文科数学高考压轴题
2020-2021学年最新高考总复习数学(文)高考压轴卷及答案解析

2. y '
(sin x)'
cos x ,则 k
cos
1 ,即切线方程为 y
3 1 (x ) ,整理得 x 2 y
3 0.
32
22 3
3
故选 B.
3.
a
b
2( x
2)
6( x
1)
8x
10
0
,则
x
5
,又
a,b
不共线,所以
26
(x
1)(x
2)
0
,则
4
x
5
且
x
2
,所以实数
x
y2 a2
x2 b2
1(a 0,b 0) .渐进线方程 x 3y 0 变形为
y
1 x ,所以 3
a 1 ,即 b 3a ,即 c a2 b2 10a .所以 e c 10a 10 .故选 B.
b3
aa
6. 由三角形的边长全为 2,即底面三角形的高为 3 ,所以左视图的面积为 s 3 2 2 3 .故选 C.
xa xc
32
b x b 0 的解集为(
)
xa xc
A. (1,1)
B. (1, 1) (1 ,1) 23
C. (, 1) (1 ,1) 23
D. (, 1) (1 ,) 23
本卷包括必 考生都必须 二、(本大题
13. 已 知 函
14. 已知一 则循环体的
第Ⅱ卷 考题和选考题两部分.第 13 题~第 21 题为必考题,每个试题 做答.第 22 题~第 24 题为选考题,考生根据要求做答. 共 4 小题,每小题 5 分)
(m 2)(m 2) 3m(m 2) 0 ,得 m 2 或 1 ;④抛物线的标准方程为 x 2 2 1 y ,由准线方
2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。
全国卷Ⅲ2020届高三高考压轴卷数学试题(文科)(含解析)

又 a2 = 3 ,所以 an = a2qn−2 = 3 3n−2 = 3n−1
所以 bn = log3 an = log3 3n−1 = n − 1
所以T9 = b1 + b2 +
+ b9
=
9(b1 + b9 )
2
=
9(1−1+ 9 −1)
2
=
36
故选:A
9、【答案】D
【解析】由 f (x) = a ln x + bx2 可得: f (x) = a + 2bx , x
18.(12 分)
已知数列 an
满足
1 2a1 −
5
+
2 2a2 −
5
+
3 2a3 −
5
+
(1)求数列an 的通项公式;
+ n =n 2an − 5 3
(2)设数列
an
1 an+1
的前
n
项和为
Tn
,求
Tn
.
19 .(12 分) 将棱长为 2 的正方体 ABCD − A1B1C1D1 截去三棱锥 D1 − ACD 后得到如图所示几何体,
23.已知函数 f (x) = x − 2 . (1)解不等式: f (x) 4 − f (x +1) (2)若函数 g(x) = x − 3, (x 4) 与函数 y = m − f (x) − 2 f (x − 2) 的图象恒有公共点,求 实数 m 的取值范围.
5 / 16
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
标值进行统计分析,得到表格如表:
质量指标值
等级
频数
高考文科数学压轴题

1.已知关于x 的不等式)0(022≠>++a b x ax 的解集是},1|{R x ax x ∈-≠,且a>b,则ba b a -+22的最小值是A .22B .2C .2D .12.在△ABC 中,∠B=6π,,6||,33||==BC AB 设D 是AB 的中点,O 是△ABC 所在平面内一点,且023=++OC OB OA ,则||DO 的值是A .21B .1C .3D .2 3.设集合}1)(|),{(},4|),{(2+-==-==b x k y y x B x y y x A ,若对任意10≤≤k 都有φ≠B A ,则实数b 的取值范围是 A .]221,221[+- B .]221,3[+-C .]3,221[-D .]3,3[-4.设函数)()(x f x f '的导函数为,对任意)()(x f x f R x >'∈都有成立,则 A .)3(ln 2)2(ln 3f f > B .)3(ln 2)2(ln 3f f =C .)3(ln 2)2(ln 3f f <D .)3(ln 2)2(ln 3f f 与的大小不确定5.若函数32()|1|f x x a x a R =+-∈,则对于不同的实数a ,则函数()f x 的单调区间个数不可能是( )A.1个B. 2个C.3个D.5个6.八个一样的小球按顺序排成一排,涂上红、白两种颜色,5个涂红色,三个涂白色,求恰好有个三个的连续的小球涂红色,则涂法共有 ( )A 24种B 30种C 20种D 36种7.若不等式)(2222y x a xy x +≤+对于一切正数x 、y 恒成立,则实数a 的最小值为 ( )A 2 B212+ C 23D215+ 8.若25(21)x +=24100125a a x a x a x +++,则135a a a ++的值为( )(A) 121 (B)122 (C)124 (D)1209.如图,直角梯形ABCD 中,AD ⊥AB, AB//DC , AB=4,AD=DC=2,设点N 是DC 边的中点,点M 是梯形ABCD 内或边界上的一个动点,则AM AN ⋅的最大值是( )(A )4(B ) 6 (C ) 8 (D )1010.把已知正整数n 表示为若干个正整数(至少3个,且可以相等)之和的形式,若这几个正整数可以按一定顺序构成等差数列,则称这些数为n 的一个等差分拆.将这些正整数的不同排列视为相同的分拆.如:(1,4,7)与(7,4,1)为12的相同等差分拆.问正整数36的不同等差分拆的个数是( ).(A )20 (B )18 (C )19 (D )2111.双曲线12222=-by a x 的左右焦点为21,F F ,P 是双曲线上一点,满足||||211→→=F F PF ,直线PF 1与圆222a y x =+相切,则双曲线的离心率e 为 ( ) (A )3 (B )332 (C ) 35 (D )4512.集合}5,4,3,2,1,0{=S ,A 是S 的一个子集,当A x ∈时,若有且,1A x ∉-A ∉+1x ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的非空子集有( )个(A )16 (B )17 (C )18 (D )19 13.如图,直线l ⊥平面α,垂足为O ,正四面体ABCD 的棱长为4,C 在平面α内,B 是直线l 上的动点,则当O 到AD 的距离为最大时,正四面体在平面α上的射影面积为 ( ) A .422+ B .222+ C .4 D .43 14.已知函数(),()f x g x ''分别是二次函数()f x 和三次函数()g x 的导函数,它们在同一坐标系下的图象如图所示,设函数()()()h x f x g x =-,则( )A .(1)(0)(1)h h h <<-B .(1)(1)(0)h h h <-<C .(0)(1)(1)h h h <-<D .(0)(1)(1)h h h <<-15.数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意n N *∈,总有2,,n n n a S a 成等差数列。
2019-2020年高考压轴卷文科数学含解析

∴ f( a) +2a=f (b) +3b >f (b) +2b , 即 g( a)> g( b), ∵ g( x) =f ( x) +2x 为递增函数, ∴ a> b, 故选: A. 11. 【 KS5U答案】 30.
