国内外典型路面设计方法
长安大学道路与铁道工程(多年)考研真题及答案详解资料2

1995一、试述路基土的压实理论,压实标准和压实方法。
(路基路面第八章P213~217)答:路基压实原理:土是三相体,土粒为骨架,颗粒之间的孔隙为水分和气体所占,压实的目的是在于使土粒重新组合,彼此挤紧,空隙缩小,土的单位重量提高,形成密实整体,最终导致强度增加,稳定性提高。
现行规定的压实标准是压实度K。
正确选择压实度K关系到土路基受力状态、路基路面设计要求和施工条件。
当路基受力时,路基表层承受行车作用力最大,由顶部向下,受力急剧减小。
因此,路基填土的压实度,应是由下而上逐渐提高标准。
在季节性冰冻地区,为缓和冻胀和翻浆的产生,压实度应高些,重冰冻地区应高于轻冰冻地区;而在干旱地区,路基受潮湿程度较轻,压实度可低于潮湿地区。
填石路堤,包括分层填筑和倾填爆破石块的路堤,不能用土质路堤的压实度来判定路基密实度。
其判定方法目前国内外各国规范尚无统一。
路基土的压实时,压实机具的选择及合理的操作都将影响压实效果。
土基压实机具的类型较多,大致分为碾压式、夯击式和振动式三大类型。
正常条件下,对于沙性土的压实效果,振动式较好,夯击式次之,碾压式较差;对于粘性土,则宜选用碾压式或夯击式,振动式较差甚至无效。
土基压实时,在机具类型、土层厚度及行程遍数已经选定的条件小,压实操作时宜先轻后重、先慢后快、先边缘后中间(超高路堤等需要时,则宜先低后高)。
压实时,相邻两次的轮迹重叠轮宽的1/3,保持压实均匀,不漏压,对于压不到的边角,应辅以人力或小型机具夯实。
压实全过程重,经常检查含水量和密实度,以达到符合规定压实度的要求。
二、试述挡土墙的种类、构造和适用场合。
(路基路面第六章P107~108)答:(1)重力式挡土墙重力式挡土墙依靠墙身自重支撑土压力来维持其稳定。
一般多用片(块)石砌筑,在缺乏石料的地区有时也用混凝土修建。
重力式挡土墙圬工体积大,但其形式简单,施工方便,可就地取材,适应性较强,故被广泛应用。
(2)薄壁式挡土墙薄壁式挡土墙是钢筋混凝土结构,其主要型式有:悬臂式和扶壁式。
国内外水泥混凝土路面设计方法研究

国内外水泥混凝土路面设计方法研究期末结课论文论文题目:国内外水泥混凝土路方法对比研究2013年7月摘要: 综述国内外水泥混凝土路面设计方法。
通过与我国水泥混凝土路面设计方法的对比分析,指出了我国水泥混凝土路面设计中的主要问题和需要改进的关键技术。
关键词:水泥混凝土路面设计方法;存在的问题1 前言在欧美国家高速公路网中,水泥混凝土路面总量占50%左右,且绝大多数水泥混凝土路面使用现状达到了设计要求,而且一些国家的水泥混凝土路面表现出非常卓越的长期使用性能。
我国高等级公路中水泥混凝土路面所占比例并不高,高速公路和一级公路约占25%,二级以下公路所占比例约为40%,但很多水泥混凝土路面远未达到设计使用寿命期就出现了大面积的破损现象,严重影响了水泥混凝土路面在我国的声誉和使用前景。
归根结底国外水泥混凝土路面设计方法在某些方面比我国的设计方法有着较大的优势。
2国外水泥混凝土路面设计方法简介2.1美国AASHTO混凝土路面设计方法美国州公路与工作者协会在AASHTO实验路的基础上,以现时耐用性指数(PSI)作为衡量路面使用性能的指标,制定了AASHTO路面结构设计方法。
设计标准路面结构从开始使用到需要采取重大修复措施时所经历的时段,称为使用性能期。
水泥混凝土路面刚修好时的初始耐用性能指数PSI约为4.5左右,到达需采取重大修复措施时的终端耐用指数PSI1,可取≥2.5或3.0(主要公路)或2.0(轻交通公路)。
在使用性能期内路面耐用性能指数的总变化量:ΔPSI=PSI0-PSIt即作为路面设计标准。
