变压器运行特性分析

合集下载

第2章 变压器的运行原理和特性

第2章 变压器的运行原理和特性
16

E U 20 2
Y,d接线 D,y接线
U 1N k 3U 2 N
k
3U1N U2N
由于 R m R1 , X m X 1 ,所以有时忽略漏阻抗,空载等效电路只是一 个Z m元件的电路。在 U1一定的情况下,I 0大小取决于Z m的大小。从运行角度 讲,希望 I 0 越小越好,所以变压器常采用高导磁材料,增大 Z m,减小 I 0 , 提高运行效率和功率因数。
使

1 与 I 0成线性关系; 1)性质上: 0 与 I 0 成非线性关系;
– 变压器各电磁量正方向
• 由于变压器中各个电磁量的大小和方向都随时间以 电源频率交变的,为了用代数式确切的表达这些量 的瞬时值,必须选定各电磁量的正方向,才能列式 子。 • 当某一时刻某一电磁量的瞬时值为正时,说明它与 实际方向一致; 当某一时刻某一电磁量的瞬时值为负时,说明它与 实际方向相反。 • 注:正方向是人为规定的有任选性,而各电磁量的 实际方向则由电磁定律决定。

(2)二次侧电动势平衡方程
U1
I 0
0
) (I 2

E U 20 2
(3)变比
U 1
U2
E 1
使
E 1
1
E 2
U 20
u2

对三相变压器,变比为一、二次侧的相电动势之比,近似为 额定相电压之比,具体为 Y,d接线
U1N k 3U 2 N
8

22

F F F 1 2 0 N I 或 N1 I 1 2 2 N1 I 0 N I I ( 2 ) I I ( 2 ) I I 用电流形式表示 I 2 0 0 1L 1 0 N1 k

变压器的运行特性

变压器的运行特性
一、标么值
标么值,就是指某一物理量的实际值与选定的同一单位的基准值的比值,即
1、定义
2、基准值的确定
1)通常以额定值为基准值。
2)各侧的物理量以各自侧的额定值为基准; 线值以额定线值为基准值,相值以额定相值为基准值; 单相值以额定单相值为基准值,三相值以额定三相值为基准值;
变压器负载运行时,由于变压器内部存在电阻和漏抗,故负载电流在变压器内部产生阻抗压降,使二次侧端电压随负载电流的变化而发生变化。 变压器二次电压的大小不仅与负载电流的大小有关,还和负载的功率因数有关。 当纯电阻负载和感性负载时,外特性是下降的;容性负载时,外特性可能上翘。
二、电压调整率和外特性
2、电压调整率
定义:是指一次侧加50Hz额定电压、二次空载电压与带负载后在某功率因数下的二次电压之差,与二次额定电压的比值的百分数,即 电压调整率是表征变压器运行性能的重要指标之一,它大小反映了供电电压的稳定性。
反映了负载的大小。
由表达式可知,电压变化率的大小与负载大小、性质及变压器的本身参数有关。
用相量图可以推导出电压变化率的表达式:
3)
标么值=
实际值
基准值
优点 缺点 额定值的标么值为1。 百分值=标么值×100% ;
(3)折算前、后的标么值相等。线值的标么值=相值的标么值;
单相值的标么值=三相值的标么值;
(4)某些意义不同的物理量标么值相等.
标么值没有单位,物理意义不明确。
1、变压器的外特性 当变压器电源电压 和负载功率因数 等于常数时,二次侧端压 随负载电流 的变化规律,即U2 = f(I2)曲线称为变压器的外特性曲线。
变压器的电压调整
分接开关有两种形式:一种只能在断电情况下进行调节,称为无载分接开关-----这种调压方式称为无励磁调压;另一种可以在带负荷的情况下进行调节,称为有载分接开关-----这种调压方式称为有载调压。

变压器运行特性分析报告

变压器运行特性分析报告

课程设计名称:电机与拖动课程设计题目:变压器运行特性分析计算专业:班级:姓名:学号:课程设计成绩评定表变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。