【 KS5U解析】落在 [80 ,100] 上的频率为 (0.005 0.025) 10 0.3 ,所以落在 [80 ,100] 上的 人数为 0.3 100 30 .
所以 V= Sh= ×6×4=8
故选 B
6. 【 KS5U答案】 A. 【 KS5U解析】解:模拟程序框图执行过程,如下; 开始,
输入 x:2014,
a=x=2014 ,
i=1 ,
b=
=
=﹣
,
b≠x? 是, i=1+1=2 ,
a=b=﹣
,
b=
=
;
b≠x? 是,
i=2+1=3 ,
a=b=
,
b=
=2014 ;
3. 【 KS5U答案】 A.
【 KS5U解析】当 / / 时,由 l 平面 得,l
,又直线 m ∥平面 ,所以 l m 。若 l m ,
则推不出 / / ,所以“ / / ”是“ l m ”的充分不必要条件,选 A.
4. 【 KS5U答案】 A
【 KS5U解析】当 / / 时,由 l 平面 得,l
【 KS5U解析】解:∵
是公差为 1 的等差数列,
∴
,
∴
,
∴
∴数列 {lga n} 的前 9 项和为: S9=( lg2﹣ lg1 ) +( lg3﹣ lg2 ) +…+( lg10 ﹣lg9 ) =lg10=1 . 故答案为: 1. 14. 【 KS5U答案】(﹣ ∞,﹣ 5] . 【 KS5U解析】 解:∵当 x≥0 时, f( x) =x 2, ∴此时函数 f( x)单调递增, ∵ f( x)是定义在 R 上的奇函数, ∴函数 f ( x)在 R 上单调递增, 若对任意 x∈[a, a+2],不等式 f( x+a) ≥f(3x+1 )恒成立,
天津市202X年高考压轴卷数学(文)试题(含解析)

202X 天津市高考压轴卷文科数学一、选择题(每小题5分,共40分)1.若复数iia 213++(a ∈R,i 是虚数单位)是纯虚数,则a 的值为 ( ) A.6B.-6C.23 D. 23- 2.命题“若4πα=,则tan 1α=”的逆否命题是( ) A .若4πα≠,则tan 1α≠ B . 若4πα=,则tan 1α≠C .若tan 1α≠,则4πα≠ D . 若tan 1α≠,则4πα=3.将)63cos(2π+=xy 图像按向量)2,4(--=πa 平移,则平移后所得函数的周期及图象的一个对称中心分别为( )A.π3 ,⎪⎭⎫⎝⎛-2,4π B. π6 ,⎪⎭⎫ ⎝⎛2,43π C. π6 ,⎪⎭⎫⎝⎛-2,43π D. π3 ,⎪⎭⎫⎝⎛2,4π 4.某三棱锥的三视图如图所示,该三棱锥的表面积是( ) A .2865+ B .3065+ C .56125+ D . 60125+5.设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .4π B . 22π- C . 6π D . 44π-6.如右图的流程图,若输出的结果132=s ,则判断框中应填 A .?10≥i B .?11≥i C .?11≤iD .?12≥i7.直线12+=x y 的参数方程是( )A ⎩⎨⎧+==1222t y t x (t 为参数) B ⎩⎨⎧+=-=1412t y t x (t 为参数)C ⎩⎨⎧-=-=121t y t x (t 为参数) D ⎩⎨⎧+==1sin 2sin θθy x (θ为参数) 8.已知双曲线2221(0)x y a a-=>,过点C (0,1)且斜率为1的直线交双曲线的两渐近线于A 、B 两点,若2AC CB =,则双曲线的离心率为A52510310二、填空题:本大题共6小题,每小题5分,共30分.9.如果不等式组0210x y x kx y ≥⎧⎪≥⎨⎪-+≥⎩表示的平面区域是一个直角三角形,则k =_______________.10.由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为__________。
高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
高考数学高三模拟试卷试题压轴押题中学文科数学高考冲刺试题5

高考数学高三模拟试卷试题压轴押题中学文科数学高考冲刺试题选择题1.“x <1”是“log2(x+1)<1”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 2.设352log 2,log 2,log 3a b c ===,则A.a c b >>B. b c a >>C. c b a >>D. c a b >> 3.设n S 为等比数列{}n a 的前n 项和,若2380a a +=,则12S S 的值为( ) A.3 B .3 C .5 D .1/7 4.1tan 751tan 75+-等于( )A .3B .3-C .3 D .3- 5.已知平面向量(1,2)=a ,(2,)y =b ,且//a b ,则2+a b =( ) A .(5,6)-B .(3,6)C .(5,4)D .(5,10)6.在平面区域002x y x y ⎧≥⎪≥⎨⎪+≤⎩内随机取一点,则所取的点恰好落在圆221x y +=内的概率是( ) A .2π B .4π C .8πD .16π7.下面图形中,属正方体表面展开图的是( )8.若直线1l :280ax y +-=与直线2l :(1)40x a y +++=平行,则实数a 的值为( ) A. 1 B. 1 或 2 C. 2- D. 1 或 2-9.已知函数的导函数的图象如图所示,那么函数的图象最有可能的是( )A B C D10.四个小动物换座位,开始是鼠、猴、兔、猫分别坐1、2、3、4号位上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,这样交替进行下去,那么第202次互换座位后,小兔坐在第号座位上A.1B.2C.3D.4 填空题 11.命题p :“”的否定是_________.12.已知y =f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)=_____ 13.已知正数,a b 满足2a b ab +=,则2a b +的最小值为_____ 选做题14.在极坐标系中,直线(sin cos )2ρθθ-=被圆4sin ρθ=截得的弦长为▲ 15.如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M .若3OC =,1OM =,则MN 的长为___________.OM N解答题16.(本题满分12分)已知函数(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间上的最大值和最小值.17.(12分)某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为“成绩优秀”.(1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;(2)由以上统计数据填写下面2x2列联表,并判断是否有90%的把握认为“成绩优秀”与教学方式有关.附:K2=甲班(A方式)乙班(B方式)总计成绩优秀成绩不优秀总计P(K2≥k)0.250.150.100.050.025 k 1.323 2.072 2.706 3.841 5.02418.