变压器运行特性分析资料重点

合集下载

第2章 变压器的运行原理和特性

第2章 变压器的运行原理和特性
16

E U 20 2
Y,d接线 D,y接线
U 1N k 3U 2 N
k
3U1N U2N
由于 R m R1 , X m X 1 ,所以有时忽略漏阻抗,空载等效电路只是一 个Z m元件的电路。在 U1一定的情况下,I 0大小取决于Z m的大小。从运行角度 讲,希望 I 0 越小越好,所以变压器常采用高导磁材料,增大 Z m,减小 I 0 , 提高运行效率和功率因数。
使

1 与 I 0成线性关系; 1)性质上: 0 与 I 0 成非线性关系;
– 变压器各电磁量正方向
• 由于变压器中各个电磁量的大小和方向都随时间以 电源频率交变的,为了用代数式确切的表达这些量 的瞬时值,必须选定各电磁量的正方向,才能列式 子。 • 当某一时刻某一电磁量的瞬时值为正时,说明它与 实际方向一致; 当某一时刻某一电磁量的瞬时值为负时,说明它与 实际方向相反。 • 注:正方向是人为规定的有任选性,而各电磁量的 实际方向则由电磁定律决定。

(2)二次侧电动势平衡方程
U1
I 0
0
) (I 2

E U 20 2
(3)变比
U 1
U2
E 1
使
E 1
1
E 2
U 20
u2

对三相变压器,变比为一、二次侧的相电动势之比,近似为 额定相电压之比,具体为 Y,d接线
U1N k 3U 2 N
8

22

F F F 1 2 0 N I 或 N1 I 1 2 2 N1 I 0 N I I ( 2 ) I I ( 2 ) I I 用电流形式表示 I 2 0 0 1L 1 0 N1 k

变压器的运行特性

变压器的运行特性
一、标么值
标么值,就是指某一物理量的实际值与选定的同一单位的基准值的比值,即
1、定义
2、基准值的确定
1)通常以额定值为基准值。
2)各侧的物理量以各自侧的额定值为基准; 线值以额定线值为基准值,相值以额定相值为基准值; 单相值以额定单相值为基准值,三相值以额定三相值为基准值;
变压器负载运行时,由于变压器内部存在电阻和漏抗,故负载电流在变压器内部产生阻抗压降,使二次侧端电压随负载电流的变化而发生变化。 变压器二次电压的大小不仅与负载电流的大小有关,还和负载的功率因数有关。 当纯电阻负载和感性负载时,外特性是下降的;容性负载时,外特性可能上翘。
二、电压调整率和外特性
2、电压调整率
定义:是指一次侧加50Hz额定电压、二次空载电压与带负载后在某功率因数下的二次电压之差,与二次额定电压的比值的百分数,即 电压调整率是表征变压器运行性能的重要指标之一,它大小反映了供电电压的稳定性。
反映了负载的大小。
由表达式可知,电压变化率的大小与负载大小、性质及变压器的本身参数有关。
用相量图可以推导出电压变化率的表达式:
3)
标么值=
实际值
基准值
优点 缺点 额定值的标么值为1。 百分值=标么值×100% ;
(3)折算前、后的标么值相等。线值的标么值=相值的标么值;
单相值的标么值=三相值的标么值;
(4)某些意义不同的物理量标么值相等.
标么值没有单位,物理意义不明确。
1、变压器的外特性 当变压器电源电压 和负载功率因数 等于常数时,二次侧端压 随负载电流 的变化规律,即U2 = f(I2)曲线称为变压器的外特性曲线。
变压器的电压调整
分接开关有两种形式:一种只能在断电情况下进行调节,称为无载分接开关-----这种调压方式称为无励磁调压;另一种可以在带负荷的情况下进行调节,称为有载分接开关-----这种调压方式称为有载调压。

变压器运行特性分析报告

变压器运行特性分析报告

课程设计名称:电机与拖动课程设计题目:变压器运行特性分析计算专业:班级:姓名:学号:课程设计成绩评定表变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。

