高考数学填空压轴题之函数

合集下载

专题02 函数概念与基本初等函数Ι(选填压轴题)(学生版)-备战2022年高考数学高分必刷必过题

专题02 函数概念与基本初等函数Ι(选填压轴题)(学生版)-备战2022年高考数学高分必刷必过题

专题02函数概念与基本初等函数Ι(选填压轴题)一、单选题1.(2021·全国)已知函数222,1()11,1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,若对任意x ∈R ,()|2||1|0f x x k x ----≤恒成立,则实数k 的取值范围是()A.1,[1,)2⎛⎤-∞+∞ ⎥⎝⎦ B.11,,42⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭C.11,,84⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭D.(,1][2,)-∞+∞ 2.(2021·全国高三专题练习)设min{,}m n 表示,m n 二者中较小的一个,已知函数2()814f x x x =++,()221,log 42()min x g x x -⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭=(0x >),若1[5,](4)x a a ∀∈-≥-,2(0,)x ∃∈+∞,使得12()()f x g x =成立,则a 的最大值为A.-4B.-3C.-2D.03.(2021·和平·天津一中)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A.[]2,3B.[]1,3C.[]1,4D.[]2,44.(2021·河北·天津二中)已知函数01,()1,1.x f x x x ⎧≤≤⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为A.59,44⎡⎤⎢⎥⎣⎦B.59,44⎛⎤ ⎥⎝⎦C.59,{1}44⎛⎤⎝⎦ D.59,{1}44⎡⎤⎢⎥⎣⎦5.(2021·全国高二课时练习)函数()()2,,x x a k a x a f x e x a a x ⎧----≤⎪=⎨>⎪-⎩,若(]0,x a ∃∈-∞,使得()1,x a ∀∈+∞都有()()10f x f x ≤,则实数k 的取值范围是A.(),1-∞B.[)1,+∞C.(],2-∞D.[)2,+∞6.(2021·奉新县第一中学)已知函数()()f x g x 、是定义在R 上的函数,其中()f x 是奇函数,()g x 是偶函数,且()()22f x g x ax x +=++,若对于任意1212x x <<<,都有()()12122g x g x x x ->--,则实数a 的取值范围是()A.1(,[0,)2-∞-⋃+∞B.(0,)+∞C.1[,)2-+∞D.1[,0)2-7.(2021·全国高一专题练习)函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数,设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00=f ;②()11()f x f x -=-;③1()32x f f x ⎛⎫=⋅ ⎪⎝⎭,则12019f ⎛⎫ ⎪⎝⎭等于()A.116B.132C.164D.11288.(2021·全国高一专题练习)我们把定义域为[0,)+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:(1)对任意的[0,)x ∈+∞,总有()0f x ≥;(2)若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,下列判断正确的是()A.若()f x 为“Ω函数”,则(0)0f =不一定成立B.若()f x 为“Ω函数”,则()f x 在[0,)+∞上一定是增函数C.函数0,,()1,x Q g x x Q ∈⎧=⎨∉⎩在[0,)+∞上是“Ω函数”D.函数2()g x x x =+在[0,)+∞上是“Ω函数”9.(2021·全国)已知函数()y f x =,若给定非零实数a ,对于任意实数x M ∈,总存在非零常数T ,使得()()af x f x T =+恒成立,则称函数()y f x =是M 上的a 级T 类周期函数,若函数()y f x =是[0,)+∞上的2级2类周期函数,且当[0,2]x ∈时()2101()212x x f x f x x ⎧-≤≤⎪=⎨-<<⎪⎩,,,又函数21()2ln 2g x x x x m =-+++.若1[6,8]x ∃∈,2(0,)x ∃∈+∞,使21()()0g x f x -≤成立,则实数m 的取值范围是()A.(﹣∞,112]B.(﹣∞,132]C.[112+∞,)D.[132+∞,)10.(2021·安徽省怀宁县第二中学高三月考(理))已知()'f x 是奇函数()()f x x R ∈的导函数,当(,0]x ∈-∞时,()1f x '>,则不等式(21)(2)3f x f x x --+≥-的解集为A.(3,)+∞B.[3,)+∞C.(,3]-∞D.(,3)-∞11.(2021·重庆北碚·西南大学附中高三月考)已知3142342,3,log 4,log 5a b c d ====,则a b c d,,,的大小关系为()A.b a d c>>>B.b c a d>>>C.b a c d>>>D.a b d c>>>12.(2021·全国高一专题练习)已知函数32()log (31x f x x =+-+,若()()22122f a f a -+-≤-,则实数a 的取值范围是()A.[]3,1-B.[]2,1-C.(]0,1D.[]0,113.(2021·黔西南州同源中学(文))设2log 3a =,3log 4b =,5log 8c =,则A.a b c>>B.a c b>>C.c a b>>D.c b a>>14.(2021·绥德中学高一月考)定义在R 上的函数()f x 满足()()121f x f x +=+,当[)0,1x ∈时,()()()2122x xf x --=,若()f x 在[),1n n +上的最小值为23,则n =A.4B.5C.6D.715.(2021·新密市第一高级中学高二期末(文))已知函数()12019ln 112019x x a xf x a x -+=+-+-,若定义在R 上的奇函数()g x 满足()()11g x g x -=+,且()()211log 255g f f ⎛⎫=+ ⎪⎝⎭,则()2019g =A.2B.0C.1-D.2-二、多选题16.(2021·江苏鼓楼·高二期末)已知定义域为()0,∞+的函数()f x 满足:①()0,x ∀∈+∞,()()55f x f x =;②当(]1,5x ∈时,()5f x x =-,则()A.105f ⎛⎫= ⎪⎝⎭B.m Z ∀∈,()30mf =C.函数()f x 的值域为[)0,+∞D.n Z ∃∈,()512019nf +=17.(2021·湖南岳阳·高三模拟预测)已知函数3()13xxf x =+,设(1,2,3)i x i =为实数,且1230x x x ++=.下列结论正确的是()A.函数()f x 的图象关于点10,2⎛⎫⎪⎝⎭对称B.不等式1(1)2f x ->的解集为{}1x x >C.若1230x x x ⋅⋅<,则()()()12332f x f x f x ++<D.若1230x x x ⋅⋅<,则()()()12332f x f x f x ++>18.(2021·全国)1837年,德国数学家狄利克雷(P.G.Dirichlet,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x QD x x Q ∈⎧=⎨∈⎩ð(Q 表示有理数集合),关于此函数,下列说法正确的是()A.()D x 是偶函数B.,(())1x R D D x ∀∈=C.对于任意的有理数t ,都有()()D x t D x +=D.存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC ∆为正三角形19.(2021·湖南华容·)设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有()A.()1.10.9f -=B.函数()f x 为奇函数C.()()11f x f x +=+D.函数()f x 的值域为[)0,120.(2021·浙江)定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间[],a b 的“复区间长度”为()2b a -,已知函数()21f x x =-,则()A.[]0,1是()f x 的一个“完美区间”B.1122⎡+⎢⎥⎣⎦是()f x 的一个“完美区间”C.()f x的所有“完美区间”的“复区间长度”的和为3D.()f x的所有“完美区间”的“复区间长度”的和为3+21.(2021·岳麓·湖南师大附中高二月考)德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数”()1,0,R x Qy f x x C Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为A.函数()f x 是偶函数B.1x ∀,2R x C Q ∈,()()()1212f x x f x f x +=+恒成立C.任取一个不为零的有理数T ,()()f x T f x +=对任意的x ∈R 恒成立D.不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形22.(2021·汕头市第一中学)已知函数f (x )满足:当30x -≤<时,|2|()32x f x +=-,下列命题正确的是()A.若f (x )是偶函数,则当03x <≤时,|2|()32x f x +=-B.若(3)(3)f x f x --=-,则()()1g x f x =-在(6,0)x ∈-上有3个零点C.若f (x )是奇函数,则()()1212,[3,3],14x x f x f x ∀∈--<D.若(3)()f x f x +=,方程2[()](2)()20f x k f x k -++=在[3,3]x ∈-上有6个不同的根,则k 的范围为11k -<<三、填空题23.(2021·全国高三专题练习)定义域为集合{1,2,3,,12}⋅⋅⋅上的函数()f x 满足:①(1)1f =;②|(1)()|1f x f x +-=(1,2,,11x =⋅⋅⋅);③(1)f 、(6)f 、(12)f 成等比数列;这样的不同函数()f x 的个数为________24.(2021·全国高三专题练习)已知函数1(31)0()2ln 0x x f x x x ⎧++≤⎪=⎨⎪>⎩,,,,若存在实数a b c <<,满足()()()f a f b f c ==,则()()()af a bf b cf c ++的最大值是____.25.(2021·江西上高二中高二月考(文))定义在R 上函数()f x 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--,则使得()116f x ≤在[),m +∞上恒成立的m 的最小值是______________.26.(2021·上海徐汇·位育中学)设()1f x x =-,4()g x x =-,若存在121,,,[,4]4n x x x ⋅⋅⋅∈,使得12()()f x f x ++⋅⋅⋅+1121()()()()()()n n n n f x g x g x g x g x f x --+=++⋅⋅⋅++成立,则正整数n 的最大值为________27.(2021·广东潮阳·)函数())22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.28.(2021·全国高一专题练习)下列说法中正确的是______.①函数32y x -=的定义域是{}0x x ≠;②方程()230x a x a +-+=的有一个正实根,一个负实根,则0a <;③函数1lg1xy x-=+在定义域上为奇函数;④函数()log 252a y x =--(0a >,且1a ≠)恒过定点()3,2-;⑤若33x x--=,则33x x -+的值为2.。