虽然这些变压器有所不同,但是它们的基本原理是相同的。

本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。

为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。

通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。

关键词:变压器;基本方程式;折算;等值电路;MATLAB计算1 变压器结构及其组成部分 (1)1.1变压器的基本结构 (1)1.1.1铁芯 (1)1.1.2绕组 (1)1.1.3油箱和冷却装置 (2)1.1.4绝缘套管 (2)1.1.5其他构件 (2)1.2变压器的额定值 (2)2变压器的变换关系 (4)2.1电压变换 (4)2.2电流变换 (4)2.3阻抗变换 (5)3变压器等值电路及其折算关系 (6)4变压器空载时的分析与计算 (8)5变压器负载运行时的分析与计算 (9)6变压器副边突然短路时分析计算 (10)7结论 (11)8心得体会 (12)参考文献 (13)1 变压器结构及其组成部分1.1 变压器的基本结构电力变压器主要由铁芯、绕组、变压器油、油箱、绝缘套管组成组成。

铁芯和绕组是变压器的主要部分,二者装配到一起称为变压器的器身。

图1-1为油浸式变压部结构示意图。

图1-1 油浸式变压部结构示意图1.1.1 铁芯铁芯是变压器的主磁路,又是变压器器身的骨架。

3、变压器-参数测定和运行特性

3、变压器-参数测定和运行特性
课程导入
课程导入
通过漏磁抗必然产生电压降。
课程讲解
压变化。我们将这种变化规律称之为外特性。
I2≠0
E
U
负载变化导致电流变化,电流变化导致电
1
I1
1
1
E1
σ
Φ1
Φ2
E
Z
σ
σ
2
L
外特性:在一次侧加额定电压,负载功率因
课程总结
数COSφ2一定时,二次侧电压U2随着负载电
U1N=3300V,I0=0.08A,P0=80W,高压侧加电压时的短路试验数据:
课程讲解
UK=180V,I1N=6.06A,PKN=240W,试验温度25℃,求(1)这台变压器的等效电路参数;
(2)这台变压器的I*0,uk,Z*m,Z*k,P*0.
课程总结
课后作业
厚德笃学、砺能敏行
变压器的运行特性
折算到高压侧,应将上式求得数值乘以变比的平方。
二、短路试验
课程导入
☆ 试验方法:将变压器二次侧短路,一次侧施加
一很低的电压,以使一次侧电流接近额定值。测得
一次侧电压 Uk,电流 I1N,输入功率 PkN
课程讲解
(1)试验线路
课程总结
为了方便,选择在高压方一侧。
在低压方做短路试验时,负载损耗值不变,但 Uk太小, Ik 太大,调节设备难以满足要求,

m = =


X m = −
课程总结
课后作业

m = =


=


X m = −
需要强调的是:由于励磁参数与磁路的饱和程度有关,所以应取额定电压下的数据来
计算励磁参数。

变压器的运行特性

变压器的运行特性

电感性滞后
变压器外特性曲线图
Part 3 变压器的效率
由于损耗的存在,变压器在传递能量过程,致使输出功率P2 < 输入功率P1,输出功率P2与输入 功率P1的比值称为效率η
损耗
铁损耗 铜损耗
磁滞损耗 由铁心磁阻所产生的的损耗,硅钢片能减少这种损耗 取决于铁心的磁通大小和交变频率,铁心采用片状结
涡流损耗 构叠加可减少这种损耗
变压器的电压变化率 变压器的外特性 变压器的效率
知识内容
课外拓展 测取实训室变压器的负载特性
产业信息
电力变压器是电力系统的枢纽设备,在变电站中,主 变压器能否安全可靠运行,直接关系到电网的安全 运行。要不断提高主变压器的运行、维护、检修 水平。
本节内容 到此结束
基本铜损 一次、二次绕组内直流电阻所引起 的直流电阻损耗 由集肤效应和邻近效应使绕组有效电阻变大所增加的
附加铜损 损耗
Part 3 变压器的效率
PFE
变压器损耗
PCU
铁损耗(不变损耗)
铁损耗用PFE表示,其 与外加电压大小有关, 而与负载大小基本无关 ,故也称为不变损耗。
铜损耗(可变损耗)
铜损耗用PCU表示,其 大小与负载电流平方成 正比,故也称为可变损 耗。
电机与电气控制技术
Part 1 变压器的运行特性
外特性
运行特性
效率 特性
主要指标:电压变化率、效率
Part 2 电压变化率
变压器一次绕组加额定电压,负载的功率因数一定,空载与额定负载时 二次侧端电压之差(U2N -U2)与额定电压U2N的比值,用ΔU%表示
• 空载时,U20=U2N • 负载时,U2随负载的变化而变化 变化率 电压变化率ΔU%与变压器内阻抗大小、负载电流及负载类型有关,反映了变压器 输出电压的稳定性及电能的质量。