(本小题满分14分)如图,AB 是圆O 的直径,点C 在圆O 上,矩形DCBE 所在的平面垂直于圆O 所在的平面,4=AB ,1=BE .(1)证明:平面⊥ADE 平面ACD ;(2)当三棱锥ADE C -的体积最大时,求点C 到平面ADE 的距离.19.(本题满分14分)已知椭圆的左焦点F1(-1,0),长轴长与短轴长的比是23(1)求椭圆的方程;(2)过F1作两直线m,n交椭圆于A,B,C,D四点,若m⊥n,求证:为定值.20.(本小题满分14分)已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,n *∈N ).()1求证:数列{}n a 为等差数列,并求{}n a 的通项公式; ()2设2n n n b a =⋅,求数列{}n b 的前n 项和n T ; ()3设()1C 412n n a n n λ-=+-⋅(λ为非零整数,n *∈N ),是否存在确定λ的值,使得对任意n *∈N ,有1C C n n +>恒成立?若存在,求出λ的值;若不存在,说明理由.21.(本题满分14分) 已知函数f(x)=ln x +kex (k 为常数,e =2.718 28…是自然对数的底数),曲线y =f(x)在点(1,f(1))处的切线与x 轴平行. (1)求k 的值;(2)求f(x)的单调区间;(3)设g(x)=(x2+x)/()f x ,其中f ′(x)为f(x)的导函数, 证明:对任意x>0,g(x)<1+e2.参考答案1.B2.D3.D4.B5.D6.B7.A8.A9.A 10.B 11.2,10x R x ∀∈+≥12.1 13.914.4 15.1 16.17. 解:(1)设“抽出的两个均“成绩优秀”“为事件A .从不低于86分的成绩中随机抽取2个的基本事件为(86,93),(86,96),(86,97),(86,99)(86,99),(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共15个,(4分)而事件A 包含基本事件:(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共10个. (6分) 所以所求概率为P (A )== (7分)(2)由已知数据得: 甲班(A 方式) 乙班(B 方式) 总计 成绩优秀 1 5 6 成绩不优秀 19 15 34 总计202040(9分)根据2×2列联表中数据,K2=≈3.137>2.706所以有90%的把握认为“成绩优秀”与教学方式有关. (12分) 18.(1)证明:∵AB 是直径,∴AC BC ⊥…………………1分, 又四边形DCBE 为矩形,DE CD ⊥,DE BC //,∴AC DE ⊥ ∵C AC CD = ,∴⊥DE 平面ACD …………4分又⊂DE 平面ADE ,∴平面⊥ADE 平面ACD ………………6分 (2)由⑴知DE S V V ACD ACD E ADE C ⨯⨯==∆--31DE CD AC ⨯⨯⨯⨯=2131 BC AC ⨯⨯=6134121)(121222=⨯=+⨯≤AB BC AC , ………………………8分, 当且仅当22==BC AC 时等号成立 ……………………9分, ∴当22==BC AC 三棱锥ADE C -体积最大为34……………………10分, 此时,3)22(122=+=AD ,2321=⨯⨯=∆DE AD S ADE 设点C 到平面ADE 的距离为h ,则3431=⨯⨯=∆-h S V ADE ADE C 322=h ………………………14分 19.20.(1)证明:由已知,*11()()1(2,)n n n n S S S S n n N +----=≥∈, 即11n n a a +-=(n≥2,n ∈N*),且211a a -=.…………………1分 ∴数列{}n a 是以12a =为首项,公差为1的等差数列, ∴1n a n =+. …………………3分(2)解:由(1)知2(1)n n b n =⋅+, …………………4分 设它的前n 项和为n T ∴123123412232422(1)2,22232422(1)2,n n n nn n T n n T n n -+=⨯+⨯+⨯++⨯++⨯=⨯+⨯+⨯++⨯++⨯两式相减可得:123111222222(1)22n n n n n T n n -++-=⨯+++++-+⨯=-⋅所以12n n T n +=⋅…………………7分(3)解:∵1n a n =+,∴114(1)2n n n n C λ-+=+-⋅⋅, …………………8分要使1n n C C +>恒成立,则1211144(1)2(1)20n n n n n n n n C C λλ++-++-=-+-⋅⋅--⋅⋅>恒成立 ∴11343(1)20nn n λ-+⋅-⋅-⋅>恒成立,∴11(1)2n n λ---⋅<恒成立. …………………10分(ⅰ)当n 为奇数时,即λ<12n -恒成立,当且仅当n=1时,12n -有最小值为1,∴λ<1.…………………11分 (ⅱ)当n 为偶数时,即λ>﹣12n -恒成立, 当且仅当n=2时,﹣12n -有最大值﹣2,∴λ>﹣2.即﹣2<λ<1,又λ为非零整数,则λ=﹣1.…………………12分 综上所述,存在λ=﹣1,使得对任意n ∈N*,都有1n n C C +>.…………………14分21.(1)解 由得: x ∈(0,+∞).由于曲线y =f(x)在(1,f(1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.………(3分)(2)解 由(1)得f ′(x)=1x xe(1-x -xln x),x ∈(0,+∞).令h(x)=1-x -xln x ,x ∈(0,+∞),当x ∈(0,1)时,h(x)>0;当x ∈(1,+∞)时,h(x)<0.又ex>0,所以当x ∈(0,1)时,f ′(x)>0;当x ∈(1,+∞)时,f ′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).……(7分)(3)证明 因为g(x)=(x2+x) /()f x ,所以g(x)=1x x e+ (1-x -xln x),x ∈(0,+∞).因此,对任意x>0,g(x)<1+e -2等价于1-x -xln x<1xe x + (1+e -2).由(2)知h(x)=1-x -xln x ,x ∈(0,+∞),所以h ′(x)=-ln x -2=-(ln x -ln e -2),x ∈(0,+∞).因此,当x ∈(0,e -2)时,h ′(x)>0,h(x)单调递增;当x ∈(e -2,+∞)时,h ′(x)<0,h(x)单调递减.所以h(x)的最大值为h(e -2)=1+e -2.故1-x -xln x ≤1+e -2.……(10分) 设φ(x)=ex -(x +1).因为φ′(x)=ex -1=ex -e0,所以当x ∈(0,+∞)时,φ′(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故当x ∈(0,+∞)时,φ(x)=ex -(x +1)>0,即1x e x +>1.所以1-x -xln x ≤1+e -2<1xe x + (1+e -2).因此对任意x>0,g(x)<1+e -2.