2020年高考数学专题训练——第03讲 函数性质选择填空压轴题专练

2020年高考数学专题训练——第03讲 函数性质选择填空压轴题专练

第三讲函数的性质选择填空压轴题专练A 组一、选择题1.(2016年山东卷)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x > 时,11()()22f x f x +=-,则f (6)=( ) A .−2 B .−1C .0D .2【答案】D【解析】当11x -≤≤时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=,所以(6)2f =,故选D .2. 已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是(A) [1,2] (B) 10,2⎛⎤⎥⎝⎦ (C)1,22⎡⎤⎢⎥⎣⎦(D) (0,2] 【答案】C【解析】因为函数()f x 是定义在R 上的偶函数,且122log log a a =-,所以222122(log )(log )(log )(log )2(log )2(1)f a f a f a f a f a f +=+-=≤,即2(log )(1)f a f ≤,因为函数在区间[0,)+∞单调递增,所以2(log )(1)f a f ≤,即2log 1a ≤, 所以21log 1a -≤≤,解得122a ≤≤, 即a 的取值范围是1,22⎡⎤⎢⎥⎣⎦,选C.3.(2017年山东卷理)已知当时,函数的图象与的图象有且只有一个交点,则正实数的取值范围是( )A .B .C .D .【答案】B【解析】当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,y x m =+单调递增,且[,1]y x m m m =+∈+ ,此时有且仅有一个交点;当1m >时,101m << ,2(1)y mx =-在1[,1]m上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥ 选B.4.已知函数()()sin f x x x x R =+∈,且()()2223410f y y f x x -++-+≤,则当1y ≥时,1yx +的取值范围是( ) A .13,44⎡⎤⎢⎥⎣⎦ B .1,14⎡⎤⎢⎥⎣⎦C .1,323⎡⎤-⎣⎦D .1,3⎡⎤+∞⎢⎥⎣⎦【答案】A 【解析】由于()()f x f x -=-,所以函数为奇函数,()'1cos 0fx x =-≥为增函数.由()()2223410f y y f x x -++-+≤得到()()()2222341fyyf -+≤-,根据函数的单调性,有222341y y x x -+≤-+-,即()()22211x y -+-≤,由于1y ≥故点(),x y 表示的是圆心为()2,1半径为1的圆的上半部分,包括圆内.1yx +的几何意义是()(),,1,0x y -两点连线的斜率的取值范围,画出图像如下图所示,由图可知,斜率的最小值为14AD k =,斜率的最大值为AC k ,由于1,23AB k CAx BAx =∠=∠,利用二倍角的正切值得21223311419AB AC AB k k k ⋅===--.5.已知()f x 满足对x R ∀∈,()()0f x f x -+=,且0x ≥时,()xf x e m =+(m为常数),则()ln5f -的值为( ) A.4 B.-4 C.6 D.-6 【答案】B 【解析】由题意()f x 满足对x R ∀∈,()()0f x f x -+=,即函数()f x 为奇函数,由奇函数的性质可得()000,1f e m m =+=∴=-则当0x ≥时,()1xf x e =-,ln50>故()()()ln5ln5ln514f f e -=-=--=-,选B6.已知函数()()5sin f x x x x R =+∈,且()()22430f x x f y -++≤,则当0y >时,y xx y+的取值范围是( ) A .430,3⎛⎤⎥ ⎝⎦ B .432,3⎡⎤⎢⎥⎣⎦ C .43,3⎡⎫+∞⎪⎢⎪⎣⎭D .[)2,+∞ 【答案】C【解析】 由函数()()5sin f x x x x R =+∈,则()5s in ()[5f x x x x x f-=-+-=-+,所以函数为奇函数,所以不等式可转化为()()22243[(3)]f x x f y f y -≤-+=-+,又因为()5cos 0f x x '=+>,所以函数()f x 为单调递增函数,所以可得224(3)x x y -≤-+22430x y x ⇒+-+≤,又0y >,所以表示圆心在(2,0),半径为1的上半圆.设yt x=,则可得3[0,]3y t x =∈,则1y x y t x y t =+=+在区间3[0,]3t ∈上为单调递减函数,则当33t =时,433y =,所以y x x y +的取值范围是43,3⎡⎫+∞⎪⎢⎪⎣⎭,故选C . 7.设函数()()32ln 1f x x x x =+++且()233ln2113a a f a ⎛⎫---<- ⎪-⎝⎭,则实数a 的取值范围为( )A .()3,+∞B .()33,+∞C .()33,3 D .()()30,33,+∞【答案】C 【解析】 由函数()()32ln1f x x x x=+++,令1x =-,则()31(1)ln (21)l n (21)f -=-+-=--,所以()233ln 2113a a f a ⎛⎫---<- ⎪-⎝⎭,即()233l n 2113a a f a ⎛⎫-<--⎪-⎝⎭,即233(1)3a a f f a ⎛⎫-<- ⎪-⎝⎭,又函数()()32ln1f x x x x =+++为单调递增函数,所以23313a a a -<--,解得333a <<,故选C .8.已知函数213,1()log , 1x x x f x x x ⎧-+≤⎪=⎨>⎪⎩ ,若对任意的R x ∈,不等式()2724f x m m ≤-恒成立,则实数m 的取值范围是( )A .1(,]8-∞-B .1(,][1,)8-∞-+∞ C .[1,)+∞ D .1[,1]8- 【答案】B【解析】对于函数213,1()log , 1x x x f x x x ⎧-+≤⎪=⎨>⎪⎩ ,当1x ≤时,2111()()244f x x =--+≤;当1x >时,13()log 0f x x =<,则函数()f x 的最大值为14,则要使不等式()2724f x m m ≤-恒成立,则271244m m -≥,解得1(,][1,)8m ∈-∞-+∞,故选B . 9.已知函数()f x 是定义在R 上的单调函数,且对任意的x y ∈R ,都有()()()f x y f x f y +=+,若动点()P x y ,满足等式()()22222830f x x f y y +++++=,则x y +的最大值为( )A .63+B .3-C .63-D .3 【答案】C【解析】因为对任意的x y ∈R ,都有()()()f x y f x f y +=+,令0x y ==,∴()()()000f f f =+,∴()00f =.令y x =-,∴()()()00f f x f x =+-=,∴()()f x f x -=-,该函数为奇函数.∵()()22222830f x x f y y +++++=.∴()()()22222283283f x x f y y f y y ++=-++=---.∵()f x 是定义在R 上的单调函数.∴2222283x x y y ++=---,即22222830x x y y +++++=.整理,得()()2212142x y +++=.令2c o s 12s i nx y θθ=-=-,,∴2c o s 12sin 2x y θθ+=-+- ()6sin 3θϕ=+-,∴()min 63x y +=-,故选C .10.已知函数22,0()3||,0x x f x x a a x ⎧->=⎨-++<⎩的图象上恰有三对点关于原点成中心对称,则a 的取值范围是( )A .17(,2)8--B .17(,2]8-- C .17[1,)16D .17(1,)16【答案】D【解析】当2-=a 时,函数⎩⎨⎧<--->-=0,2|2|30,2)(2x x x x x f ,结合图象可知不存在三对点关于原点成中心对称,所以答案B 不正确.当1=a 时,函数⎩⎨⎧<++->-=0,1|1|30,2)(2x x x x x f ,结合图象可知不存在三对点关于原点成中心对称,所以答案C 也不正确.当1612-=a 时,函数⎪⎩⎪⎨⎧<--->-=0,1612|1612|30,2)(2x x x x x f ,结合图象可知不存在三对点关于原点成中心对称,所以答案A 也不正确.故应选D .11.已知定义在R 上的函数()y f x =满足下列三个条件 ①对任意的x R ∈都有()()4f x f x +=;②对任意的1202x x ≤<≤,都有()()12f x f x <;③()2y f x =+的图象关于y 轴对称,则()()()4.5, 6.5,7f f f 的大小关系为( ) A .()()()7 4.5 6.5f f f << B .()()()4.5 6.57f f f << C .()()()6.57 4.5f f f << D .()()()4.57 6.5f f f << 【答案】D【解析】由题意可知函数是周期为4的周期函数,且关于直线2=x 对称,因为)5.1()5.2()5.6(),1()3()7(),5.0()5.4(f f f f f f f f =====,且在区间上单调递增,所以()()()4.57 6.5f f f <<,应选D.12.