; ② “若 a , b , c , d € R ,则复数 a + bi = c + di? a = c , b = d ” 类比推出“若 a , b , c , d € Q ,贝U a + b 眨=c + d '2? a = c , b = d ”;③ 若“ a , b € R ,贝U a — b>0? a>b ”类比推出“若 a , b € C ,贝U a — b>0? a>b ” .其中类比结论正 确的个数是 ( )A.0B.1C.2D.3答案 C解析 ①②正确,③错误•因为两个复数如果不全是实数,不能比较大小2•设 是R 的一个运算,A 是R 的非空子集 若对于任意a , b € A ,有a b € A ,则称A 对运算 封 闭下列数集对加法、减法、乘法和除法 (除数不等于零)四则运算都封闭的是( )又 BC 2= AB 2 + AC 2,1AB 2 + AC 2A^= AB 2 AC 21 1 A^+A^.猜想,四面体 ABCD 中,AB 、AC 、AD 两两垂直,AE 丄平面BCD ,1111则走=届+ A^+时证明:如图,连接 BE 并延长交CD 于F ,连接AF. •/ AB 丄 AC ,AB 丄 AD , ••• AB 丄平面ACD. ••• AB 丄 AF.在 Rt A ABF 中,AE 丄 BF , • 1 _ 1 丄 1 …AE 2= AB2+AF 2.1 1 1在Rt A ACD 中,AF 丄CD , •洁=応+荷, 1 _ 1 1A E 2= A?+ A?*1 A D ^-C.有理数集D.无理数集答案 C解析 A 错:因为自然数集对减法、除法不封闭;B 错:因为整数集对除法不封闭;C 对:因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法 运算都封闭;D 错:因为无理数集对加、减、乘、除法都不封闭 3•平面内有n 条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为答案n 2 + n + 22解析 1条直线将平面分成1 + 1个区域;2条直线最多可将平面分成 1 + (1 + 2) = 4个区域;3条直线最多可将平面分成1 + (1 + 2+ 3) = 7个区域;……,n 条直线最多可将平面分成1+ (1 + 2+ 3n n + 1 n 2+ n + 2+ …+ n) = 1 + 一2一 = 一2 ------ 个区域•n + 2 * 4•数列{a n }的前n 项和记为S n ,已知a 1= 1, a n +1= J$(n € N ).证明: (1) 数列{半}是等比数列; (2) S n + 1 = 4a n .、n + 2证明 ⑴-a n + 1 = S n + 1 — S n , a n + 1 = ~n~S n , ••• (n + 2)S n = n(S n +1 — S n ), 即 nS n +1= 2(n + 1)S n .故 =2总,(小前提)n +1 n故為是以2为公比,1为首项的等比数列• (结论)(大前提是等比数列的定义,这里省略了 )S n + 1 S n — 1 ⑵由(1)可知 =4厂 (n > 2),n + 1 n — 1S n — 1 n — 1 + 2••• S n +1 = 4(n + 1) • = 4 - S n — 1 = 4a n (n 》2).(小前提)n — 1 n — 1 又■/a 2= 3S 1= 3, S 2= a 1 + a 2= 1 + 3 = 4= 4a 1, •••对于任意正整数n ,都有S n +1 = 4a n . (除数不等于零)四则(小前提) (结论)第13页第22页的导数,若方程f " (x)= 0有实数解x o ,则称点(x o , f(x o ))为函数y = f(x)的"拐点”.某同学经过探 究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对 称中心.若f(x) = 3y 3 4 — 2x 5 + 3x — 12,请你根据这一发现,(1)求函数f(x)= 3x 3 — *x 2+ 3x —12的对称中心;1 2 3 4 2 012⑵计算 fq 013)+ f(2 013) + f(2 013) + f(2 013)+^+ f(2 013).