所设计的路面结构必须能承受使用性能期内行车荷载的累积作用和环境因素的影响,使路面耐用性指标数的下降量ΔPSI不超过上述预定值。
设计参数(1)交通分析选用80KN的轴载作为标准轴载。
采用使用期内的标准轴载累积作用次数。
(2)可靠度水平依据设计道路类型,参照AASHTO标准选定路面的可靠度水平,并选定与可靠度水平相对应的可靠指标β。
重载交通下道路沥青路面的设计方法

重载交通下道路沥青路面的设计方法摘要:随着我区经济建设的快速发展,对交通需求日益增加,道路建设得到了迅猛发展,因而如何在重载条件下选择合适的路面结构层,是一个急需解决的问题。
本文针对重载交通作用特点,在沥青路面设计中就如何建立计算模型、如何合理地进行轴载计算以及如何调整设计控制指标等问题作了详细地阐述,在进行重载交通为主的路面设计时可供参考。
关键词:路面结构重载交通沥青路面引言:随着我区经济建设的快速发展,对交通需求日益增加,道路建设得到了迅猛发展,因而如何在重载条件下选择合适的路面结构层,是一个急需解决的问题。
本文针对重载交通作用特点,在沥青路面设计中就如何建立计算模型、如何合理地进行轴载计算以及如何调整设计控制指标等问题作了详细地阐述,在进行重载交通为主的路面设计时可供参考。
正文:一、目前我区的重载和车辆状况近几年来,随着我区经济建设的发展,城市基础设施建设迅猛发展,部分城市设立了工业园区。
为了适应国民经济的发展及客货运输日益增长的需要,城市道路交通量普遍较大,运输部门为不断提高运输效率,降低运输成本及能源消耗,采用了大吨位重型汽车及汽车列车。
另外,随着各城市工业园区的发展,相应扩大了重型汽车的使用范围,使各部门重型汽车数量相应增加。
目前,城市道路上超载超限运输车辆普遍存在,并有增长的趋势。
我区目前重型车辆制造技术方面同发达国家相比还存在着明显的差距,重型车辆的技术水平、数量和种类都不能满足当前经济发展的需要,特别是在车辆改造管理上不规范,一些地方出现的车辆改造失控的现象,对中型货车进行了重载化改造,因此重载交通在我区主要表现为超载。
目前我区道路交通中重载、超载车多,轮胎接地压强可达0.8~1.1MPa,最高达1.6MPa,相应接地面积也有一定增加。
目前我区多数城市主干路都处于“重载”状态。
从路面所受作用角度讲,重载可从以下4个方面来描述:①轴载作用次数多;②车轴载荷越来越重;③轮胎与路面接触应力显著增大,且空间分布更加不均匀;④动力效应明显增大。
路面施工方法

路面施工方法
路面施工是道路建设中至关重要的一环,其质量直接关系到道路的使用寿命和行车安全。
因此,选择合适的施工方法对于路面的质量至关重要。
下面将介绍几种常见的路面施工方法。
首先,我们来谈谈沥青混凝土路面的施工方法。
沥青混凝土路面是目前应用最为广泛的路面类型之一,其施工方法主要包括路面准备、基层处理、摊铺和压实等步骤。
在路面准备阶段,需要对路面进行清理和修补,确保路面平整无障碍物;基层处理包括底层和底基层的施工,需要注意底层的厚度和材料的选择;摊铺和压实是沥青混凝土路面施工的关键步骤,需要确保摊铺机的均匀摊铺和压实机的充分压实,以保证路面的平整和密实。
其次,水泥混凝土路面的施工方法也是我们需要了解的。
水泥混凝土路面施工主要包括基层处理、模板安装、混凝土浇筑和养护等步骤。
在基层处理阶段,需要对路基进行夯实和平整处理;模板安装需要确保模板的平整和尺寸符合要求;混凝土浇筑需要注意浇筑速度和均匀性,以及振捣和养护工作。
除了沥青混凝土和水泥混凝土路面外,还有其他一些特殊路面
的施工方法,如透水混凝土路面、沥青砼路面等。
这些路面的施工
方法各有特点,需要根据实际情况进行选择和施工。
总的来说,路面施工方法的选择应综合考虑路面材料、交通流量、气候条件等因素,确保施工质量和使用寿命。
在施工过程中,