函数()f x 的图象关于y 轴对称,且对任意x R ∈都有()()3f x f x +=-,若当35 22x ⎛⎫∈ ⎪⎝⎭,时,()12xf x ⎛⎫= ⎪⎝⎭,则()2017f =( )A .14-B .14 C.4- D .4【答案】A 【解析】因为函数()f x 对任意x R ∈都有()()3f x f x +=-,所以()()()63f x f x f x +=-+=,函数()f x 是周期为6的函数,()()()2017336611f f f =⨯+=,由()()3f x f x +=-可得()()()2321f f f -+=--=,因为函数()f x 的图象关于y 轴对称,所以函数()f x 是偶函数,()()2112224f f ⎛⎫-=== ⎪⎝⎭,所以()2017f =()1f =()2f --=14-,故选A.13.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数1,()0,x f x x ⎧=⎨⎩为有理数为无理数称为狄利克雷函数,则关于函数()f x 有以下四个命题:①(())1f f x =; ②函数()f x 是偶函数;③任意一个非零有理数T ,()()f x T f x +=对任意x R ∈恒成立;④存在三个点11(,())A x f x ,22(,())B x f x , 33(,())C x f x ,使得ABC ∆为等边三角形.其中真命题的个数是( ) A .4 B .3 C .2 D .1 【答案】A 【解析】由)(x f 是有理数⇒(())1f f x = ,故命题①正确;易得)()()(x f x f x f ⇒=-是偶函数,故②正确;易得()()f x T f x +=是偶函数,故③正确;取33(1,0),(1,1),(1,0)33A B C -+,可得ABC ∆为等边三角形 ,故④正确,综上真命题的个数有4个.二、填空题14.(2018北京高考)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 【答案】sin y x =(答案不唯一)【解析】令()(]00402x f x x x =⎧⎪=⎨-∈⎪⎩,,,,则()()0f x f >对任意的(]0,2x ∈都成立, 但()f x 在[]0,2上不是增函数.又如,令()sin f x x =,则()00f =,()()0f x f >对任意的(]0,2x ∈都成立, 但()f x 在[]0,2上不是增函数.15.函数()3123f x x x =-+,()3xg x m =-,若对[]11,5x ∀∈-,[]20,2x ∃∈,()()12f x g x ≥,则实数m 的最小值是 .【答案】14【解析】()()33631222--=+-=x x x x f ,对称轴6=x ,在区间[]51-,递减,∴()()325min -==f x f ,()()161max =-=f x f ,()m x g x -=3是增函数,∴()m x g -=1max ,()m x g -=9min ,∴只需()()min min x g x f >即可,解得:41>m ,故答案为:41.16.已知函数()2sin 1x x xe x f x x e ++=++,则 ()()()()()()()()()432101234f f f f f f f f f -+-+-+-+++++的值是 . 【答案】9 【解析】 因xxx e e x x x f e x x x f ++--=-+++=12sin )(,12sin )(,故21212)()(=+++=-+xxx ee e xf x f ,所以()()()()()()()()()43210f f f f f -+-+-+9142=+⨯=,应填9.17.定义在(1,1)-上的函数()f x 满足:()()()1x yf x f y f xy--=-,当(1,0)x ∈-时,有()0f x >,且1()12f -=.设2111()()()2,*5111m f f f n n n n =+++∈+-N ≥,则实数m 与-1的大小关系是 .【答案】1m >- 【解析】∵函数()f x 满足()()()1x yf x f y f xy--=-,令0x y ==得()0=0f ;令0x =得()()f y f y -=-.∴()f x 在(1,1)-为奇函数,单调减函数且在(1,0)-时,()0f x >,则在()0,1时()0f x <.又1()12f =-,∵21111111()()()()()111(1)1111n n f f f f f n n n n n n n n -+===-+-+-+-⋅+, 2111111111111()()()[()()][()()][()()]()()1()1511123341211m f f f f f f f f f f f f n n n n n n =+++=-+-++-=-=-->-+-+++18.已知函数)(x f 是周期为2的奇函数,当01≤≤-x 时,x x x f +=2)(,则=)22017(f . 【答案】14【解析】 因为函数)(x f 是周期为2的奇函数,所以22017111111()(5042)()()()()2222224f f f f ⎡⎤=⨯+==--=--+-=⎢⎥⎣⎦,即应填14. 三、解答题19.已知函数82)(2--=x x x f ,1642)(2--=x x x g (1)求不等式0)(<x g 的解集;(2)若对一切2>x ,均有15)2()(--+≥m x m x f 成立,求实数m 的取值范围. 【解析】(1)224160g x x x <()=--, ∴(2x +4)(x -4)<0,∴-2<x<4,∴不等式g (x )<0的解集为{x|-2<x<4}.(2)∵f (x )=x 2-2x -8. 当x>2时,f (x )≥(m +2)x -m -15恒成立, ∴x 2-2x -8≥(m +2)x -m -15, 即x 2-4x +7≥m(x -1).∴对一切x>2,均有不等式2471x x x -+-≥m 成立.而2471x x x -+-=(x -1)+41x --2≥2()411x x -⨯--2=2(当x =3时等号成立). ∴实数m 的取值范围是(-∞,2].B 组一、选择题1.(2017年天津卷理)已知函数设,若关于x 的不等式在R 上恒成立,则a 的取值范围是A .B .C .D .【答案】A【解析】不等式()2xf x a ≥+为()()2x f x a f x -≤+≤(*),当1x ≤时,(*)式即为22332x x x a x x -+-≤+≤-+,2233322x x a x x -+-≤≤-+,又22147473()241616x x x -+-=---≤-(14x =时取等号),223339393()241616x x x -+=-+≥(34x =时取等号), 所以47391616a -≤≤, 当1x >时,(*)式为222x x a x x x --≤+≤+,32222x x a x x --≤≤+,又3232()2322x x x x --=-+≤-(当233x =时取等号),222222x x x x +≥⨯=(当2x =时取等号),所以232a -≤≤,综上47216a -≤≤.故选A .2.(2016全国卷Ⅱ)已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,…,()m m x y ,,则()1miii x y =+=∑( )A .0B .mC .2mD .4m【答案】B【解析】由()()2f x f x -=-得()()2f x f x -+=,可知()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点0i i x x '+= =2i i y y '+, ∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .3.若不等式2222x x a y y ++≥--对任意实数x ,y 都成立,则实数a 的取值范围( )A .0a ≥B .1a ≥C .2a ≥D .3a ≥ 【答案】C 【解析】因为2222x x a y y ++≥-- 所以,()()22x +112y a ++≥-,要对任意实数x ,y 都成立,只需 20a -≤,即2a ≥,故选C .4.已知函数()()220162016log 120162x x f x x x -=+++-+,则关于x 的不等式()()314f x f x ++>的解集为( )A .1,4⎛⎫-+∞ ⎪⎝⎭B .1,4⎛⎫-∞- ⎪⎝⎭ C .()0,+∞D .(),0-∞ 【答案】A【解析】()()31220f x f x +-+->,设()()()22016220162016log 1x x F x f x x x -=-=-+++,()()F x F x -=-,所以()F x 为奇函数,图像关于原点对称,要()()310F x F x ++>,只需1310,4x x x ++>>-.5.已知函数()()x x x x x f ++++=1lnsin 22,若不等式()()3393-⋅+-xxxm f f <0对任意R ∈x 均成立,则m 的取值范围为( ) A.()132,-∞- B.()132,+-∞-C.()132,132-+- D.()∞++-,132 【答案】A【解析】 因为()()0f x f x +-=,且(2s i n )2c o s 0,x x x '+=+>()2l n1x x++单调递增,所以函数()f x 为R 上单调递增的奇函数,从而()()39330x x x f f m -+⋅-<()()339333933313x x x x x x x x f f m m m ⇔-<-⋅+⇔-<-⋅+⇔<-+又333123123133x xx x -+≥⋅-=-,当且仅当333x x =时取等号,所以m 的取值范围为()132,-∞-,选A. 6.