………………(14分)高考数学高三模拟试卷试题压轴押题重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<03.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,85.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.2406.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x ﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤99.(5分)4cos50°﹣tan40°=()A.B.C.D.2﹣110.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,] B.(,] C.(,] D.(,]二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)已知复数z=(i是虚数单位),则|z|=.12.(5分)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=.13.(5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为.15.(5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=.16.若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.18.(13分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).19.(13分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.20.(12分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;(2)设cosAcosB=,=,求tanα的值.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.22.(12分)对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<0【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可.【解答】解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选:D.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.【分析】令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,利用二次函数的性质求得函数f(a)的最大值,即可得到所求式子的最大值.【解答】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得当a=﹣时,函数f(a)取得最大值为,故(﹣6≤a≤3)的最大值为=,故选:B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.【点评】本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.240【分析】如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,据此即可计算出体积.【解答】解:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,由图知V==200.故选:C.【点评】由三视图正确恢复原几何体是解题的关键.6.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x ﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内【分析】由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,即可判断出.【解答】解:∵a<b<c,∴f(a)=(a﹣b)(a﹣c)>0,f(b)=(b﹣c)(b﹣a)<0,f(c)=(c﹣a)(c﹣b)>0,由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.故选:A.【点评】熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键.7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.【分析】求出圆C1关于x轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆C2的圆心距减去两个圆的半径和,即可求出|PM|+|PN|的最小值.【解答】解:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,由图象可知当P,M,N,三点共线时,|PM|+|PN|取得最小值,|PM|+|PN|的最小值为圆C3与圆C2的圆心距减去两个圆的半径和,即:|AC2|﹣3﹣1=﹣4=﹣4=5﹣4.故选:B.【点评】本题考查圆的对称圆的方程的求法,两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力.8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤9【分析】根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.【解答】解:根据程序框图,运行结果如下:S k第一次循环 log23 3第二次循环log23•log34 4第三次循环log23•log34•log45 5第四次循环log23•log34•log45•log56 6第五次循环log23•log34•log45•log56•log67 7第六次循环log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k≤7.故选:B.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题.9.(5分)4cos50°﹣tan40°=()A.B.C.D.2﹣1【分析】原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.【解答】解:4cos50°﹣tan40°=4sin40°﹣tan40°======.故选:C.【点评】此题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.10.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,] B.(,] C.(,] D.(,]【分析】建立坐标系,将向量条件用等式与不等式表示,利用向量模的计算公式,即可得到结论.