需要严格按照施工规范和要求进行操作,确保施工质量和施工安全。
希望以上介绍能对大家在路面施工中有所帮助。
常见沥青混合料设计方法的比较

各种沥青混合料设计方法的比较目前,国内外路面设计者对沥青混合料配合比设计方法的研究很多,纵观世界各国,现行用于沥青混合料配合比设计的方法主要有:马歇尔方法、维姆方法、Superpave方法、GTM方法以及贝雷法等,但其中又以马歇尔法运用得最为广泛。
我国《公路沥青路面施工技术规范》(JTG F40-2004)规定,沥青混合料配合比设计采用马歇尔方法;同时规定,当采用其他方法设计沥青混合料配合比时,应按规范规定进行马歇尔试验及各项配合比检验,并报告不同设计方法的试验结果。
不同混合料设计方法都有各自的特点,本文主要介绍几种主要设计方法的原理,并和马歇尔设计方法进行比较分析。
1 马歇尔设计方法原理与设计步骤1.1设计原理马歇尔法是由美国密西西比州公路局的Bruce Marshell提出,在第二次世界大战期间开始使用,后来美国陆军工程兵团对其进行了改进和完善。
马歇尔设计法的基本原理是体积设计法,即在分析研究沥青混合料性能时,以沥青结合料与集料成分的体积比例作为计算依据,最终要达到的主要指标也是体积指标,如空隙率VV、矿料间隙率VMA、沥青饱和度VFA等。
通过沥青混合料组成材料的不同体积比例的组合,经过沥青混合料的拌和、试件的击实成型,最后测定试件的体积参数,从而确定沥青混合料各组成材料的比例。
1.2设计步骤沥青混合料配合比马歇尔设计方法分为目标配合比设计、生产配合比设计、生产配合比验证三个阶段。
三个阶段的设计原理是一致的,即按照体积法进行设计。
其最完整的设计步骤是在目标配合比设计阶段,设计过程如下。
①原材料试验。
即所有组成材料的物理、化学、力学性能试验,以确定其是否满足使用要求,从而确定其是否合格。
②确定混合料的组成级配。
按照要求的级配与所提供的各级集料的筛分,选好各级集料的比例,使混合料矿料的级配满足要求。
③成型试件。
根据经验估算沥青的最佳用量,以估算的最佳沥青用量为中值,以0.5%为步长,分别成型5个不同油石比:(估算最佳沥青用量-1.0%)、(估算最佳沥青用量-0.5%)、估算最佳沥青用量、(估算最佳沥青用量+0.5%)、(估算最佳沥青用量+1.0%)试件。
浅谈国内外沥青路面设计方法详解

浅谈国内外沥青路面设计方法2016-12-19摘要:目前国内外众多沥青路面设计方法中,可以归纳为两类:一是建立在经验或试验的基础上进行的经验法;一是以力学分析为基础的力学经验法,此方法考虑了材料特性、交通条件及环境因素。
本文主要介绍国内外典型的设计方法,包括CBR法,AASHTO法,SHELL法,AI法和国内的设计方法,分别对比分析各设计方法的优缺点,并提出相应的改进意见。
关键词:沥青路面,设计方法,综述沥青路面是我国高等级公路普遍采用的路面型式,它是在半刚性基层、柔性基层上铺筑一定厚度的沥青混合料作为面层的路面结构。
沥青路面设计理论与方法经历了古典法、经验法和力学经验法的发展过程,目前各国多数以后面两种设计方法进行路面结构设计。
虽然有不同的设计理论和方法作指导,但是沥青路面在设计年限内已经破坏的道路屡见不鲜,这与道路建设的各个环节都有关系,为了更好的了解并借鉴前人的研究成果,并完善和改进国内的沥青路面设计方法,本文简要介绍以经验法为代表的CBR设计方法,AASHTO设计方法;以力学经验法为基础的SHEEL法,AI法及国内的设计方法。
1 CBR 设计方法CBR法以CBR值作为路基土和路面材料(主要是粒料)的性质指标。
通过对已损坏或使用良好的路面的调查和 CBR测定,建立起路基土CBR~轮载~路面结构层厚度(以粒料层总厚度表征)三者间的经验关系。
利用此关系曲线,可以按设计轮载和路基土CBR值确定所需的路面层总厚度。