已知()()()22ln 3ln 5ln11,,,22135x f x x x a f b f c f π⎛⎫⎛⎫=++-+===-- ⎪ ⎪+⎝⎭⎝⎭, 下列结论正确的是( )A .b a c >>B .c a b >>C .a b c >>D .c b a >>【解析】因函数)()(x f x f -=-,故函数)(x f 是奇函数,且在),0(+∞单调递增,由于55ln 33ln 1,12>>>-π,所以b a c >> ,故应选B. 7.已知()f x 是定义在R 上的增函数,函数(1)y f x =-的图象关于点(1,0)对称,若对任意的,x y R ∈,等式2(3)(43)0f y f x x -+--=恒成立,则yx的取值范围是( )A .22[23,23]33-+B .2[1,23]3+C .2[23,3]3-D .[1,3] 【答案】C 【解析】由于“函数(1)y f x =-的图象关于点(1,0)对称”,故()f x 图象关于原点对称,为奇函数,不妨设()f x x =.根据2(3)(43)0f y f x x -+--=,得223430,343y x x y x x -+--==---,作图象如下图所示,故yx最大值为3.当1,yx y x==时,过()2,2,由图象可知还不是最小值,不合题意,故选C.8.定义区间12[,]x x 的长度为21x x -(21x x >),函数22()1()(,0)a a x f x a R a a x+-=∈≠的定义域与值域都是[,]()m n n m >,则区间[,]m n 取最大长度时实数a 的值为( ) A .233B .-3C .1D .3 【答案】D设[]n m ,是已知函数定义域的子集.0≠x ,[]()0,,∞-⊆n m 或[]()∞+⊆,0,n m ,故函数()x a a a x f 211-+=在[]n m ,上单调递增,则()()⎩⎨⎧==nn f m m f ,故n m ,是方程x xa a a =-+211的同号的相异实数根,即()01222=++-x a a x a 的同号的相异实数根,∵21a mn =,∴n m ,同号,只需()()0132>-+=∆a a a ,∴1>a 或3-<a ,()343113422+⎪⎭⎫ ⎝⎛--=-+=-a mn n m m n ,m n -取最大值为332.此时3=a ,故选:D .9.已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅ 则1()miii x y =+=∑(A )0 (B )m (C )2m (D )4m 【答案】B 【解析】由于()()2f x f x -+=,不妨设()1f x x =+,其图像与函数111x y x x+==+的图像的交点为()()1,2,1,0-,故12122x x y y +++=,故选B.10.定义:如果函数()f x 在[],a b 上存在()1212,x x a x x b <<<满足()()()1fb f af x b a-'=-,()()()2f b f a f x b a-'=-,则称函数()f x 是[],a b 上的“双中值函数”,已知函数()322f x x x m =-+是[]0,2a 上“双中值函数”,则实数a 的取值范围是( ) A .11,84⎛⎫ ⎪⎝⎭ B .11,124⎛⎫ ⎪⎝⎭ C .11,128⎛⎫ ⎪⎝⎭ D .1,18⎛⎫⎪⎝⎭【答案】B 【解析】322(2)(0)2(2)(2)8222f a f a a a a a a --==-,2'()62f x x x =-,由题意方程22'()6282f x x x a a =-=-即22()340g x x x a a =--+=在[0,2]a 上有两个不等实根.所以222112(4)01026(0)40(2)80a a ag a a g a a a ⎧∆=--+>⎪⎪<<⎪⎨⎪=-+>⎪⎪=->⎩,解得1184a <<.故选B . 11.已知定义在R 上的函数)(x f 满足: )1(-=x f y 的图像关于点)0,1(对称,且当0≥x 时恒有)21()23(+=-x f x f ,当)2,0(∈x 时,1)(-=x e x f ,则=-+)2015()2016(f f ( )A .e -1B .1-eC .e --1D .1+e【答案】A 【解析】)1(-=x f y 的图象关于点)0,1(对称,则()f x 关于原点对称,()00f =.当0≥x 时恒有)21()23(+=-x f x f ,则函数周期为2.所以()()(2016)(2015)01011f f f f e e +-=-=-+=-. 12.已知定义在R 上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为( )A.-1B.0C.1D.2 【答案】B 【解析】由f(x+2)=-f(x)可知函数具有周期性,周期4T = ()()()6200f f f ∴==-= 二、填空题13.已知定义在R 上的偶函数满足:(4)()(2)f x f x f +=+,且当[]0,2x ∈时,()y f x =单调递减,给出以下四个命题:①(2)0f =;②4x =-为函数()y f x =图象的一条对称轴; ③()y f x =在[]8,10单调递增;④若方程()f x m =在[]6,2--上的两根为1x 、2x ,则128x x +=-. 以上命题中所有正确命题的序号为 . 【答案】①②④ 【解析】 ①依题意,()()()42f x f x f +=+,令2x =-,则()()()()()22222f f f f f =-+=+,∴ ()20f =;②()()4f x f x +=,∴函数周期为4,偶函数的对称轴是0x =,∴4x =-是()f x 的对称轴;③()f x 在[]0,2上递减,又函数周期为4,∴函数在[]8,10上递减;④()f x 在[]0,2上递增,且为偶函数,∴()f x 在[]2,0-上递减,∴() f x 在[]6,4--上递减,图象关于4x =-对称,∴ 两个根的和为128x x +=-,故正确的有①②④.14.函数()f x 对任意12,[,]x x m n ∈都有1212()()f x f x x x -≤-,则称()f x 为在区间[,]m n 上的可控函数,区间[,]m n 称为函数()f x 的“可控”区间,写出函数2()21f x x x =++的一个“可控”区间是________.【答案】1[,0]2-的子集都可以 【解析】因为)](1)(2[)()(212121x x x x x f x f -++=-,由可控函数的定义可得1|1)(2|21≤++x x ,即0121≤+≤-x x ,所以区间[,]m n 应为]0,21[-的一个子区间.15.给出下列命题:(1)设()f x 与()g x 是定义在R 上的两个函数,若1212()()()()f x f x g x g x +≥+恒成立,且()f x 为奇函数,则()g x 也是奇函数;(2)若12,x x R ∀∈,都有1212()()()()f x f x g x g x ->-成立,且函数()f x 在R 上递增,则()()f x g x +在R 上也递增;(3)已知0,1a a >≠,函数,1(),1x a x f x a x x ⎧≤=⎨->⎩,若函数()f x 在[]0,2上的最大值比最小值多52,则实数a 的取值集合为12⎧⎫⎨⎬⎩⎭; (4)存在不同的实数k ,使得关于x 的方程222(1)10x x k ---+=的根的个数为2个、4个、5个、8个.则所有正确命题的序号为________. 【答案】(1)(2)(3) 【解析】(1)为真,令21x x x=-=即可;(2)为真,不妨设12x x >,则1212()()()()f x f xg x g x ->-即211212()()()()()()f x f xg x g x f x f x -<-<-即1122()()()()f x g x f x g x +>+.(3)为假,作图后如果定势思维很容易漏掉72,加大可得正确答案17,22⎧⎫⎨⎬⎩⎭(4)为真,方程与函数图象结合,关于t 的方程若一正一负,正大于1,此时有2根;若一零一1,此时有5根;若判别式0=,此时有4根;若两个均为正,则有8个根. 三、解答题16.已知函数21()log 1xf x x x-=-++. (1)求20162016()()20152015f f +-的值; (2)当[,]x a a ∈-(其中(0,1)a ∈,且a 是常数)时,若()xm e f x --≤恒成立,求m 的取值范围.【解析】 (1)由).1,1()(11011-∴<<->+-的定义域为,得x f x xx又)()11log (11log )(22x f xxx x x x x f -=+-+--=-++=-, )(x f ∴为奇函数.)20152016()20152016(-+f f =0 (2)设1121<<<-x x ,则)1)(1()(2111121122211x x x x x x x x ++-=+--+-, 0)1)(1(,0,11211221>++>-∴<<<-x x x x x x ,011112211>+--+-∴x x x x ,即22111111x x x x +->+- 21log (1,1)1xy x-∴=-+函数在上是减函数,21()log (1,1).1xf x x x-=-+-+从而得在上也是减函数 )(x f e m x ≤--恒成立,即x e x f m -+≤)(恒成立令xex f x h -+=)()(,则xex f x h -+=)()(在定义域上是减函数,则a e aa a h x h m -+-+-==≤1log )()(2min17.