【解答】解:根据条件知A,B1,P,B2构成一个矩形AB1PB2,以AB1,AB2所在直线为坐标轴建立直角坐标系,设|AB1|=a,|AB2|=b,点O的坐标为(x,y),则点P的坐标为(a,b),由=1,得,则∵||<,∴∴∴∵(x﹣a)2+y2=1,∴y2=1﹣(x﹣a)2≤1,∴y2≤1同理x2≤1∴x2+y2≤2②由①②知,∵||=,∴<||≤故选:D.【点评】本题考查向量知识的运用,考查学生转化问题的能力,考查学生的计算能力,属于难题.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)已知复数z=(i是虚数单位),则|z|=.【分析】通过复数的分子与分母同时求模即可得到结果.【解答】解:|z|===.故答案为:.【点评】本题考查复数的模的求法,考查计算能力.12.(5分)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=64.【分析】依题意,a1=1,=a1•(a1+4d),可解得d,从而利用等差数列的前n项和公式即可求得答案.【解答】解:∵{an}是等差数列,a1,a2,a5成等比数列,∴=a1•(a1+4d),又a1=1,∴d2﹣2d=0,公差d≠0,∴d=2.∴其前8项和S8=8a1+×d=8+56=64.故答案为:64.【点评】本题考查等差数列的前n项和,考查方程思想与运算能力,属于基础题.13.(5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是590(用数字作答).【分析】不同的组队方案:选5名医生组成一个医疗小组,要求其中骨科、脑外科和内科医生都至少有1人,方法共有6类,他们分别是:3名骨科、1名脑外科和1名内科医生;1名骨科、3名脑外科和1名内科医生,…,在每一类中都用分步计数原理解答.【解答】解:直接法:3名骨科、1名脑外科和1名内科医生,有C33C41C51=20种,1名骨科、3名脑外科和1名内科医生,有C31C43C51=60种,1名骨科、1名脑外科和3名内科医生,有C31C41C53=120种,2名骨科、2名脑外科和1名内科医生,有C32C42C51=90种,1名骨科、2名脑外科和2名内科医生,有C31C42C52=180种,2名骨科、1名脑外科和2名内科医生,有C32C41C52=120种,共计20+60+120+90+180+120=590种间接法:﹣﹣﹣+1=590故答案为:590.【点评】本题主要考查了排列、组合及简单计数问题,解答关键是利用直接法:先分类后分步.14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为5.【分析】利用直角△ABC的边角关系即可得出BC,利用弦切角定理可得∠BCD=∠A=60°.利用直角△BCD的边角关系即可得出CD,BD.再利用切割线定理可得CD2=DE•DB,即可得出DE.【解答】解:在△ABC中,∠C=90°,∠A=60°,AB=20,∴BC=AB•sin60°=.∵CD是此圆的切线,∴∠BCD=∠A=60°.在Rt△BCD中,CD=BC•cos60°=,BD=BC•sin60°=15.由切割线定理可得CD2=DE•DB,∴,解得DE=5.故答案为5.【点评】熟练掌握直角三角形的边角关系、弦切角定理、切割线定理是解题的关键.15.(5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=16.【分析】先将直线极坐标方程ρcosθ=4化成直角坐标方程,再代入曲线(t为参数)中得A,B两点的直角坐标,最后利用两点间的距离公式即可得出|AB|.【解答】解:将直线极坐标方程ρcosθ=4化成直角坐标方程为x=4,代入曲线(t为参数)中得A,B两点的直角坐标为(4,8),(4,﹣8),则|AB|=16.故答案为:16.【点评】本题考查参数方程、极坐标方程、直角坐标方程间的转化,两点间的距离公式,考查转化、计算能力.16.若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是(﹣∞,8].【分析】利用绝对值的意义求得|x﹣5|+|x+3|最小值为8,由此可得实数a的取值范围.【解答】解:由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].【点评】本题主要考查绝对值的意义,绝对值不等式的解法,求得|x﹣5|+|x+3|最小值为8,是解题的关键,属于中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.【分析】(1)先由所给函数的表达式,求导数fˊ(x),再根据导数的几何意义求出切线的斜率,最后由曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)列出方程求a的值即可;(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到原函数的单调区间,根据在各区间内的单调性求出极值点,把极值点的横坐标代入函数解析式求得函数的极值.【解答】解:(1)因f(x)=a(x﹣5)2+6lnx,故f′(x)=2a(x﹣5)+,(x>0),令x=1,得f(1)=16a,f′(1)=6﹣8a,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),由切线与y轴相交于点(0,6).∴6﹣16a=8a﹣6,∴a=.(2)由(I)得f(x)=(x﹣5)2+6lnx,(x>0),f′(x)=(x﹣5)+=,令f′(x)=0,得x=2或x=3,当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,故f(x)在x=2时取得极大值f(2)=+6ln2,在x=3时取得极小值f(3)=2+6ln3.【点评】本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性、函数的极值及其几何意义等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于中档题.18.(13分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).【分析】(1)从7个小球中取3的取法为,若取一个红球,则说明第一次取到一红2白,根据组合知识可求取球的种数,然后代入古典概率计算公式可求(2)先判断随机变量X的所有可能取值为200,50,10,0根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值【解答】解:(1)设Ai表示摸到i个红球,Bi表示摸到i个蓝球,则Ai与Bi相互独立(i=0,1,2,3)∴P(A1)==(2)X的所有可能取值为0,10,50,200P(X=200)=P(A3B1)=P(A3)P(B1)=P(X=50)=P(A3)P(B0)==P(X=10)=P(A2)P(B1)==P(X=0)=1﹣=∴X的分布列为x 0 10 50 200PEX==4元【点评】本题主要考查了古典概型及计算公式,互斥事件、离散型随机变量的分布列及期望值的求解,考查了运用概率知识解决实际问题的能力.19.