路面各结构层次的厚度,按各层材料的CBR值进行当量厚度换算。
不同轮载的作用按等弯沉的原则换算为设计轮载的当量作用。
CBR法对世界各国影响最广泛的是,采用CBR试验方法和指标值表征路基土和路面材料(粒料)的力学性质。
CBR试验法是一种模拟野外路基土承载板试验的室内小型试验,它通过贯入试验测定路基土抵抗侧向位移的能力。
然而 ,它仅是一种经验性的指标。
即便Porter 本人也认为,CBR值并不是材料承载力的直接度量指标,它与弹性变形量的关系很小。
国外柔性路面设计方法简介

2)PSI的确定 ①路面不平整度SV(平均斜率方差)的测定: SV用平均斜率方差表示,(每隔1ft测一次)用每9in 长 度的高差y除以距离 (图9· 25)
2 ( s s ) SV n 1 PSR与 log(1 sv ) 关系。测定结果见图
(9· 1)
②车辙深度
2 1000 ft 用4ft直尺在轮迹带上测量,每20ft测两条轮迹的平均值(每 测40-50断面)
性 指 数
PSI
路面B
3 2
0 1 0
2
4
6
8
10 12 使用年限
14
16
18
20
PSI随作用次数W的增大而逐渐损失,整理W与PSI损失值的关系为:
CO Pt W ( t ) CO 1.5
上式中:CO-试验路测得的初始PSI平均值; Pt-行驶Wt次后测得的PSI值 ρ-路面从修建起行车至PSI为1.5时的次数 β-斜率
三、AI设计法 从1954至1969,AI每2年出版一次,共八个版本。 这前八版均为经验法。1977开始到1981年出版了 力学一经验法的第九版。91年又提出了第九版的 修正版。 路面模型:
三层连续体系—全厚式沥青路面
四层连续体系—双层沥青层下设粒料底基层。
荷载:双圆、垂直均布,标准轴80kN p=0.49MPa δ=11.5cm,圆心距3δ 控制指标:沥青层底εt和土基顶面εc 。设计程序:n层DAMA程序 设计流程:见图。
A1
[ r ] N 0.25
4.设计步骤 1)拟定土基,路材的模量及各层厚度,用BISAR程序验算εr,εzσr-2。
2h1 处的εr、εθ,取其大者。 若E1=1000MPa,应计算 h1 、 3 3 h1及 h 2 2)用[εz]代入BISAR程序,计算 ∵E2与h2有关,故应试算 3)用[εr]代入BISAR程序,计算h1及h2
浅析国内外水泥混凝土路面加铺沥青层设计方法

1.前言目前,各国加铺层的设计方法差异较大,原水泥混凝土路面上加铺沥青层的设计方法主要包括有力法/理论法、经验法和半理论半经验法设计法。
国外对旧水泥混凝土路面沥青加铺层结构的研究较早,并在大量试验路的基础上提出了相应的设计方法,通常应用经验法或半经验法确定厚度。
这些设计方法大多以现场试验及室内试验结果为依据,以试验路及对加铺层实际使用状况的调查检测为基础,结合本地区的具体条件确定参数,提出经验公式或设计曲线。
2.国内外水泥混凝土路面加铺沥青层设计方法(1)有效厚度法这一方法的基本思路是加铺层所需的厚度是新路面所需的厚度与旧路面有效厚度之差:h=h n-h e式中h为加铺层厚度,hn 为新路面厚度,he为旧路面有效厚度。
此处h n是指全厚式沥青路面的厚度,即直接铺筑在路基上的沥青层厚度,在已知土基计算回弹模量和荷载参数时,其值可通过路面结构程序计算得到。
(2)美国沥青协会(AI)的弯沉法美国沥青协会(AI)认为水泥混凝土路面接缝(或裂缝)处的弯沉差是引起沥青加铺层开裂的主要原因,因为轮载的施加速度远大于温度变化产生的面层板伸缩位移的速率。
因而,此方法以控制接缝或裂缝处的板边平均弯沉量和弯沉差为设计要求,其标准为:接缝(或裂缝)两侧的板边弯沉差(WL-W U)≤0.05m m;接缝(或裂缝)两侧的板边平均弯沉值(W L+W U)≤0.36m m;其中,W L和W U为受荷板和未受荷板的板边弯沉值,由80KN轴载和贝克曼梁测定。