已知函数xtx y +=有如下性质:如果常数0>t ,那么该函数在),0(t 上是减函数,在),[+∞t 上是增函数.(1)已知]1,0[,123124)(2∈+--=x x x x x f ,利用上述性质,求函数()f x 的单调区间和值域;(2)对于(1)中的函数()f x 和函数a x x g 2)(--=,若对任意1x ∈[0,1],总存在2x ∈[0,1],使得)(2x g =)(1x f 成立,求实数a 的值. 【解析】(1)812412123124)(2-+++=+--==x x x x x x f y , 设],1,0[,12∈+=x x u 则31≤≤u 则84-+=uu y ,]3,1[∈u . 由已知性质得,当21≤≤u ,即210≤≤x 时,)(x f 单调递减; 所以减区间为]21,0[;当32≤≤u ,即121≤≤x 时,)(x f 单调递增;所以增区间为]1,21[;由311)1(,4)21(,3)0(-=-=-=f f f ,得)(x f 的值域为]3,4[--.a x x g 2)(--=为减函数,故]1,0[],2,21[)(∈--∈x a a x g .由题意,)(x f 的值域是)(x g 的值域的子集,∴⎩⎨⎧-≥--≤--.32,421a a 23=∴aC 组一、选择题1.()f x 是定义在R 上的奇函数,且()()33f x f x -=+,当03x <<时,()()22log 2f x x =-+,则当06x <<时,不等式()()30x f x ->的解集是( ) A .()()0,23,4 B .()()0,24,5 C .()()2,34,5 D .()()2,33,4【答案】D【解析】当03x <<时,不等式()()30x f x ->即为()()22l o g 20fx x =-+<,所以()2log 22,2x 3x +>∴<<;当30x -<<时,03x <-<,所以()()()22log 2,f x f x x -=-=--()()22log 2f x x ∴=-+-,当36x <<时,360x -<-<,由()()33f x f x -=+可得()()()262l o g 80fx f x x =-=-+->,不等式()()30x f x ->可转化为()0f x >即()22log 80x -+->,所以34x <<,综上所述:不等式()()30x f x ->的解集是()()2,33,4,故选D.2.已知函数24()(0)1xf x x x x x =--<-,2()2(0)g x x bx x =+->,b R ∈,若()f x 图象上存在A ,B 两个不同的点与()g x 图象上'A ,'B 两点关于y 轴对称,则b 的取值范围为( )A .(425,)--+∞B .(425,)-+∞C .(425,1)--D .(425,1)- 【答案】D. 【解析】设()g x 函数图象上任一点2(,2)x x bx +-,其关于y 轴的对称点为2(,2)x x bx -+-, ∴由题意可知方程22242(1)(1)201xx bx x x b x b x x -+-=+-⇒-++-=--在(0,)+∞上有两个不等实根,∴2(1)8(1)0104251102(1)b b b b b b ⎧⎪∆=++->⎪⎪-<⇒-<<⎨⎪+⎪->-⎪⎩,即实数b 的取值范围是(425,1)-,故选D .3.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数()()2222f s s f t t -≤--,则当14s ≤≤时,2t ss t-+的取值范围是( ) A .13,2⎡⎫--⎪⎢⎣⎭ B .13,2⎡⎤--⎢⎥⎣⎦ C .15,2⎡⎫--⎪⎢⎣⎭ D .15,2⎡⎤--⎢⎥⎣⎦【答案】D【解析】设12x x <,则120x x -<.由1212()()0f x f x x x -<-,知12()()0f x f x ->,即12()()f x f x >,所以函数()f x 为减函数.因为函数(1)y f x =-的图象关于(1,0)成中心对称,所以()y f x =为奇函数,所以222(2)(2)(2)f s s f t t f t t -≤--=-,所以2222s s t t -≥-,即()(2)0s t s t -+-≥.因为233111t s s t s t s t s-=-=-+++,而在条件()(2)014s t s t s -+-≥⎧⎨≤≤⎩下,易求得1[,1]2t s ∈-,所以11[,2]2t s +∈,所以33[,6]21t s ∈+,所以311[5,]21t s-∈--+,即21[5,]2t s s t -∈--+,故选D . 4.设()x f 和()x g 是定义在同一个区间[]b ,a 上的两个函数,若函数()()x g x f y -=在[]b ,a x ∈上有两个不同的零点,则称()x f 和()x g 在[]b ,a 上是“关联函数”,区间[]b ,a 称为“关联区间”.若()432+-=x x x f 与()m x x g +=2在[]30,上是“关联函数”,则m 的取值范围是( ) A .]2,49(--B .[]01,-C .(]2-∞-,D .⎪⎭⎫⎝⎛+∞-,49 【答案】A 【解析】由题意,方程2()()54f x g x x x m -=-+-0=在[0,3]上有两不等实根,设2()54h x x x m =-+-,则254(4)0(0)40(3)205032m h m h m ∆=-->⎧⎪=-≥⎪⎪⎨=--≥⎪⎪<<⎪⎩,解得924m -<≤-.故选A .5.已知函数()244+=x x x f ,则=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛20152014201532015220151f f f f ( )【答案】A 【解析】函数()244+=x x x f ,则()()()1111444441424242424x x x x xx x x xx f x f x ----⋅+-=+=+++++⋅ 44142424x x x=+=++⋅,所以12320142015201520152015f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112014220132014112014100722015201520152015201520152f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++=⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选A . 6.设函数1 (2() 1 (02),x f x x x --≤≤⎧=⎨-<≤⎩1()(),[2,2]2g x f x x x =-∈-,若2121(log )(log )2()2g a g a g +≤,则实数a 的取值范围是( )A .1(0,]2B .[1,2]C .1[,2]2D .2[,2]2【答案】D【解析】由题11(212()()=121(2x x g x f x xx x ⎧---≤≤⎪⎪=-⎨⎪-<≤⎪⎩若2121(log )(log )2()2g a g a g +≤即22113(log )(log )21222g a g a ⎛⎫+-≤⋅-=- ⎪⎝⎭当22log 0a -≤≤时20log 2a ≤-≤,此时223(log )(log )2g a g a +-≤-即为()222113121l o g l o g 1 l o g 22222a a a a --+--≤-∴≥-∴≥结合22l o g 0a -≤≤即212a ≤≤,可知此时2,12a ⎡⎤∈⎢⎥⎣⎦;当20log 2a <≤时22log 0a -≤-≤,此时223(log )(log )2g a g a +-≤-即为()()222113l og1222a a a⎡⎤-+---≤-∴≤∴<≤⎢⎥⎣⎦结合20l o g 2a <≤即14a <≤,取交集即为12a <≤,综上 实数a 的取值范围是2[,2]27.已知2()22f x x x =-+,在21[,2]4m m -+上任取三个数a ,b ,c ,均存在以(),(),()f a f b f c 为三边的三角形,则m 的取值范围为( )A .(0,1)B .2[0,)2C .2(0,]2D .2[,2]2【答案】A 【解析】设2()22f x x x =-+,在21[,2]4m m -+上的最大值为max ,最小值为min ,则题意等价于2min max >,又22172()24m m m -+=-+74≥,所以min (1)1f ==,又131()416f =,311216⨯>成立,()f x 在[1,)+∞上单调递增,(2)2f =,由2(2)122f m m -+<⨯=得222m m -+<,得01m <<,故选A .8.已知函数()22 03 0x x f x x a a x ⎧->⎪=⎨-++<⎪⎩,,的图象恰有三对点关于原点成中心对称,则a 的取值范围是( )A .17 116⎛⎫-- ⎪⎝⎭,B .17 28⎛⎫-- ⎪⎝⎭, C.191 16⎛⎫ ⎪⎝⎭, D .171 16⎛⎫ ⎪⎝⎭,【答案】D【解析】由题意,问题转化为函数()30y x a a x =-++<与()220y x x =-<的图象恰有三个公共点,显然0a ≤时,不满足条件,当0a >时,画出草图如图,方程2234x x a -=+,即23420x x a ++-=有两个小于a -的实数根.结合图形,有()29442020a a aa ∆=-->⎧⎪>-⎨⎪>⎩,∴17116a <<.选D 。