虽然这些变压器有所不同,但是它们的基本原理是相同的。

本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。

为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。

通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。

关键词:变压器;基本方程式;折算;等值电路;MATLAB计算1 变压器结构及其组成部分 (1)1.1变压器的基本结构 (1)1.1.1铁芯 (1)1.1.2绕组 (1)1.1.3油箱和冷却装置 (2)1.1.4绝缘套管 (2)1.1.5其他构件 (2)1.2变压器的额定值 (2)2变压器的变换关系 (4)2.1电压变换 (4)2.2电流变换 (4)2.3阻抗变换 (5)3变压器等值电路及其折算关系 (6)4变压器空载时的分析与计算 (8)5变压器负载运行时的分析与计算 (9)6变压器副边突然短路时分析计算 (10)7结论 (11)8心得体会 (12)参考文献 (13)1 变压器结构及其组成部分1.1 变压器的基本结构电力变压器主要由铁芯、绕组、变压器油、油箱、绝缘套管组成组成。

铁芯和绕组是变压器的主要部分,二者装配到一起称为变压器的器身。

图1-1为油浸式变压部结构示意图。

图1-1 油浸式变压部结构示意图1.1.1 铁芯铁芯是变压器的主磁路,又是变压器器身的骨架。

3、变压器-参数测定和运行特性

3、变压器-参数测定和运行特性
课程导入
课程导入
通过漏磁抗必然产生电压降。
课程讲解
压变化。我们将这种变化规律称之为外特性。
I2≠0
E
U
负载变化导致电流变化,电流变化导致电
1
I1
1
1
E1
σ
Φ1
Φ2
E
Z
σ
σ
2
L
外特性:在一次侧加额定电压,负载功率因
课程总结
数COSφ2一定时,二次侧电压U2随着负载电
U1N=3300V,I0=0.08A,P0=80W,高压侧加电压时的短路试验数据:
课程讲解
UK=180V,I1N=6.06A,PKN=240W,试验温度25℃,求(1)这台变压器的等效电路参数;
(2)这台变压器的I*0,uk,Z*m,Z*k,P*0.
课程总结
课后作业
厚德笃学、砺能敏行
变压器的运行特性
折算到高压侧,应将上式求得数值乘以变比的平方。
二、短路试验
课程导入
☆ 试验方法:将变压器二次侧短路,一次侧施加
一很低的电压,以使一次侧电流接近额定值。测得
一次侧电压 Uk,电流 I1N,输入功率 PkN
课程讲解
(1)试验线路
课程总结
为了方便,选择在高压方一侧。
在低压方做短路试验时,负载损耗值不变,但 Uk太小, Ik 太大,调节设备难以满足要求,