实验二 单相变压器运行特性的研究

实验二  单相变压器运行特性的研究

实验二单相变压器运行特性的研究一、任务目标1、测定单相变压器的空载特性、短路特性。

2、测定单相变压器变比和参数。

2、测定单相变压器的运行特性。

三、实训过程1、单相变压器空载试验的接线及测取空载试验数据4-5单相变压器空载试验接线图按图4-5接线。

图中单相变压器选用MEC11,其额定值P N=77V·A,U1N/U2N=220/55V,I1N/I2N=0.35/1.4A,变压器的低压线圈a、x接电源,高压线圈A、X开路;交流电压表V1、V2选用MEC23;交流电流表A选用MEC22;功率、功率因数W选用MEC24。

(1)检查按图4-5的接线是否正确,交流电压、电流表、单相功率表及变压器的接法是否正确。

确认MEC01电源总开关处于断开状态,将控制屏左侧的三相调压器逆时针方向旋转到底。

(2)开启控制屏上的电源总开关,按下“启动”按钮,顺时针调节控制屏左侧的三相调压器,逐渐升高交流输出电压(用V1表观察),使交流输出电压U O=1.2U N。

(3)从U O=1.2U N开始,逆时针调节控制屏左侧的三相调压器,逐次降低交流电源输出电压U O,直至降至U O=0.2U N,在1.2U N~0.2U N的范围内,测取变压器的空载电压U0、空载电流I0、空载功率P0、功率因数cosφ0(按下MEC24的“功能”键,显示单元显示cos时,按下“确认”键即可读取电动机M的当前功率因数,返回功率测试状态时只需按下“复位”键即可)及高压绕组AX端电压U AX,共测取数据7-9组。

记录于表4-3中,其中U O=U N点必须测,并在该点附近多测几点。

(4)试验结束后,将控制屏左侧的三相调压器逆时针方向旋转到底,按下“停止”按钮。

2、单相变压器短路试验的接线及测取短路试验数据图4-6 单相变压器短路试验接线图按图4-6接线。

图中单相变压器选用MEC11,变压器的高压线圈A、X接电源,低压线圈a、x短路;交流电压表V1选用MEC23;交流电流表A选用MEC22;功率、功率因数W选用MEC24。

电机与拖动1.6 变压器的运行特性

电机与拖动1.6 变压器的运行特性
解: U * (rk*cosj2 xk*sinj2 )
0
I2N
图1-20 变压器外特性
I2
Page 2
1.6变压器的运行特性
1.6.1电压变化率和外特性
U 2的大小与 I2 有关; 特殊点:I2 0时,U 20 U2N (空载)
一般规律:I2 U2 U2N
U2
为了表征电压随负载电流变化的程度
,可用电压变化率ΔU*表示。电压变 U2N
化率是指在一次侧加额定电压,二次
解:(1-1)直接接入时
电源输出的电流为 I1 Es /(Rs RL ) 8.5 /(72 8) 0.106 (A)
扬声器获得的功率为
P1 I12RL 0.106 2 8 0.09(W)
图1-43 扬声器经变压器接功率放大器
Page 13
【实例1-8】
(1-2)通过变压器接入时
电源输出的电流为 I1 Es /(Rs R) Es /(Rs k 2RL ) 8.5 /(72 32 8) 0.06(A)
I1N
U1N
I1N (rk cosj2 xk sin j2 ) 100% U1N
(1-67)
jI1xk
I1rk
U1 j2
-U2
j1 j2
I1=-I2
式中,β=I1/I1N=I2/I2N,称为变压器 的负载系数。若用标幺值表示,电压变
化率公式为
1-21感性负载的简化等效电路相量图
U * (rk*cosj2 xk*sinj2 ) (1-68) Page 4
标。
Page 3
1.6变压器的运行特性
1.6.1电压变化率和外特性
j2
可根据简化等效电路的相量图(见图 1-21)推导出电压变化率的计算公式,即