2020年高考数学培优第03讲 函数的性质选择填空压轴题专练(解析版)

2020年高考数学培优第03讲 函数的性质选择填空压轴题专练(解析版)

周期为 6 的函数, f 2017 f 336 6 1 f 1 ,由 f x 3 f x可得 f 2 3 f 2 f 1 ,因为
函数 f x 的图象关于 y 轴对称,所以函数 f x 是偶函数, f 2
f
2
1 2
2
1 4
,所以
f
2017
f 1
f 2 1 ,故选 A.
f x2 2x 2 f 2 y2 8y 3 0 .∴ f x2 2x 2 f 2 y2 8y 3 f 2 y2 8y 3.∵ f x是定
义在 R 上的单调函数.∴ x2 2x 2 2 y2 8y 3 ,即 x2 2x 2 2 y2 8y 3 0 .整理,得
④存在三个点 A(x1, f (x1)) , B(x2 , f (x2 )) , C(x3, f (x3 )) ,使得 ABC 为等边三角形.
其中真命题的个数是( ) A.4 B.3 C.2 D.1 【答案】A
【解析】由 f (x) 是有理数 f ( f (x)) 1 ,故命题①正确;易得 f (x) f (x) f (x) 是偶函数,故②正
范围是( )
A.
1 4
,
3 4
B.
1 4
,1
C. 1,3 2 3
D.
1 3
,
【答案】A 【解析】
由于 f x f x,所以函数为奇函数, f ' x 1 cos x 0 为增函数.由
f y2 2 y 3 f x2 4x 1 0 得到 f y2 2 y 3 f x2 4x 1 f x2 4x 1 ,根据函数的
x 12 y 22
1 .令 x 2 cos 1 ,y 2 sin 2 ,∴ x y 2 cos 1 2 sin 2