解 (1)f ' (x) = x 2 — x + 3, f " (x)= 2x — 1,1 由 f " (x) = 0,即 2x —1= 0,解得 x = ^.3 2 010 _f(2 013)+ f(2 013) = 2,4 2 3 4 2 012所以 f(2 013) + f(2 2 0131111£)= 3 x (夕3 -孑 1 2(2)2+3第23页11 5 1 由题中给出的结论,可知函数 f(x) = §x 3 — qx 2+ 3x —12的对称中心为(㊁,1).11 51 ⑵由(1),知函数f(x) = §x 3— ^x2 + 3x —12的对称中心为(-,1),1 1所以 f(,+ x) + f (2 — x) = 2, 即 f(x) + f(1 — x)= 2. ,,1 2 012故 f(2 013)+ f(2 013)= 2, 2 2 011 _f(2 013)+ f(2 013) = 2,为 X 2 + 2X 3 .'3 3 + 3 + 2 .'3思维升华 (1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围•(2) 归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的(3) 归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用跟麻训练(1)观察下列等式1= 12+ 3+ 4= 93 + 4+ 5+ 6 + 7= 254 + 5+ 6+ 7+ 8 + 9+ 10 = 49.2 012上 f(2 013)+ f( 1 2 013) = 2.-X 2 X 2 012= 2 012.2照此规律,第五个等式应为___________________________ .11 1 5 7⑵已知f(n)= 1 + 2+ 3+…+N*),经计算得f(4)>2 ,f(8)>2,f(16)>3 , f(32)>?,则有答案(1)5 + 6+ 7+ 8 + 9 + 10+ 11+ 12+ 13= 81第24页。
人教B版高中数学选修2-2 第二章2.1.1合情推理-教案

2.1 合情推理与演绎推理2.1.1 合情推理【提出问题】在日常生活中,我们经常会自觉或不自觉的根据一个或几个已知事实或假设得出一个判断(为将来的行动作出预判)。
例如,当我们看到天空乌云密布,燕子低飞,蚂蚁搬家等现象时,会得出即将下雨的判断(出门带雨伞),这种思维方式就是推理。
从一个或几个已知命题得出另一个新命题的思维过程叫做推理.从结构上说,推理一般由两部分组成,一部分是已知事实(或假设)叫做前提;一部分是由已知推出的判断,叫做结论.例如:推理前提a>b,b>c_________________结论a>c中的“a>b,b>c”是前提,“a>c”是结论。
推理也可以看作是用连接词将前提和结论逻辑的连接,常用的连接词有:“因为……所以……”;“根据……可知……”;“如果……那么……”等.问题1:你能举出一个推理的例子吗?提示:气温从00以下逐渐升高,春天要来了。
推理一般分为合情推理与演绎推理。
【获得新知】考查以下事例中的推理:1856年,法国微生物学家巴斯德发现乳酸杆菌是使啤酒变酸的原因,接着通过对蚕病的研究,他发现细菌是引起蚕病的原因,据此,巴斯德推断:人身上的一些传染病也是由细菌引起的。
我国地质学家李四光发现,中国松辽地区和中亚西亚的地质结构类似,而中亚细亚有丰富的石油,由此,他推断松辽平原也蕴藏着丰富的石油。
从上述事例可以发现,其中的推理所得结论都是可能为真的判断,像这种前提为真时,结论可能为真的推理叫做合情推理。
归纳推理和类比推理是数学中常用的合情推理。
1.归纳推理在学习等比数列时,我们是这样推导首项为a1公比为q的等比数列{a n}的通项公式的:a1=a1q0a2=a1q1a3=a1q2……___________等比数列通项公式是a n=a1q n-1这种根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳)。
人教新课标版数学高二-人教B版选修2-2课时作业 合情推理