基于matlab的变压器运行特性仿真分析教材

基于matlab的变压器运行特性仿真分析教材

基于matlab的变压器运行特性仿真分析摘要变压器是电力系统中不可缺少的重要电气元件,变压器的运行特性也影响着电力系统的性能和正常运行,因此,要对变压器的运行特性进行分析,尤其是变压器的暂态运行特性,因为在暂态的过度过程中可能会出现较大的过电压或过电流,可能会损坏变压器。

随着科学技术的发展,仿真技术也得到了很大程度的发展,不再仅仅局限于传统的物理仿真,而是更加方便简洁也更加精确的计算机仿真。

本文先是对变压器的稳态和暂态运行特性进行分析,然后运用matlab软件,通过编写matlab程序实现对变压器暂态运行特性的仿真分析,主要包括变压器空载合闸到电源和变压器突发短路这两种情况,对于变压器空载合闸到电源这种情况又通过区分铁心是否饱和,分别用解析法和四阶龙格库塔算法进行仿真,保证了结果的准确可靠。

而对于磁化曲线,则采用插值法实现对不饱和区磁化曲线的拟合,饱和区的磁化曲线采用直线代替。

并对仿真得到的结果结合理论知识进行了简单的分析,找到了在变压器的过渡过程中对变压器最不利的情况,并且也和理论相对比,验证了所采用仿真方法的正确性和可行性。

关键词:变压器,暂态运行特性,空载合闸,突发短路,matlab 仿真BASED ON THE MATLAB SIMULATION ANALYSIS OF TRANSFORMER RUNNINGCHARACTERISTICSABSTRACTTransformer is an important and indispensable electrical components in the power system, the operation of the transformer also affects the normal operation of power system, therefore, we should analyze the running characteristics of the transformer, especially the transient state characteristic of the transformer, because that during the transient process may appear larger o ver-voltage or over-current, which might cause something wrong to the transformer.With the development of science and technology, the simulation technology has been developed greatly, and it has been no longer limited to the traditional physical simulation, but a more convenient and concise computer simulation which is more accurate.This article first to the transformer of a theoretical analysis of steady state and transient operation c haracteristics, and then use matlab software, by writing the matlab program to realize the simulation analysis, the characteristics of the transformer transient operation including transformer no-load closing to the power supply and the sudden short circuit of the transformer in both cases, the transformer no-load closing to this kind of situation and power sup ply by distinguish whether iron core saturation, respectively, using analytic method and the fourth order runge kutta algorithm simulation, ensure the accurate and reliable results. For the magnetization curve, the interpolation method was adopted to reali ze the unsaturated zone of magnetization curve fitting, the saturated area USES the straight line instead of the magnetization curve. And the simulation results are combined with theoretical knowledge