2023年高考数学填选压轴题专题03 函数的奇偶性、对称性、周期性

2023年高考数学填选压轴题专题03 函数的奇偶性、对称性、周期性

专题03 函数的奇偶性、对称性、周期性【方法点拨】1.常见的与周期函数有关的结论如下:(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (2)如果f (x +a )=1f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . 2.函数奇偶性、对称性间关系:(1)若函数y =f (x +a )是偶函数,即f (a +x )=f (a -x )恒成立,则y =f (x )的图象关于直线x =a 对称;一般的,若f (a +x )=f (b -x )恒成立,则y =f (x )的图象关于直线x =a +b 2对称.(2)若函数y =f (x +a )是奇函数,即f (-x +a )+f (x +a )=0恒成立,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (a +x )+f (a -x )=2b 恒成立,则y =f (x )的图象关于点(a ,b )对称. 3. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍,为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍.(注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)4. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化.【典型题示例】例1 (2022·全国乙·理·T12) 已知函数(),()f x g x 的定义域均为R ,且()(2)5f x g x +-=,()(4)7g x f x --=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A. 21-B. 22-C. 23-D.24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=-,()()()462210f f f +++=-,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【解析】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()2211235(1)2k f f f f f f k =⎡⎤++++++⎣⎦=∑()()()4622f f f ⎡⎤+++⎣⎦13101024=----=-.故选:D例2 (2022·新高考Ⅱ卷·T8) 若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 1【答案】A【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【解析】因为()()()()f x y f x y f x f y ++-=, 令1,0x y ==可得,()()()2110f f f =,所以()02f =, 令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-, 所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--, 故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .例3 (2021·新高考全国Ⅱ卷·8)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A. 102f ⎛⎫-= ⎪⎝⎭B. ()10f -=C. ()20f =D.()40f =【答案】B【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【解析】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-,因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.例4 (2021·全国甲卷·理·12)设函数()f x 的定义域为R ,()1fx +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫=⎪⎝⎭( ) A. 94-B. 32-C.74 D.52【答案】D 【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .例5 已知函数f (x )对任意的x ∈R ,都有f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________. 【答案】4【分析】由f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12==,由函数 f (x +1)是奇函数,f (x )关于点(1,0)中心==,根据函数对称性、周期性间关系,知函数f (x )====2,====f (x )===即可.【解析】====f (x =1)=======f (=x =1)==f (x =1)====f ⎝⎛⎭⎫12=x = f ⎝⎛⎭⎫12=x ===f (1=x )=f (x )===f (x =1)==f (x )==f (x =2)==f (x =1)=f (x )= == ==f (x )====2========x =12=======f (x )========由图象可得 f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4. 例6 已知函数()y f x =是R 上的奇函数,对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则下列结论正确的有( )A .f (1)f +(2)f +(3)(2019)0f +⋯+=B .直线5x =-是函数()y f x =图象的一条对称轴C .函数()y f x =在[7-,7]上有5个零点D .函数()y f x =在[7-,5]-上为减函数【分析】根据题意,利用特殊值法求出f (2)的值,进而分析可得1x =是函数()f x 的一条对称轴,函数()f x 是周期为4的周期函数和()f x 在区间[1-,1]上为增函数,据此分析选项即可得答案.【解答】解:根据题意,函数()y f x =是R 上的奇函数,则(0)0f =;对任意x R ∈,都有(2)()f x f x f -=+(2)成立,当2x =时,有(0)2f f =(2)0=,则有f (2)0=,则有(2)()f x f x -=,即1x =是函数()f x 的一条对称轴;又由()f x 为奇函数,则(2)()f x f x -=--,变形可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,故函数()f x 是周期为4的周期函数, 当1x ,2[0x ∈,1],且22x x ≠时,都有1212()()0f x f x x x ->-,则函数()f x 在区间[0,1]上为增函数,又由()y f x =是R 上的奇函数,则()f x 在区间[1-,1]上为增函数; 据此分析选项:对于A ,(2)()f x f x +=-,则f (1)f +(2)f +(3)f +(4)[f =(1)f +(3)][f + (2)f +(4)]0=,f (1)f +(2)f +(3)(2019)504[f f +⋯+=⨯(1)f +(2)f +(3)f +(4)]f +(1)f +(2)+(3)f =(2)0=,A 正确;对于B ,1x =是函数()f x 的一条对称轴,且函数()f x 是周期为4的周期函数,则5x = 是函数()f x 的一条对称轴,又由函数为奇函数,则直线5x =-是函数()y f x =图象的一条对称轴,B 正确; 对于C ,函数()y f x =在[7-,7]上有7个零点:分别为6-,4-,2-,0,2,4,6;C 错误;对于D ,()f x 在区间[1-,1]上为增函数且其周期为4,函数()y f x =在[5-,3]-上为增函数,又由5x =-为函数()f x 图象的一条对称轴,则函数()y f x =在[7-,5]-上为减函数,D正确; 故选:ABD . 例7 已知函数()111123f x x x x =++---,()2g x x =-,则关于x 的方程()()f x g x =的实数根之和为______;定义区间(),a b ,[),a b ,(],a b ,[],a b 长度均为b a -,则()1111123f x x x x =++≥---解集全部区间长度之和为______. 【答案】①8 ②3【分析】根据题意得以函数()f x 关于点()2,0对称,进而利用导数研究函数()f x 性质,作出简图,树形结合求解即可得关于x 的方程()()f x g x =的实数根之和;令()1111123f x x x x =++=---整理得方程的实数根123,,x x x 满足1239x x x ++=,再数形结合得()1f x ≥解集为(](](]1231,2,3,x x x ,最后根据定义求解区间长度的和即可.【解析】因为()()1114321f x f x x x x-=++=----, 所以函数()f x 关于点()2,0对称, 由于()()()()222111'0123f x x x x =---<---,所以函数()f x 在()()()(),1,1,2,2,3,3,-∞+∞上单调递减,由于1x <时,()0f x <,(),0x f x →-∞→,()1,x f x -→→-∞,()1,x f x +→→+∞,()2,x f x -→→-∞,()2,x f x +→→+∞,()3,x f x -→→-∞,()3,x f x +→→+∞,(),0x f x →+∞→,且3x >时,()0f x >.故作出函数简图如图: 根据图像可知,函数()111123f x x x x =++---与函数()2g x x =-图像共有4个交点,且关于点()2,0对称,所以()()f x g x =的实数根之和为8;令()1111123f x x x x =++=---,整理得32923170x x x -+-=, 由图像知方程有三个实数解,不妨设为123,,x x x , 所以由三次方程的韦达定理得1239x x x ++=, 由函数图像得()1f x ≥解集为(](](]1231,2,3,x x x所以全部区间长度之和为12312312363x x x x x x -+-+-=++-=. 故答案为:8;3.【巩固训练】1.已知函数()1()2x af x -=关于1x =对称,则()()220f x f -≥的解集为_____.2.已知定义在R 上的函数()f x 满足(1)(3)f x f x +=--,且()f x 的图象与()lg4xg x x=-的图象有四个交点,则这四个交点的横纵坐标之和等于___________. 3.已知函数()()f x x R ∈满足(1)(1),(4)(4)f x f x f x f x +=-+=-,且33x -<≤时,()ln(f x x =,则(2018)f =( )A .0B .1 C.2) D.2)4. 已知f (x )是定义域为R 的函数,满足f (x +1)=f (x -3),f (1+x )=f (3-x ),当0≤x ≤2时,f (x )=x 2-x ,则下列说法正确的是( ) A.函数f (x )的周期为4B.函数f (x )图象关于直线x =2对称C.当0≤x ≤4时,函数f (x )的最大值为2D.当6≤x ≤8时,函数f (x )的最小值为-125.已知定义在R 上的奇函数,满足,且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间上有四个不同的根,则6.(多选题)函数f (x )的定义域为R ,且f (x +1)与f (x +2)都为奇函数,则( ) A.f (x )为奇函数B.f (x )为周期函数C.f (x +3)为奇函数D.f (x +4)为偶函数7.若定义在R 上的函数()f x 满足()()2f x f x +=-,()1f x +是奇函数,现给出下列4个论断:①()f x 是周期为4的周期函数;②()f x 的图象关于点()1,0对称; ③()f x 是偶函数; ④()f x 的图象经过点()2,0-; 其中正确论断的个数是______________.8. (多选题)已知定义在R 上的函数f (x )满足f (x )=2-f (2-x ),且f (x )是偶函数,下列说法正确的是( )A.f (x )的图象关于点(1,1)对称B.f (x )是周期为4的函数C.若f (x )满足对任意的x ∈[0,1],都有f (x 2)-f (x 1)x 1-x 2<0,则f (x )在[-3,-2]上单调递增D.若f (x )在[1,2]上的解析式为f (x )=ln x +1,则f (x )在[2,3]上的解析式为f (x )=1-ln(x -2) 9. (2022·江苏常州·模拟)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )等于( ) A.0B.mC.2mD.4m)(x f (4)()f x f x -=-[]8,8-1234,,,x x x x 1234_________.x x x x +++=10.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5011.已知函数y kx b =+与函数11x x y e e --=-的图象交于A ,B ,C ,且|AB |=|BC |=2211e e+-,则实数k = .【答案与提示】1.【答案】[]1,2【解析】∵函数()1()2x a f x -=关于1x =对称,∴()111,2x a f x -⎛⎫== ⎪⎝⎭,则由()()12202f x f -≥=,结合图象可得0222x ≤-≤,求得12x ≤≤.2.【答案】8【解析】()lg 4x g x x =-,故(4)()g x g x -=-,即()y g x =的图象关于点(2,0)对称,又函数()f x 满足(1)(3)f x f x +=--,则函数()y f x =的图象关于点(2,0)对称,所以四个交点的横纵坐标之和为8.3. 【答案】D【解析】因为()()()()11,44f x f x f x f x +=-+=-,所以()(2),()(8)(2)(8)826,f x f x f x f x f x f x T =-=-∴-=-∴=-=(2018)(2)ln(25)f f ∴==+ .4. 【答案】ABC【解析】 由f (x +1)=f (x -3),得f (x )=f [(x -1)+1]=f [(x -1)-3]=f (x -4),所以函数f (x )的周期为4,A 正确.由f (1+x )=f (3-x ),得f (2+x )=f (2-x ),所以函数f (x )的图象关于直线x =2对称,B 正确.当0≤x ≤2时,函数f (x )在⎣⎡⎭⎫0,12上单调递减,在⎝⎛⎦⎤12,2上单调递增.所以当x =12时,函数f (x )在[0,2]上取得极小值-14,且f (0)=0,f (2)=2.作出函数f (x )在[0,8]上的大致图象,如图.由图可知,当0≤x ≤4时,函数f (x )的最大值为f (2)=2,C 正确;当6≤x ≤8时,函数f (x )的最小值为f ⎝⎛⎭⎫152=f ⎝⎛⎭⎫12=-14,D 错误.故选ABC.5. 【答案】-8【提示】四个根分别关于直线2x =,6x =-对称.【命题立意】本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,运用数形结合的思想和函数与方程的思想解答问题.6.【答案】ABC【解析】法一 由f (x +1)与f (x +2)都为奇函数知,函数f (x )的图象关于点(1,0),(2,0)对称,所以f (-x )+f (2+x )=0,f (-x )+f (4+x )=0,所以f (2+x )=f (4+x ),即f (x )=f (2+x ),-8 -6 -4 -2 0 2 4 6 8 yx f(x)=m (m>0)所以f (x )是以2为周期的周期函数.又f (x +1)与f (x +2)都为奇函数,所以f (x ),f (x +3),f (x +4)均为奇函数.故选ABC.法二 由f (x +1)与f (x +2)都为奇函数知,函数f (x )的图象关于点(1,0),(2,0)对称,所以f (x )的周期为2|2-1|=2,所以f (x )与f (x +2),f (x +4)的奇偶性相同,f (x +1)与f (x +3)的奇偶性相同,所以f (x ),f (x +3),f (x +4)均为奇函数.故选ABC.7.【答案】3【解析】命题①:由()()2f x f x +=-,得:()()()42f x f x f x +=-+=, 所以函数()f x 的周期为4,故①正确;命题②:由()1f x +是奇函数,知()1f x +的图象关于原点对称,所以函数()f x 的图象关于点()1,0对称,故②正确;命题③:由()1f x +是奇函数,得:()()11f x f x +=--,又()()2f x f x +=-,所以()()()()()()21111f x f x f x f x f x -=--+=-+-=--=,所以函数()f x 是偶函数,故③正确;命题④:()()()2220f f f -=--+=-,无法判断其值,故④错误.综上,正确论断的序号是:①②③.8. 【答案】ABC【解析】根据题意,f (x )的图象关于点(1,1)对称,A 正确;又f (x )的图象关于y 轴对称,所以f (x )=f (-x ),则2-f (2-x )=f (-x ),f (x )=2-f (x +2),从而f (x +2)=2-f (x +4),所以f (x )=f (x +4),B 正确;由f (x 2)-f (x 1)x 1-x 2<0可知f (x )在[0,1]上单调递增,又f (x )的图象关于点(1,1)对称,所以f (x )在[1,2]上单调递增,因为f (x )的周期为4,所以f (x )在[-3,-2]上单调递增,C 正确;因为f (x )=f (-x ),x ∈[-2,-1]时,-x ∈[1,2],所以f (x )=f (-x )=ln(-x )+1,x ∈[-2,-1],因为f (x )的周期为4,f (x )=f (x -4),x ∈[2,3]时,x -4∈[-2,-1],所以f (x )=f (x -4)=ln(4-x )+1,x ∈[2,3],D 错误.综上,正确的是ABC.9.【答案】 B【解析】 ∵f (x )+f (-x )=2,y =x +1x =1+1x. ∴函数y =f (x )与y =x +1x的图象都关于点(0,1)对称, ∴∑m i =1x i =0,∑mi =1y i =m 2×2=m . 10.【答案】C【分析】同例1得f (x )的的的的4,故f (1) +f (2) +f (3) +f (4)=f (5) +f (6) +f (7) +f (8) =···=f (45) +f (46) +f (47) +f (48),而f (1)=2,f (2)=f (0)=0(f (1-x )=f (1+x )中,取x =1)、f (3)=f (-1) =-f (1)=-2、f (4)=f (0)=0,故f (1) +f (2) +f (3) +f (4)=f(5) +f (6) +f (7) +f (8) =···=f (45) +f (46) +f (47) +f (48) =0,所以f (1) +f (2) +f (3) +···+f (50) =f (47) +f (48) =f (1) +f (2) =2.11.【答案】1e e- 【解析】设()x x f x e e -=-,则()f x 为定义在R 上的单增的奇函数而11(1)x x y e e f x --=-=-,故其图象关于点(1,0)中心对称又因为|AB |=|BC |,所以B 的坐标为(1,0)为使运算更简单,问题可转化为过坐标原点的直线y kx =与()x x f x e e -=-交于一点D ,且k 的值 不妨设()000,x x D x e e --(00x >),== 解之得01x =,()11,D e e --,所以1k e e -=-.。