一、选择题1.如图2-1-5为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色()图2-1-5A.白色B.黑色C.白色可能性大D.黑色可能性大【解析】由图知,珠子三白二黑周而复始,相继排列,因为36÷5=7余1,所以第36颗珠子的颜色与第一颗珠子的颜色相同,即为白色,故选A.【答案】 A2.(2013·佛山高二检测)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为() A.76B.80C.86 D.92【解析】由题意知|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,则可归纳出等式右端值与不同整数解的个数成倍数关系,且解的个数为等式值的4倍,则|x|+|y|=20的不同整数解的个数为80.【答案】 B3.已知数列{a n}的前n项和S n=n2·a n(n≥2),且a1=1,通过计算a2,a3,a4,猜想a n等于()A.2(n+1)2B.2n(n+1)C.22n -1D.22n -1【解析】 由a 1=1,S 2=22·a 2=a 1+a 2得a 2=13,又a 1+a 2+a 3=9×a 3得a 3=16,且a 1+a 2+a 3+a 4=42·a 4得a 4=110…猜想a n =2n (n +1).【答案】 B4.(2013·杭州高二检测)已知集合A ={3m +2n |m >n 且m ,n ∈N },若将集合A 中的数按从小到大排成数列{a n },则有a 1=31+2×0=3,a 2=32+2×0=9,a 3=32+2×1=11,a 4=33=27,…,依次类推,将数列依次排成如图2-1-5所示的三角形数阵,则第六行第三个数为( )a 1 a 2 a 3 a 4 a 5 a 6… 图2-1-5A .247B .735C .733D .731【解析】 由条件可以看出,第s 行第t 个数是3s +2(t -1),所以第六行第三个数应为36+2×(3-1)=729+4=733.【答案】 C5.(2013·南昌高二检测)观察下列各式:55=3 125,56=15 625,57=78 125,…,则52011的末四位数字为( )A .3 125B .5 625C .0 625D .8 125【解析】 ∵55=3 125,56=15 625,57=78 125,58末四位数字为0 625,59末四位数字为3 125,510末四位数字为5 625,511末四位数字为8 125,512末四位数字为0 625,…,由上可得末四位数字周期为4,呈规律性交替出现,∴52011=54×501+7末四位数字为8 125.【答案】 D 二、填空题6.(2013·大同高二检测)已知2+23=2·23,3+38=3·38,4+415=4·415, (8)at=8·at(a,t均为正实数),类比以上等式,可推测a,t的值,则a+t=________. 【解析】由所给等式知,a=8,t=82-1=63,∴a+t=71.【答案】717.观察下列等式:31×2×12=1-122,31×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,……,由以上等式推测到一个一般的结论:对于n∈N+,31×2×12+42×3×122+…+n+2n(n+1)×12n=________.【解析】观察所给等式知,第n个等式的右边为1-1(n+1)×2n.【答案】1-1(n+1)×2n8.在Rt△ABC中,∠C=90°,AC=b,BC=a,则△ABC的外接圆半径为r=a2+b22,将此结论类比到空间,得到相类似的结论为:________.【解析】利用类比推理,可把Rt△ABC类比为三棱锥P-ABC,且PA,PB,PC两两垂直,当PA=a,PB=b,PC=c时,其外接球半径为R=a2+b2+c22.【答案】在三棱锥P-ABC中,PA,PB,PC两两垂直,PA=a,PB=b,PC=c,则三棱锥P-ABC的外接球的半径为R=a2+b2+c22三、解答题9.某少数民族的刺绣有着悠久的历史,如图2-1-6(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.图2-1-6(1)求出f(5);(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.【解】(1)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴f(5)=25+4×4=41.(2)∵f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,由上式规律得出f(n+1)-f(n)=4n.