m = =


X m = −
课程总结
课后作业

m = =


=


X m = −
需要强调的是:由于励磁参数与磁路的饱和程度有关,所以应取额定电压下的数据来
计算励磁参数。

变压器的运行特性

变压器的运行特性

电感性滞后
变压器外特性曲线图
Part 3 变压器的效率
由于损耗的存在,变压器在传递能量过程,致使输出功率P2 < 输入功率P1,输出功率P2与输入 功率P1的比值称为效率η
损耗
铁损耗 铜损耗
磁滞损耗 由铁心磁阻所产生的的损耗,硅钢片能减少这种损耗 取决于铁心的磁通大小和交变频率,铁心采用片状结
涡流损耗 构叠加可减少这种损耗
变压器的电压变化率 变压器的外特性 变压器的效率
知识内容
课外拓展 测取实训室变压器的负载特性
产业信息
电力变压器是电力系统的枢纽设备,在变电站中,主 变压器能否安全可靠运行,直接关系到电网的安全 运行。要不断提高主变压器的运行、维护、检修 水平。
本节内容 到此结束
基本铜损 一次、二次绕组内直流电阻所引起 的直流电阻损耗 由集肤效应和邻近效应使绕组有效电阻变大所增加的
附加铜损 损耗
Part 3 变压器的效率
PFE
变压器损耗
PCU
铁损耗(不变损耗)
铁损耗用PFE表示,其 与外加电压大小有关, 而与负载大小基本无关 ,故也称为不变损耗。
铜损耗(可变损耗)
铜损耗用PCU表示,其 大小与负载电流平方成 正比,故也称为可变损 耗。
电机与电气控制技术
Part 1 变压器的运行特性
外特性
运行特性
效率 特性
主要指标:电压变化率、效率
Part 2 电压变化率
变压器一次绕组加额定电压,负载的功率因数一定,空载与额定负载时 二次侧端电压之差(U2N -U2)与额定电压U2N的比值,用ΔU%表示
• 空载时,U20=U2N • 负载时,U2随负载的变化而变化 变化率 电压变化率ΔU%与变压器内阻抗大小、负载电流及负载类型有关,反映了变压器 输出电压的稳定性及电能的质量。

第2章 变压器的工作原理和运行分析

第2章 变压器的工作原理和运行分析

SN SN ,I 2 N 3U 1 N 3U 2 N
注意!对于三相系统,额定值都是指线间值。
第二节 变压器空载运行
空载:一次侧绕组接到电源,二次侧绕组开路。 一、电磁现象
u1
Φm
i0
Φ 1σ
e1 e1σ
N1
N2
e2
u20
i



二、参考方向的规定
e
i i

e

e
三、变压原理、电压变比
对于变压器的原边回路,根据电路理论有:
u1 i0 r1 e1 e1
空载时 i0r1 和 e1σ 都很小,如略去不 计,则 u1 = - e1 。设外加电压 u1 按 正弦规律变化,则 e1 、Φ 和e2 也都 按正弦规律变化。 设主磁通 m sin t ,则:
u1
Φm
u1
Φm
e1
e2
ωt 0 180° 360°
现在的问题是,要产生上述大小的主磁通 Φm ,需 要多大(什么样)的激磁电流 Im ?
励磁电流的大小和波形受磁路饱和、磁滞及涡 流的影响。
1、磁路饱和对励磁电流的影响
mm mm
i0 tt
00
i0i0 tt
00
i0 i0
tt
tt
磁路不饱和时,i0 ∝φ,其波形为正弦波。
磁路饱和时,i0与φ 不成线性关系,φ越大,磁路 越饱和,i0/φ比值越大,励磁电流的波形为尖顶波。
六、漏抗 漏电势的电路模型与励磁特性的电路模型类似, 只是漏磁通所经路径主要为空气,磁阻大,磁通量 小,磁路不饱和,因此可以忽略漏磁路的铁耗,即 漏电势的电路模型中的等效电阻为零,即漏电势

实验二 单相变压器运行特性的研究

实验二单相变压器运行特性的研究一、任务目标1、测定单相变压器的空载特性、短路特性。

2、测定单相变压器变比和参数。

2、测定单相变压器的运行特性。

三、实训过程1、单相变压器空载试验的接线及测取空载试验数据4-5单相变压器空载试验接线图按图4-5接线。

图中单相变压器选用MEC11,其额定值P N=77V·A,U1N/U2N=220/55V,I1N/I2N=0.35/1.4A,变压器的低压线圈a、x接电源,高压线圈A、X开路;交流电压表V1、V2选用MEC23;交流电流表A选用MEC22;功率、功率因数W选用MEC24。