(13分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.【分析】(I)连接BD交AC于点O,等腰三角形BCD中利用“三线合一”证出AC⊥BD,因此分别以OB、OC分别为x轴、y轴建立空间直角坐标系如图所示.结合题意算出A、B、C、D各点的坐标,设P(0,﹣3,z),根据F为PC边的中点且AF⊥PB,算出z=2,从而得到=(0,0,﹣2),可得PA的长为2;(II)由(I)的计算,得=(﹣,3,0),=(,3,0),=(0,2,).利用垂直向量数量积为零的方法建立方程组,解出=(3,,﹣2)和=(3,﹣,2)分别为平面FAD、平面FAB的法向量,利用空间向量的夹角公式算出、夹角的余弦,结合同角三角函数的平方关系即可算出二面角B﹣AF﹣D的正弦值..【解答】解:(I)如图,连接BD交AC于点O∵BC=CD,AC平分角BCD,∴AC⊥BD以O为坐标原点,OB、OC所在直线分别为x轴、y轴,建立空间直角坐标系O﹣xyz,则OC=CDcos=1,而AC=4,可得AO=AC﹣OC=3.又∵OD=CDsin=,∴可得A(0,﹣3,0),B(,0,0),C(0,1,0),D(﹣,0,0)由于PA⊥底面ABCD,可设P(0,﹣3,z)∵F为PC边的中点,∴F(0,﹣1,),由此可得=(0,2,),∵=(,3,﹣z),且AF⊥PB,∴•=6﹣=0,解之得z=2(舍负)因此,=(0,0,﹣2),可得PA的长为2;(II)由(I)知=(﹣,3,0),=(,3,0),=(0,2,),设平面FAD的法向量为=(x1,y1,z1),平面FAB的法向量为=(x2,y2,z2),∵•=0且•=0,∴,取y1=得=(3,,﹣2),同理,由•=0且•=0,解出=(3,﹣,2),∴向量、的夹角余弦值为cos<,>===因此,二面角B﹣AF﹣D的正弦值等于=【点评】本题在三棱锥中求线段PA的长度,并求平面与平面所成角的正弦值.着重考查了空间线面垂直的判定与性质,考查了利用空间向量研究平面与平面所成角等知识,属于中档题.20.(12分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;(2)设cosAcosB=,=,求tanα的值.【分析】(1)利用余弦定理表示出cosC,将已知等式变形后代入求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数;(2)已知第二个等式分子两项利用两角和与差的余弦函数公式化简,再利用同角三角函数间的基本关系弦化切,利用多项式乘多项式法则计算,由A+B的度数求出sin(A+B)的值,进而求出cos(A+B)的值,利用两角和与差的余弦函数公式化简cos(A+B),将cosAcosB的值代入求出sinAsinB的值,将各自的值代入得到tanα的方程,求出方程的解即可得到tanα的值.【解答】解:(1)∵a2+b2+ab=c2,即a2+b2﹣c2=﹣ab,∴由余弦定理得:cosC===﹣,又C为三角形的内角,则C=;(2)由题意==,∴(cosA﹣ta nαsinA)(cosB﹣tanαsinB)=,即tan2αsinAsinB﹣tanα(sinAcosB+cosAsinB)+cosAcosB=tan2αsinAsinB﹣tanαsin(A+B)+cosAcosB=,∵C=,A+B=,cosAcosB=,∴sin(A+B)=,cos(A+B)=cosAcosB﹣sinAsinB=﹣sinAsinB=,即sinAsinB=,∴tan2α﹣tanα+=,即tan2α﹣5tanα+4=0,解得:tanα=1或tanα=4.【点评】此题考查了余弦定理,两角和与差的余弦函数公式,同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.【分析】(Ⅰ)利用点A(﹣c,2)在椭圆上,结合椭圆的离心率,求出几何量,即可求得椭圆的标准方程;(Ⅱ)设出圆Q的圆心坐标及半径,由PQ⊥P'Q得到P的坐标,写出圆的方程后和椭圆联立,化为关于x的二次方程后由判别式等于0得到关于t与r的方程,把P点坐标代入椭圆方程得到关于t与r的另一方程,联立可求出t与r的值,经验证满足椭圆上的其余点均在圆Q外,结合对称性即可求得圆Q的标准方程.【解答】解:(Ⅰ)由题意知点A(﹣c,2)在椭圆上,则,即①∵离心率,∴②联立①②得:,所以b2=8.把b2=8代入②得,a2=16.∴椭圆的标准方程为;(Ⅱ)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).联立,得x2﹣4tx+2t2+16﹣2r2=0.由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8又P()在椭圆上,所以.整理得,.代入t2+r2=8,得.解得:.所以,.此时.满足椭圆上的其余点均在圆Q外.由对称性可知,当t<0时,t=﹣,.故所求圆Q的标准方程为.【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,属于中档题.22.(12分)对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.【分析】(1)对于集合P7 ,有n=7.当k=4时,根据Pn中有3个数与In={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数.(2)先用反证法证明证当n≥15时,Pn不能分成两个不相交的稀疏集的并集,再证P14满足要求,从而求得n的最大值.【解答】解:(1)对于集合P7 ,有n=7.当k=1时,m=1,2,3…,7,Pn={1,2,3…,7},7个数,当k=2时,m=1,2,3…,7,Pn对应有7个数,当k=3时,m=1,2,3…,7,Pn对应有7个数,当k=4时,Pn={|m∈In,k∈In}=Pn={,1,,2,,3,}中有3个数(1,2,3)与k=1时Pn中的数重复,当k=5时,m=1,2,3…,7,Pn对应有7个数,当k=6时,m=1,2,3…,7,Pn对应有7个数,当k=7时,m=1,2,3…,7,Pn对应有7个数,由此求得集合P7中元素的个数为 7×7﹣3=46.(2)先证当n≥15时,Pn不能分成两个不相交的稀疏集的并集.假设当n≥15时,Pn可以分成两个不相交的稀疏集的并集,设A和B为两个不相交的稀疏集,使A∪B=Pn⊇In .不妨设1∈A,则由于1+3=22,∴3∉A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾.再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集.事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(门头沟一模20.) (本小题满分14分)已知数列}{n a 的前n 项和为n S ,11=a ,满足下列条件①0≠∈∀n a N n ,*;②点),(n n n S a P 在函数22xx x f +=)(的图象上;(I )求数列}{n a 的通项n a 及前n 项和n S ; (II )求证:10121<-≤+++||||n n n n P P P P .