∴f(2)-f(1)=4×1,f(3)-f(2)=4×2,f(4)-f(3)=4×3,……f(n-1)-f(n-2)=4·(n-2),f(n)-f(n-1)=4·(n-1).∴f(n)-f(1)=4=2(n-1)·n,∴f(n)=2n2-2n+1.10.在平面几何中,研究正三角形内任意一点与三边的关系时,我们有真命题:边长为a的正三角形内任意一点到各边的距离之和是定值32a.类比上述命题,请你写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出简要的证明.【解】类比所得的真命题是:棱长为a的正四面体内任意一点到四个面的距离之和是定值63a.证明:设M是正四面体P-ABC内任一点,M到面ABC,面PAB,面PAC,面PBC的距离分别为d1,d2,d3,d4.由于正四面体四个面的面积相等,故有:V P-ABC=V M-ABC+V M-PAB+V M-PAC+V M-PBC=13·S△ABC·(d1+d2+d3+d4),而S△ABC=34a2,V P-ABC=212a3,故d1+d2+d3+d4=63a(定值).11.(1)下图(a),图(b),图(c),图(d),为四个平面图形.数一数,每个平面图形各有多少个顶点?多少条边?它们围成了多少个区域?请将结果填入下表中.(a)(b)(c)(d)顶点个数边的条数区域个数(a)(2)什么关系.(3)现已知某个平面图形有999个顶点,且围成了999个区域,试根据以上关系确定这个图有多少条边.【解】(1)各平面图形的顶点个数、边的条数、区域个数分别为:(a)3,3,2.(b)8,12,6.(c)6,9,5.(d)10,15,7.(2)观察:3+2-3=2.8+6-12=2.6+5-9=2.10+7-15=2.通过观察发现,它们的顶点个数V,边的条数E,区域个数F之间的关系为V+F-E=2.(3)由已知V=999,F=999,代入上述关系式得E=1 996,故这个图有1 996条边.。
211合情推理教案(人教B版选修2-2)

课题:2.1.1 合情推理
题进行检验。
S n 具有P(S 「S 2, ,S n 是A 类事物的对象)
例1用推理的形式从函数
值,
并验证其真假。
可见,归纳推理得出的结论不可靠还需要进一步作出判断。
因为归纳推理的基 础是对个别或部分对象的实验和观察,而缺乏对全体对象的考察,因而所得的结论 具有豁然性,只能称之为归纳猜想,其正确与错误是需要严格论证的。
例2用归纳推理的思想填空
这个数列的通项公式。
例 4、:设 f(n) n 2
n 41, n N ,计算 f(1), f(2), f (3) f(10)的值,同时作出归
纳推理,
并用n 40的值说明猜想的结论是否正确。
例5:在平面上有n 条直线,任何两条都不平行,并且任何三条都不交于同一点, 问:这些直线把平面分成多少部分? 有效训练:1、通过计算152
,25 2
,352
,452
,你能很快算出1995?吗?
x
2 、设 f (x)
------ ,试求 f[f(x)], f{ f[f(x)]}, f{ f{ f[f(x)]}}的解析式,并 V 1 x 2
数), (1) 设 x (2) 已知 请推测a ___________ ,b ________ 1 3
x
6艮(a,b 均为实 i b
例3、已知数列{a n }的第一项a 1 1,且a n 1
a n 1 a n
(n 1,2,3 ),试用归纳法归纳出
、对所提出的一般性命
所以,A 类事物具有P.
3、例题分析:
f(x) (x 1)(x 2) (x 1000) 8中归纳出 f(n)(n N *)的。
人教版数学高二B版选修2-2学案 推理与证明 章末总结

一.知识再现
1、归纳推理的定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳)
2.类比推理的定义:由两个(两类)对象之间在某些方面的相似或相同,推测出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.
A.0 B. C. D.
解法1:由于 , ,则 , , ,由此归纳出数列 是以3为周期的数列,则 ,选B.
解法2: ,令 ,则 ,
则 ,即 , ,
而 ,则 , ;
2.已知数列 满足 , ( ),则 的值为, 的值为.
【思路1】分别求出 、 、 、 ,可以发现 ,且 ,
故 .
【Hale Waihona Puke 路2】由 ,联想到两角和的正切公式,设 ,则有 , , , ,…….