(1)检查按图4-5的接线是否正确,交流电压、电流表、单相功率表及变压器的接法是否正确。

确认MEC01电源总开关处于断开状态,将控制屏左侧的三相调压器逆时针方向旋转到底。

(2)开启控制屏上的电源总开关,按下“启动”按钮,顺时针调节控制屏左侧的三相调压器,逐渐升高交流输出电压(用V1表观察),使交流输出电压U O=1.2U N。

(3)从U O=1.2U N开始,逆时针调节控制屏左侧的三相调压器,逐次降低交流电源输出电压U O,直至降至U O=0.2U N,在1.2U N~0.2U N的范围内,测取变压器的空载电压U0、空载电流I0、空载功率P0、功率因数cosφ0(按下MEC24的“功能”键,显示单元显示cos时,按下“确认”键即可读取电动机M的当前功率因数,返回功率测试状态时只需按下“复位”键即可)及高压绕组AX端电压U AX,共测取数据7-9组。

记录于表4-3中,其中U O=U N点必须测,并在该点附近多测几点。

(4)试验结束后,将控制屏左侧的三相调压器逆时针方向旋转到底,按下“停止”按钮。

2、单相变压器短路试验的接线及测取短路试验数据图4-6 单相变压器短路试验接线图按图4-6接线。

图中单相变压器选用MEC11,变压器的高压线圈A、X接电源,低压线圈a、x短路;交流电压表V1选用MEC23;交流电流表A选用MEC22;功率、功率因数W选用MEC24。

变压器的运行特征

一、变压器的运行特征变压器的运行特征主要有外特征与效率特性,而表征变压器运行性能的主要指标则有电压变化率和效率。

1、电压变化率1)外特性变压器一次侧接上额定电压,二次侧开路时,二次侧空载电压就等于二次侧额定电压,外特性是指一次侧加额定电压,负载功率因数cosφ2一定时,二次侧端电压随负载电流变化的关系,即U2=f (I2)。

变压器在纯电阻和感性负载时,外特性是下降的,而客性负载时可能是上翘的。

2)电压变化率负载电流变化,变压器副边端电压将随着发生变化。

电压调整率是变压器负载时副边端电压变化程度的一种程度。

假定变压器原边接电源电压,副边开路时的端电压为额定值,当副边接入负载后,即使原来电压保持不变,副边端电压不再是额定值,原边电压保持为额定值,负载功率因数为常数,空载和负载的副边端电压之差与副边额定电压的比值,即电压变化的标么值称为电压变化率,用⊿U*表示即⊿U*=(U20-U2)/U2N式中U20—副边空载电压U2—时的副边端电压由于副边空载端电压U20等于副边额定电压U2N,经过折算后,公式1可写成⊿U*=(U20-U2)/U2N=(U'2N-U'2)/U'2N=(U10-U'2)/U1N电压变化率是变压器的主要性能指标之一,负载电流变化时,副边端电压变化的原因,是变压器内部存在电阻和漏抗而引起内部电压降。

副边电压的变化程度,即⊿U*的大小,不仅同变压器本身的阻抗有关,而且与负载的大小和性能有关。

综合上述,负载为感性时,φ2角为正值,故电压变化率为正值,即负载时的副边电压恒比空载电压低;负载为容性,φ2角为负值,故电压变化率有可能为负值,亦即负载时的副边电压可能高于空载电压。