has carried on the simple analysis,found in the process of the transition of the transformer of transformer is the most unfavorable situation, and also compared, and the theory simulation method used to verify the correctness and feasibility.KEY WORDS: transformer, the transient state characteristic, no-load closing, sudden short circuit, the matlab simulation目录第1章绪论 (1)§1.1 本课题研究的目的和意义 (1)§1.2 国内外研究现状 (1)§1.3 本文研究的主要内容 (2)第2章Matlab软件 (3)§2.1 Matlab简介 (3)§2.2 Matlab的特点 (4)§2.3 微分方程求解的仿真算法 (5)§2.3.1 Euler法 (5)§2.3.2 Runge kutta法 (5)第3章变压器稳态、暂态运行特性分析 (7)§3.1 变压器概述 (7)§3.2 变压器各电磁量正方向的规定 (7)§3.3 变压器空载运行 (8)§3.3.1 主磁通、漏磁通 (9)§3.3.2主磁通和漏磁通的感应电动势 (9)§3.3.3 空载运行时的电压方程和等效电路 (10)§3.3.4 铁心饱和和磁滞现象对励磁电流的影响 (11)§3.4变压器负载运行 (15)§3.4.1 负载时的磁动势 (15)§3.4.2 折合算法 (16)§3.4.3 负载运行时的电压方程和等效电路 (17)§3.5 变压器参数的确定 (18)§3.5.1 变压器的空载试验 (18)§3.5.2 变压器的短路试验 (19)§3.6 变压器的运行性能 (20)§3.6.1 变压器的外特性 (20)§3.6.2 变压器的效率特性 (22)§3.7 三相变压器 (23)§3.7.1 三相变压器的磁路系统 (23)§3.7.2 三相变压器空载运行时的电动势波形 (23)§3.8 变压器过渡过程中的过电流现象 (25)§3.8.1 变压器空载合闸到电源 (26)§3.8.2 突发短路 (28)第4章基于Matlab的变压器动态特性仿真 (30)§4.1 变压器空载合闸到电源时过电流的仿真和分析 (30)§4.1.1 不考虑铁心饱和时变压器空载合闸到电源的过电流仿真 (30)§4.1.2 考虑铁心饱和时变压器空载合闸到电源的过电流仿真 (36)§4.1.3 空载合闸到电源时产生的过电流对变压器的影响 (42)§4.2 突发短路时过电流的仿真和分析 (42)§4.2.1 突发短路时过电流的仿真 (42)§4.2.2 突发短路时产生的过电流对变压器的影响 (45)§4.3 变压器动态特性仿真分析 (45)总结 (47)参考文献 (50)附录 (52)第1章绪论§1.1 本课题研究的目的和意义在电力系统中,变压器从发电厂到输配电网中都充当着重要的角色,是电力系统中不可缺少的重要电气元件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计名称:电机与拖动课程设计题目:变压器运行特性分析计算专业:班级:姓名:学号:课程设计成绩评定表变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。

虽然这些变压器有所不同,但是它们的基本原理是相同的。

本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。

为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。

通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。

关键词:变压器;基本方程式;折算;等值电路;MATLAB计算1 变压器结构及其组成部分 (1)1.1变压器的基本结构 (1)1.1.1铁芯 (1)1.1.2绕组 (1)1.1.3油箱和冷却装置 (2)1.1.4绝缘套管 (2)1.1.5其他构件 (2)1.2变压器的额定值 (2)2变压器的变换关系 (4)2.1电压变换 (4)2.2电流变换 (4)2.3阻抗变换 (5)3变压器等值电路及其折算关系 (6)4变压器空载时的分析与计算 (8)5变压器负载运行时的分析与计算 (9)6变压器副边突然短路时分析计算 (10)7结论 (11)8心得体会 (12)参考文献 (13)1 变压器结构及其组成部分1.1 变压器的基本结构电力变压器主要由铁芯、绕组、变压器油、油箱、绝缘套管组成组成。

铁芯和绕组是变压器的主要部分,二者装配到一起称为变压器的器身。

图1-1为油浸式变压内部结构示意图。

图1-1 油浸式变压内部结构示意图1.1.1 铁芯铁芯是变压器的主磁路,又是变压器器身的骨架。

铁芯由铁芯柱、铁轭和夹件组成。

变压器铁芯可以分为心式铁芯和壳式铁芯两大类,为了提高磁路的导磁性能和降低铁芯的磁滞及涡流损耗,铁芯通常用厚0.35mm或0.5mm且表面涂有绝缘漆的硅钢片叠制而成。