解:(I )由题意 22nn n a a S +=……2分,当2≥n 时2212121---+-+=-=n n n n n n n a a a a S S a整理得0111=--+--))((n n n n a a a a ……5分,又0≠∈∀n a N n ,*,所以01=+-n n a a 或011=---n n a a01=+-n n a a 时,11=a ,11-=-n n a a ,得11--=n n a )(,211n n S )(--=……7分011=---n n a a 时,11=a ,11=--n n a a ,得n a n =,22nn S n +=……9分(II )证明:01=+-n n a a 时,))(,)((21111nn n P ----,5121==+++||||n n n n P P P P ,所以0121=-+++||||n n n n P P P P…11分,011=---n n a a 时,),(22nn n P n +,22121)(||++=++n P P n n ,2111)(||++=+n P P n n 222222121112*********)()()()()()(||||++++++--++=++-++=-+++n n n n n n P P P P n n n n 22112132)()(++++++=n n n 13分,因为11122122+>+++>++n n n n )(,)(所以1112132022<++++++<)()(n n n ,综上10121<-≤+++||||n n n n P P P P……14分.2.(2011年高考20.)(本小题共13分)若数列12:,,,(2)n n A a a a n ⋅⋅⋅≥满足11(1,2,,1)k k a a k n +-==⋅⋅⋅-,则称n A 为E 数列,记12()n n S A a a a =++⋅⋅⋅+. (Ⅰ)写出一个E 数列A 5满足130a a ==;(Ⅱ)若112a =,n=2000,证明:E 数列n A 是递增数列的充要条件是n a =2011;(Ⅲ)在14a =的E 数列n A 中,求使得()n S A =0成立得n 的最小值.解:(Ⅰ)0,1,0,1,0是一具满足条件的E 数列A 5.(答案不唯一,0,—1,0,1,0;0,±1,0,1,2;0,±1,0,—1,—2;0,±1,0,—1,—2,0,±1,0,—1,0都是满足条件的E 的数列A 5) (Ⅱ)必要性:因为E 数列A 5是递增数列,所以)1999,,2,1(11Λ==-+k a a k k . 所以A 5是首项为12,公差为1的等差数列.所以a 2000=12+(2000—1)×1=2011. 充分性,由于a 2000—a 1000≤1,a 2000—a 1000≤1,……a 2—a 1≤1所以a 2000—a t ≤19999,即a 2000≤a 1+1999.又因为a 1=12,a 2000=2011,所以a 2000=a 1+1999. 故n n n A k a a 即),1999,,2,1(011Λ=>=-+是递增数列.综上,结论得证. (Ⅲ)对首项为4的E 数列A k ,由于,3112=-≥a a ,2123≥-≥a a …….3175-≥-≥a a ……所以)8,,3,2(021ΛΛ=>+++k a a a k ,所以对任意的首项为4的E 数列A m ,若,0)(=m A S 则必有9≥n .又41=a 的E 数列,0)(4,3,2,1,0,1,2,3,4:11=----A S A 满足所以n 是最小值是9.3.(2012年高考,20)(本小题共13分)设A 是如下形式的2行3满足性质:,,,,,[1,1]P a b c d e f ∈-,且0a b c d e f +++++=。
记()i r A 为A 的第i 行各数之和(1,2)i =,()j c A 为第j 列各数之和(1,2,3)j =;记()k A 为1|()|r A ,2|()|r A ,1|()|c A ,2|()|c A ,3|()|c A 中的最小值。
(Ⅰ)对如下数表A ,求()k A 的值(Ⅱ)设数表A 形如其中10d -≤≤。
求()k A 的最大值;(Ⅲ)对所有满足性质P 的2行3列的数表A ,求()k A 的最大值4(海淀一模20. )(本小题满分13分)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为 “一阶比增函数”.(Ⅰ) 若2()f x ax ax =+是“一阶比增函数”,求实数a 的取值范围;(Ⅱ) 若()f x 是“一阶比增函数”,求证:12,(0,)x x ∀∈+∞,1212()()()f x f x f x x +<+; (Ⅲ)若()f x 是“一阶比增函数”,且()f x 有零点,求证:()2013f x >有解.解:(I )由题2()f x ax axy ax a x x+===+在(0,)+∞是增函数,由一次函数性质知当0a >时,y ax a =+在(0,)+∞上是增函数,所以0a > ………………3分 (Ⅱ)因为()f x 是“一阶比增函数”,即()f x x在(0,)+∞上是增函数,又12,(0,)x x ∀∈+∞,有112x x x <+,212x x x <+ 所以112112()()f x f x x x x x +<+, 212212()()f x f x x x x x +<+ ………………5分 所以112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+所以11221212121212()()()()()x f x x x f x x f x f x f x x x x x x +++<+=+++ 所以1212()()()f x f x f x x +<+…8分(Ⅲ)设0()0f x =,其中00x >.因为()f x 是“一阶比增函数”,所以当0x x >时,00()()0f x f x x x >= 法一:取(0,)t ∈+∞,满足()0f t >,记()f t m =由(Ⅱ)知(2)2f t m >,同理(4)2(2)4f t f t m >>,(8)2(4)8f t f t m >> 所以一定存在*n ∈N ,使得(2)22013n n f t m >⋅>,所以()2013f x > 一定有解 ………………13分 法二:取(0,)t ∈+∞,满足()0f t >,记()f t k t= 因为当x t >时,()()f x f t k x t>=,所以()f x kx >对x t >成立 只要 2013x k>,则有()2013f x kx >>,所以()2013f x > 一定有解5.(朝阳二模20)(本小题满分13分)已知实数12,,,n x x x L (n *∈N 且2n ≥)满足||1i x ≤ ()1,2,,i n =⋅⋅⋅,记121(,,,)n i j i j nS x x x x x ≤<≤=∑L .(Ⅰ)求2(1,1,)3S --及(1,1,1,1)S --的值; (Ⅱ)当3n =时,求123(,,)S x x x 的最小值; (Ⅲ)当n 为奇数时,求12(,,,)n S x x x L 的最小值. 注:1i j i j nx x ≤<≤∑表示12,,,n x x x L 中任意两个数i x ,j x (1i j n ≤<≤)的乘积之和.