为了保证供电电压的质量,尽可能保持副边电压的稳定,这就需要进行调压。

在电力系统中调压的方法很多,例如调节发电机出口电压,用同步调相机,在负载端并联电容器等。

但采用最多、最普遍的还是变压器调压。

电机与拖动1.6 变压器的运行特性

解: U * (rk*cosj2 xk*sinj2 )
0
I2N
图1-20 变压器外特性
I2
Page 2
1.6变压器的运行特性
1.6.1电压变化率和外特性
U 2的大小与 I2 有关; 特殊点:I2 0时,U 20 U2N (空载)
一般规律:I2 U2 U2N
U2
为了表征电压随负载电流变化的程度
,可用电压变化率ΔU*表示。电压变 U2N
化率是指在一次侧加额定电压,二次
解:(1-1)直接接入时
电源输出的电流为 I1 Es /(Rs RL ) 8.5 /(72 8) 0.106 (A)
扬声器获得的功率为
P1 I12RL 0.106 2 8 0.09(W)
图1-43 扬声器经变压器接功率放大器
Page 13
【实例1-8】
(1-2)通过变压器接入时
电源输出的电流为 I1 Es /(Rs R) Es /(Rs k 2RL ) 8.5 /(72 32 8) 0.06(A)
I1N
U1N
I1N (rk cosj2 xk sin j2 ) 100% U1N
(1-67)
jI1xk
I1rk
U1 j2
-U2
j1 j2
I1=-I2
式中,β=I1/I1N=I2/I2N,称为变压器 的负载系数。若用标幺值表示,电压变
化率公式为
1-21感性负载的简化等效电路相量图
U * (rk*cosj2 xk*sinj2 ) (1-68) Page 4
标。
Page 3
1.6变压器的运行特性
1.6.1电压变化率和外特性
j2
可根据简化等效电路的相量图(见图 1-21)推导出电压变化率的计算公式,即

变压器的空载运行特性介绍

变压器的空载运行特性介绍一、电磁物理现象1、磁通:(1) 主磁通(Φ)----由一次绕组电流产生,同时交链一、二次绕组的磁通。

沿铁芯路径闭合,磁阻小、会饱和,由电磁转换传递功率。

(2) 一次漏磁通(Φ1σ)----由一次绕组电流产生,只交链一次绕组的磁通。

沿空气回路闭合,磁阻大、不会饱和,不传递功率。

2、其他:(1) 空载运行----运行时一次绕组加电压,二次绕组开路,输出电流为零。

(2) 空载电流(i0)----空载运行时,一次绕组所加电流(i1=i0)。

(3) 励磁电流(im)----空载时,不输出电流,则输入电流全部用于建立磁场,故im= i0 。

(4) 电磁关系:二、正方向的规定1、目的:对交变的量,规定了正方向,才能列写电压方程。

2、应用:当求解出的电压、电流、磁势、磁通等为正值,代表实际方向同规定的正方向,为负,代表实际方向与规定的正方向相反。

3、选择:电流g磁通,右手螺旋;磁通g电势,也是右手螺旋。

三、感应电动势、电压变比1、电压平衡式:2、电势:3、变比:四、励磁电流引言:忽略电阻压降、漏电势有:,当外施电压大小、波形(正弦)一定,则磁通的大小和波形也一定,磁通Φ为“正弦基波”,产生磁通的励磁电流im(i0)如何?1、磁路饱和对励磁电流的影响(1) 当磁路未饱和时(Bm<0.8T),i0与Φ的关系曲线为线性,产生正弦波磁通,则励磁电流也按正弦变化。