6.反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立
7.数学归纳法:定义:设 是一个与正整数相关的命题集合,如果(1)证明起始命题 (或 )成立;(2)在假设 成立的前提下,推出 也成立, 对一切正整数都成立.
二.例题解析
1.已知数列 的第1项 ,且 ,则
3.绎推理的定义:根据一般性的真命题(或逻辑规则)导出特殊命题为真的推理叫演绎推理
4. 综合法:从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所求证的命题.综合法是一种由因所果的证明方法.
5.分析法:一般地,从要证明的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明的方法叫做分析法.分析法是一种执果索因的证明方法.
人教版B版高中数学选修2-2:合情推理_课件1(2)

虽然归纳推理所得到的结论未必是正确 的,但它所具有的由特殊到一般,由具体 到抽象的认识功能,对于数学的发现是十 分有用的。观察、实验、对有限的资料作 归纳整理,提出带有规律性的猜想,是数 学研究的基本方法之一。
归纳推理与演绎推理虽有上述区别,但 它们在人们的认识过程中是紧密的联系着 的,两者互相依赖、互为补充,比如说, 演绎推理的一般性知识的大前提必须借助 于归纳推理从具体的经验中概括出来,从 这个意义上我们可以说,没有归纳推理也 就没有演绎推理。当然,归纳推理也离不 开演绎推理。
比如,归纳活动的目的、任务和方向是归纳 过程本身所不能解决和提供的,这只有借助 于理论思维,依靠人们先前积累的一般性理 论知识的指导,而这本身就是一种演绎活动。 而且,单靠归纳推理是不能证明必然性的, 因此,在归纳推理的过程中,人们常常需要 应用演绎推理对某些归纳的前提或者结论加 以论证。从这个意义上我们也可以说,没有 演绎推理也就不可能有归纳推理。
(3)因为三角形的内角和是180°×(3- 2),四边形的内角和是180°×(4-2),五 边形的内角和是180°×(5-2),……,所 以n边形的内角和是180°×(n-2)。
从上述事例中可以发现,其中的推理得 到的结论都是可能为真的判断,像这种前 提为真时,结论可能为真的推理,叫做合 情推理。
在学习等差数列时,我们是这样推导首 项为a1,公差为d的等差数列{an}的通项公 式的:
a1=a1+0d; a2=a1+1×d; a3=a1+2×d; a4=a1+3×d; …………
等差数列{an}的通项公式是an=a1+(n-1)d.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1合情推理(归纳推理)
【教学目标】理解合情推理的概念,掌握归纳推理与类比推理的方法;通过本节的学习,掌握归纳法和类比法的步骤,体会逻辑推理的严谨性;体会数学在现实生活中的应用.
【教学重点】归纳推理的概念 【教学难点】利用归纳推理进行简单的推理
一、课前预习:(阅读教材53—54页,完成知识点填空)
1.根据______或______已知事实( )得出_____________,这种思维方式称为 。
推理都是由________和________两部分组成,推理可分为_________与______________
2.__________________________________的推理叫做合情推理。
3.______________和____________是数学中常见的合情推理.
4.根据一类事物的 具有某种性质,推出这类事物的____________都具有这种性质的推理,叫做归纳推理(简称_______).
5.归纳推理的一般步骤:1. ;
2. .
二、课上学习:
例1.蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇,鳄鱼,海龟,蜥蜴都是爬行动物,结论______________. 例2.参照教材54—55页两个例题,完成下列问题
(1)=+321 ;=++33321 ;=+++3334321 ;=++++333354321
猜想:=++++333...321n
(2)=+==+n n
n n n a a a a a a 猜测它的通项公式:并且中,数列,1111 (3)已知:2223sin 30sin 90sin 1502++=,2223sin 5sin 65sin 1252
++=。
观察上述两等式的规律,请你写出一般性的命题 .
三、课后练习:
教材55页探索与研究:归纳凸多面体的面数、顶点数、棱数之间的关系.。