为了保证良好的导磁性能,减少励磁电流,通常是把铁芯柱和铁轭的硅钢片一层层的交错重叠。

1.1.2 绕组绕组是变压器的电路部分,通常是用包有绝缘的铝导线或铜导线绕制而成。

根据高、低压绕组在铁芯柱上排列方式的不同,变压器绕组可以分为同芯式和交叠式两种。

通信式的高、低压绕组同心地套装在铁芯柱上。

交叠式绕组交替套在铁芯柱上。

这种绕组高、低压之间的间隙较多,绝缘比较复杂,但是漏电抗小,引线方便,机械强度好,主要用在电炉和电焊等特种变压器中。

如图1-2。

1.1.3 油箱和冷却装置油浸式变压器的器身放置在充满变压器油的油箱内。

变压器油是从石油中分馏出来的一种矿物油,起绝缘和冷却的作用。

油箱的结构与变压器的容量有关。

变压器的容量越大,发热问题就越严重。

1.1.4 绝缘套管变压器的引线从油箱内穿过油箱盖时,必须进过绝缘套管,以使带电的引线和接地的油箱绝缘。

绝缘套管由中心套杆和瓷套俩部分组成。

导杆下端经过分接开关与绕组端子连接,上端与外电路连接。

图1-2 电力变压器绝缘套管1.1.5 其他构件电力变压器除了上述几种基本结构外,还有储油柜、气体继电器、分接开关、测温装置、安全气道、油表等。

1.2 变压器的额定值额定电压U 1N /U 2N (kV 或V )。

指变压器长期运行时的所能承受的额定电压。

一次侧的额定电压U 1N 是指规定加到原绕组的电压;二次侧的额定电压U 2N 是指当原绕组上加额定电压时,副边绕组空载时的开路电压。

对于三相变压器指的均是线电压。

额定电流I 1N /I 2N (kA 或A )。

指变压器在额订容量下,各绕组长期运行时允许通过的电流。

额定容量S N (KV A 或V A )。

它是变压器在额定工作条件下输出能力的保证值,是变压器的视在功率。

单相变压器的额定容量为1122N N NN N S U IU I ==三相变压器的额定容量为1N 1N 2N 2N I I N S额定频率f N 。

我国规定标准的工业用电频率为50Hz 。

2变压器的变换关系变压器是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。

变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图2-1所示。

一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。

当交流变压器U 1加到一次侧绕组,同时也穿过二次侧绕组,它分别在两个绕组中产生感应电动势。

这时如果二次侧与外电路的负载接通,便有交流I 2流出,负载端电压即为U 2。

原绕组各量用下标1表示,副绕组各量用下标2表示。

原绕组匝数为N 1,副绕组匝数为N 2。

图2-1 变压器工作原理图2.1 电压变换111m E =j 4.44N f φ (2.1.1) 221m E =j4.44N f φ (2.1.2)111m 1221m 2E 4.44N f N E 4.44N f N k==φφ= (2.1.3)在忽略1z 和2z 的情况下,11U E ≈,22U E ≈,故变压器的变比还可以近似地认为等于变压器一、二次绕组的电压比,即1122E U E U k=≈ (2.1.4)只要适当选择一二次绕组的匝数比,就可以把一次绕组的电压变换到所需的二次绕组电压。

2.2 电流变换当外加电压1U 和其频率1f 一定时,主磁通基本保持不变,因此有变压器负载运行时的磁势平衡方程式:1122m I N I N =I N(2.1.5) 通过相应的化简和等效可得一、二次电流有效值之比为1221I N 1I N k==(2.1.6)这就是变压器实现电流变换的原理。

2.3 阻抗变换变压器除了具有电压和电流的变换作用之外,还有阻抗的变换作用。

121212122122U U N /N N U 22I I N /N N I ===k L z () (2.1.7) 由此可见,负载经过变压器后,其阻抗模相对于电源而言增加了绕组你匝比的平方倍。