表1ci的取值(3)美国陆军工程师部队(COE)的补足厚度缺额法COE采用与水泥混凝土加铺层设计相同的概念———补足厚度缺额,依据强化试验路的观测和分析结果,于20世纪50年代中期提出了旧水泥混凝土面层上加铺沥青层的经验厚度设计公式:h ov=A(Fh d-c b h ex)式中:ho v———所需加铺层设计厚度(cm);h d———按现有地基承载力和未来交通发展需求,按新建混凝土路面设计方法确定的单层混凝土面层所需的厚度(cm);h ex———旧混凝土面层厚度(cm);c b———旧面层板的状况系数,含有细微的初始裂缝时,c b=1;含有多条裂缝或角隅断裂时,cb=0.75;F———控制旧面层板在加铺后裂缝进一步发展程度的系数,随交通情况和路基强度变动于0.6~1.0;A———混凝土层厚与沥青层厚的当量转换系数,A=2.5;而美国联邦航空局(FAA)在1988年的设计手册中将系数由2.5提高到2.0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ w——标准轴次
❖ η——沥青粘滞度,取决于沥青的温度和沥青的特性(是温差T-T针入 度和针入度指数的函数),查上图。
❖ t——车轮通过时间,取t=0.02s
2020/11/6
19
0
1.1 SHELL设计方法
❖ 4、沥青层各分层的平均应力
❖ 0——轮胎压力 ❖ i——第i层上、下面垂直位移差
❖E1i ——第i层模量
2020/11/6
20
1.1 SHELL设计方法
❖ 4、车辙的计算
i
h1i 平均i
E1i
Cm
Cm ——动态影响修正系数
因RD发生在高温季节,以Sm代E
h1
Cmh1
平均
Sm
2020/11/6
H1——面层厚
总变形
RD h1 h2 o 21
2020/11/6
1.1 SHELL设计方法
设计步骤
4
1.1 SHELL设计方法
❖ 路面模型
▪ 把路面当作一种多层线形弹性体系,其中各层材料用弹 性模量E和泊松比μ表征。在基本设计方法中,路面结构 假定为层间接触连续的三层体系,下层为路基,中间层 为粒料或水泥稳定类基层和垫层,上层为沥青层,包括 表面层、结合层和下面层。
2020/11/6
5
1.1 SHELL设计方法
C>133mm,h1≤200mm,位于h1下半部分(E2/E1≥0.6) h1>200mm,位于h1上半部分
2020/11/6
9
1.1 SHELL设计方法
❖ 容许设计标准值
▪ 1. Z 2.810 2 N 0.25 (50℅保证率)
▪ 2. ——沥青层容许水平拉应变 r
▪ 3.水泥稳定类容许拉应力 r s 1 0.075 logN
2020/11/6
▪1
SHELL设计方法
▪2
AI设计方法
▪3
AASHTO设计方法
▪4
CBR设计方法
港口道路、堆场铺面设计方 法
▪5
▪6
英国港口及其他工业重型铺面设计方法
3
2020/11/6
2、刚性路面设计方法
1
AASHTO设计方法
2
PCA设计方法
3
日本设计方法
4 港口道路、堆场铺面设计方法
5
英国港口铺面设计方法
拟订沥青层厚度
▪1
▪2
计算沥青层的有效温度
选定材料组成,求出各层模量
▪3
▪4
计算沥青层底面的水平拉应变
计算路面的试验寿命和使用寿命
▪5
▪6
比较调整
22
1.1 SHELL设计方法
❖ 优点
❖ 在路面力学模型方面,虽然以弹性层状体系理论为基础,但考虑了 材料的非线性和粘弹性特性,在研究过程中曾以非线性层状体系理 论和粘弹性理论来进行对比分析,对理论在设计中的适用性又做了 大量验证工作,在理论上较为完善。
23