解:(Ⅰ)由已知得222(1,1,)11333S --=-+-=-.(1,1,1,1)1111112S --=----+=-…3分 (Ⅱ)3n =时,12312132313(,,)i j i j S S x x x x x x x x x x x ≤<≤===++∑.固定23,x x ,仅让1x 变动,那么S 是1x 的一次函数或常函数,因此2323min{(1,,),(1,,)}S S x x S x x ≥-. 同理2333(1,,)min{(1,1,),(1,1,)}S x x S x S x ≥-.2333(1,,)min{(1,1,),(1,1,)}S x x S x S x -≥---.以此类推,我们可以看出,S 的最小值必定可以被某一组取值1±的123,,x x x 所达到,于是12311,2,3min{(,,)}k x k S S x x x =±=≥.当1k x =±(1,2,3k =)时,22221231231[()()]2S x x x x x x =++-++212313()22x x x =++-.因为123||1x x x ++≥,所以13122S ≥-=-,且当121x x ==,31x =-,时1S =-,因此min 1S =-.…7分(Ⅲ)121(,,,)n i j i j nS S x x x x x ≤<≤==∑L 121312321n n n n x x x x x x x x x x x x -=++++++++L L L .固定23,,,n x x x L ,仅让1x 变动,那么S 是1x 的一次函数或常函数, 因此2323min{(1,,,,),(1,,,,)}n n S S x x x S x x x ≥-L L .同理2333(1,,,,)min{(1,1,,,),(1,1,,,)}n n n S x x x S x x S x x ≥-L L L .2333(1,,,,)min{(1,1,,,),(1,1,,,)}n n n S x x x S x x S x x -≥---L L L .以此类推,我们可以看出,S 的最小值必定可以被某一组取值1±的12,,,n x x x L 所达到,于是1211,2,,min {(,,,)}k n x k nS S x x x =±=≥L L .当1k x =±(1,2,,k n =L )时,222212121[()()]2n n S x x x x x x =+++-+++L L 2121()22n n x x x =+++-L .当n 为奇数时,因为12||1n x x x +++≥L , 所以1(1)2S n ≥--,另一方面,若取12121n x x x -====L , 1112221n n n x x x --++====-L ,那么1(1)2S n =--,因此min 1(1)2S n =--.…………………………………………………………13分6.(朝阳一模,20)(本小题满分13分)由1,2,3,4,5,6,7,8,9,10按任意顺序组成的没有重复数字的数组,记为1210(,,,)x x x τ=L ,设1011()|23|k k k S x x τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值; (Ⅱ)求证:()55S τ≥; (Ⅲ)求()S τ的最大值.(注:对任意,a b ∈R ,a b a b a b -≤±≤+都成立.) 解:(Ⅰ)1011()|23|7654321012857kk k S xx τ+==-=+++++++++=∑.………3分(Ⅱ)证明:由a b a b +≥+及其推广可得,12231011()232323S x x x x x x τ=-+-++-L 121023112()3()x x x x x x ≥+++-+++L L=121010(110)552x x x ++++==L . ……………………………7分 (Ⅲ)10,9,8,7,6,5,4,3,2,1的2倍与3倍共20个数如下:20,18,16,14,12,10,8,6,4,2,30,27,24,21,18,15,12,9,6,3其中最大数之和与最小数之和的差为20372131-=,所以()131S τ≤, 对于0(1,5,6,7,2,8,3,9,4,10)τ=,0()131S τ=,所以()S τ的最大值为131. ……………………………………………………13分注:使得()S τ取得最大值的有序数组中,只要保证数字1,2,3,4互不相邻,数字7,8,9,10也互不相邻,而数字5和6既不在7,8,9,10之一的后面,又不在1,2,3,4之一的前面都符合要求. 7.(大兴一模20.)(13分)(2013•大兴区一模)已知数列{a n }的各项均为正整数,且a 1<a 2<…<a n ,设集合A k ={x|x=λi a i ,λi =﹣1或λi =0,或λi =1}(1≤k≤n ).性质1:若对于∀x ∈A k ,存在唯一一组λi ,(i=1,2,…,k )使x=λi a i 成立,则称数列{a n }为完备数列,当k取最大值时称数列{a n }为k 阶完备数列. 性质2:若记m k =a i (1≤k≤n ),且对于任意|x|≤m k ,k ∈Z ,都有x ∈A K 成立,则称数列P{a n }为完整数列,当k 取最大值时称数列{a n }为k 阶完整数列.性质3:若数列{a n }同时具有性质1及性质2,则称此数列{a n }为完美数列,当K 取最大值时{a n }称为K 阶完美数列;(Ⅰ)若数列{a n }的通项公式为a n =2n ﹣1,求集合A 2,并指出{a n }分别为几阶完备数列,几阶完整数列,几阶完美数列;(Ⅱ)若数列{a n }的通项公式为a n =10n ﹣1,求证:数列{a n }为n 阶完备数列,并求出集合A n 中所有元素的和S n . (Ⅲ)若数列{a n }为n 阶完美数列,试写出集合A n ,并求数列{a n }通项公式解:(Ⅰ)}4,3,2,1,0,1,2,3,4{2----=A ;}{n a 为2阶完备数列,n 阶完整数列,2阶完美数列; (Ⅱ)若对于∈∀x n A ,假设存在2组i λ及i μ(n i ,2,1Λ=)使∑==ni ii ax 1λ成立,则有1220112201101010101010--+++=+++n n n n μμμλλλΛΛ,即10)(10)(10)(1122011=-++-+--n n n μλμλμλΛ,其中}1,0,1{,-∈i i μλ,必有n n μλμλμλ===Λ2211,,所以仅存在唯一一组i λ(n i ,2,1Λ=)使∑==ni i i a x 1λ成立,即数列}{n a 为n 阶完备数列;0=n S ,对∈∀x n A ,∑==ni i i a x 1λ,则∑∑==-=-=-ni i i n i i i a a x 11)(λλ,因为}1,0,1{-∈i λ,则}1,0,1{-∈-i λ,所以n A x ∈-,即0=n S(Ⅲ)若存在n 阶完美数列,则由性质1易知n A 中必有n3个元素,由(Ⅱ)知n A 中元素成对出现(互为相反数),且n A ∈0,又}{n a 具有性质2,则n A 中n3个元素必为31333331{,,1,0,1,,}2222n n n n n A ----=---L L ,n m 213-=n 。