3 变压器等值电路及其折算关系通过计算可以得出变压器的二次侧折算到一次侧后二次侧参数会发生改变,折算后二次侧的阻抗为原来的k 方倍,二次侧的感应电动势为原来的k 倍,二次侧负载上的电压为原来的k ,二次侧电流变为原来的1/k 倍。

并且可以得到图3-1变压器的“T”形等值电路。

图3-1 变压器的“T”形等值电路在实际应用中励磁电流很小,因此在一次绕组阻抗上产生的压降很小,故可以忽略,这样便可以将“T”形等值电路中的励磁支路从中间移出来,并联在电压源的端点上形成“Γ”形等值电路。

1r 1x 1U2'图3-2 变压器的Γ形等值电路变压器负载运行时I 1>>I m ,可以把励磁电流忽略不计,于是将励磁支路去掉就可以得到简化等值电路。

1U122'kx kr图3-3 变压器的简化等值电路12k r r r '=+12k x x x '=+12k k k z z z r jx '=+=+其中为短路电阻;X k 为短路电抗;Z k 为短路阻抗。

由此可见使用等值电路来计算单相变压器的参数带来了很大的方便。

4 变压器空载时的分析与计算当在变压器一次侧加额定电压380V 时,二次侧开路,即Z L 为无穷大,根据变压器的“T”形等效电路,可得此时电路的方程式:·20I A =···212U =E E =-- ····m 121I =I I =I +···11m m m m =I *z =I r jx E --(+)·····11111111U =(r jx )E I z E I -+=-++通过MATLAB 软件算出上述参数的具体值:·1=379.72j0.14395V E -- ··12U ==379.72j0.14395A E -+ ··1m I =I =0.1179j 1.2135A -通过计算可得,当二次侧开路时,二次侧电压几乎等于一次侧电压,励磁电流即为一次侧的电流,且励磁电流也很小,几乎为0。

5 变压器负载运行时的分析与计算由于U 1N /U 2N =380V/220V ,所以可以算出该电压器的变比k=1.727。

将二次侧的数值折算到一次侧时,电压、电流、阻抗的变换关系: '2k L L z z =;'222k z z ='22U =kU ; '122k I =I其中:L z =4+3j ;2z =0.035+0.055j给变压器两侧加上380V 电压,让变压器带负载运行时,且负载阻值Z L =4+3j 时,根据变压器的“T”形等效电路,可以得出下列方程式:···1111U =I z E -+'''···'2222U E I z =- '···12I I I m =- '··12E E =··1E I m m z =- '''··22U I z L =其中:U 1=380V通过MATLAB 软件算出上述参数的具体值:·41E =380 4.5269*10j ---1I =0.0070.0143j - m I =0.1175 1.2144j -'2I =0.1105 1.2002j -'2380.20.1067U j =-+通过上述具体值可以得出,该变压器在额定输入电压下带负载Z L =4+3j 时,一次侧电流较小,且负载上的实际电压方向与假定的方向相反,实际电流方向与假定的电流方向相同,励磁电流等于一次侧和二次侧的电流之和。

6 变压器副边突然短路时分析与计算在第五小节中已经算出了电压器的的变比k=1.727,并且二次侧折算到一次侧后阻抗、电流、电压的变换关系都有了详细的介绍。

当变压器带负载运行时,变压器副变突然短路时,即Z L ’=0,根据“T”形等效电路可以得出下列方程式:···1111U =I z E -+''··'222E I z = '···12I I I m =- '··12E E =··1E I m m z =-其中:U 1=380V通过MATLAB 软件算出上述参数的具体值: 0.3413 3.56m I j =-+ 13076.74843.7I j =- 2130774847.2m I I I j =-=-+ 11116.3 1.2442E j =- 通过上述计算可得知:变压器在正常带负载运行时,若副变突然短路,则该变压器的励磁电流会略微减小,但是会瞬间产生一个很大的一次侧电流,从而产生很大的感应电动势,二次侧也会瞬间有一个较大的与参考方向相反的电流产生。

相关文档
最新文档