(2) 当磁路饱和时(Bm>0.8T),i0与Φ的关系曲线为非线性,产生正弦波磁通,则励磁电流为对称的尖顶波变化,为便于矢量表达,取有效值相同的正弦波代之。

定义尖顶波电流(),为“磁化电流”,相位与磁通一致(同相位)。

2、磁滞现象对励磁电流的影响(1) 电流产生磁通,上升磁化曲线与下降不重合。

(2) 要产生正弦波磁通,励磁电流i0为不对称的尖顶波,可分解为一个对称尖顶波的磁化电流iμ和磁滞损耗电流ih 。

(3) 相位:,3、涡流现象对励磁电流的影响(1) 原因:交变磁通g在铁芯中感应电势g产生涡流(电流)g涡流损耗(有功损耗)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大型电力变压器采用五个或多个分接头,例UN ±2x2.5%或UN ±8x1.5%。
分接开关有两种形式:
只能在断电情况下进行调节,称为无载 分接开关,这种调压方式称为无励磁调压; 可以在带负荷的情况下进行调节,称为 有载分接开关,这种调压方式称为有载调 压。
U1 N1 U2 N2
U2
N2 N1
供电教研室 常国兰
(复习:正弦量:瞬时值、有效值、最大值、 相量值)
标幺值(标么值)是电力系统分析和工程计算 中常用的数值标记方法,表示各物理量及参数 的相对值。无单位。
标幺值=实际值/基准值 在变压器里,一般都选额定值作为自己的基值。
当变压器一次绕组接额定电压,二次绕组开 路时,副边电压U20就是副边额定电压 U2N。
U1
因为:当N2不变,为使U2不变,U1高时应将N1调 高;U1低时应将N1调低。
变压器电压调整原则:高往高调,低往低调。
P2 P1 p
P1
P1
变压器的损耗包括铁损和铜损。
铁损包括铁芯中的磁滞损耗和涡流损耗,为不变损 耗。铜损是一次、二次绕组中电流在电阻上产生的 有功功率损耗,为可变损耗。
________是可变损耗, ________是不变损耗。
9. 说明变压器突然短路会对变压器产生什么危害? 10. 变压器空载合闸时会产生________电流,这个电
流叫_____Βιβλιοθήκη _____。 11. 为了保证变压器二次端电压在允许范围之内,通
常在变压器的________侧设置抽头,并装设 ____________,调节变压器________绕组的______ __________,来调节变压器的二次电压。
变压器不允许带负荷合闸, 送电必须先送电源侧,再 送负荷侧。所以,变压器 不存在带负荷合闸。
空载合闸就是在变压器副 边空载,把原边经开关接 入电源的操作。
➢ 变压器空载稳态运行时,空载电 流仅占额定电流的2%~10%,可 认为是正常空载电流。
➢ 当进行变压器空载投入操作时, 却有可能出现比正常空载电流大 几十倍的电流,需要经过一个短 暂的过渡过程,才能恢复到正常 的空载电流值。
带上负载后,副边电压变为U2 。 负载时与空载时副边电压变化了U2N - U2 ,
它与额定电压 U2N的比值称为电压调整率,
用 ΔU表示为: U U2N U2 100%
U 2N
例:配电变压器:10/0.4KV ,变压器带额 定负载运行时,U2=380V,求电压调整率?
U 2N U 20 400V
当I2 I2N,U 2 380V
U U2N - U2 400 - 380 5%
U 2N
400
为了保证变压器二次端电压在允许范围之内,通 常在变压器的高压侧设置抽头,并装设分接开关, 调节变压器高压绕组的工作匝数,来调节变压器 的二次电压。
中、小型电力变压器一般有三个分接头,记作 UN ±5%。
12. 某配电变压器额定电压为10/0.4KV,当 带额定负载运行时,副边输出电压为 380V,求电压调整率?
绕组接额定电压,二次绕组_________时的电 压。 4. 变压器电压调整率ΔU计算公式:__________。
5. 变压器电压调整原则: __________。 6. 变压器分接开关有两种形式,分别是
___________和_______。 7. 变压器的效率计算公式:___________。 8. 变压器的损耗包括________和_______。
➢ 这个在过渡过程中出现的空载投 入电流称为励磁涌流。
变压器空载合闸时会 产生冲击电流,这个 冲击电流叫励磁涌流。
空载合闸电流对变压器的直接危害不大, 但是它能引起装在变压器一次侧的过电流 保护继电器动作,从而使变压器合闸不成 功。如果遇到这种情况,可以再合一次闸, 甚至两次。
1. 标幺值计算公式:___________。 2. 标幺值计算中一般选_________值作为基准值。 3. 变压器副边额定电压 U2N 指的是变压器一次
最大效率发生在铁损与铜损相等的时候。
变压器二次侧突然短路,在线圈中将产生巨大的短路电流, 其值可达到额定电流的20~30倍。突然短路会对变压器产 生以下危害: 在巨大的短路电流作用下,线圈将产生很大的电磁力。 其值可达到额定电磁力的1000倍,使线圈的机械强度受 到破坏。 巨大的短路电流会在线圈中产生高温,可能使线圈烧损。 还可能将分接头开关触头或套管引线等载流元件烧坏。
相关文档
最新文档