1.1 SHELL设计方法
❖ 缺点
❖ 车辙预估模型无法说明使用改性沥青对减少新建路面车辙的效果。 ❖ 轴载换算以等量的轮胎接触压力为基础,因此无法解释轴载不同,
构型不同而接触压力相同的情况下,路面产生的车辙量不同的现象。 ❖ 在求混合料的劲度时假定沥青劲度等于非弹性部分劲度,未考虑弹
2020/11/6
SHEL6L设路面模型
1.1 SHELL设计方法
两项主要设计标准
设计标准
两项次要设计标准
其他次要设计标准
1.路基表面垂直 压应变 2 .沥青层底面 的水平拉应变
2020/11/6
1.水泥稳定类基 层底面拉应力 (或应变) 2 .路表总变形
7
1.基层或底基层 无结合料材料最 小模量 2 .沥青层低温缩 裂
▪ 4.道路容许永久变形----车辙深度 ▪ 5.其它 粒料材料Emin
取决于路基模量和粒料基层厚度h2
2020/11/6
10
1.1 SHELL设计方法
荷载与交通 温度与湿度 材料特性
设计 参数
2020/11/6
11
1.1 SHELL设计方法
❖ 荷载
❖ 80KN 单轴重20KN 接地压力P=0.6MPa
13
1.1 SHELL设计方法
❖ 材料特性
①路基
E3 107 CBR N m2 10CBR MN m2
②松散材料 取决于厚度h2和下面路基模量E3
E2 k2E3
K2 0.2h20.45
h2以mm计,2<K2<4
计方法
❖ 材料特性
③整体材料
❖ 电算程序功能较为齐全,可计算多种层间接触条件下的任意点的应 力、应变和位移。又能考虑粒状材料的非线性。
❖ 在荷载图式方面,既有垂直荷载又考虑了汽车在刹车、转弯时的水 平力。
❖ 设计指标方面采用了六项标准,用于控制各种路面破坏现象。 ❖ 设计曲线使用方便,基本不再依赖实验室试验就可进行设计。
2020/11/6
实验室得到
应用到路上,加入Cm(动载修正系数)
2020/11/6
16
1.1 SHELL设计方法
2、轴载换算(车辙等效,基于原等效轴次的换算)
A——比例系数,随沥青混合料及沥青的劲度而变,查下图
2020/11/6
17
1.1 SHELL设计方法
2020/11/6
18
1.1 SHELL设计方法
❖ 3、沥青劲度中的粘滞度部分
E动 5109 101(0 N m2 )
❖ ④沥青混合料 劲度模量 →沥青含量,沥青劲度及混合料空隙
Sm
Sb
1+
2.5 n
( Cv 1 Cv
)n
2020/11/6
15
1.1 SHELL设计方法
❖ 车辙
❖ 1、影响因素
▪ 沥青层厚度 ▪ 沥青劲度中的粘滞度部分 ▪ 交通量 ▪ 沥青层平均压力
国内外典型路面设 计方法及规范比较
2008年9月
长安大学公路学院 王选仓教授
1
2020/11/6
LOGO
1、柔性路面设计方法
典型柔性路 面设计方法
理论法 SHELL 法
AI法 前苏联法 其他设计方法
2020/11/6
经验法 AASHTO法 CBR设计法
日本设计法 英国设计法
2
1、柔性路面设计方法
1.1 SHELL设计方法
❖ 路基表面垂直压应变
85%
z 2.1102 N 0.25
95%
z 1.8102 N 0.25
2020/11/6
8
1.1 SHELL设计方法
沥青层底面的水平拉应变
r C N 0.25
是否在层底,取决于C系数
C
h1
E2 E1
(mm)
C≤133mm, max r 出现在层底
σ=10.5cm d=21cm 速度50~60㎞/h 加荷时间 0.02s ❖ 轴载换算
F
2.4 108
Li 4
( Li )4 80
Li 拟换算轴载
2020/11/6
12
1.1 SHELL设计方法
❖ 温度 ❖ 建立平均温度(年加权平均气温)与沥青层温度的关系
❖ 湿度 ❖ 取最不利季节参数
2020/11/6