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

函数概念与基本初等函数(选填压轴题)(原卷版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

 函数概念与基本初等函数(选填压轴题)(原卷版)-【挑战压轴题】备战2023年高考数学高分必刷必过题

专题02函数概念与基本初等函数(选填压轴题)一、函数及其表示①抽象函数定义域②复合函数定义域③根式型、分式型求值域④抽象函数的值域⑤复合函数的值域⑥根据值域求参数二、函数的基本性质①单调性(复合函数的单调性)②函数的值域(复合函数的值域)③恒成立(能成立)问题④奇偶性⑤周期性⑥对称性⑦函数奇偶性+单调性+对称性联袂三、分段函数①分段函数求值域或最值②根据分段函数的单调性求参数四、函数的图象①特殊值②奇偶性③单调性④零点⑤极限联袂五、二次函数①二次函数的单调性②二次函数的值域(最值)六、指对幂函数①单调性②值域③图象④复合型七、函数与方程①函数的零点(方程的根)的个数②已知函数的零点(方程的根)的个数,求参数③分段函数的零点(根)的问题④二分法八、新定义题①高斯函数②狄利克雷函数③劳威尔不动点④黎曼函数⑤纳皮尔对数表⑥同族函数⑦康托尔三分集⑧太极图一、函数及其表示1.(2022·浙江·高三专题练习)已知函数(2)x y f =的定义域是[]1,1-,则函数3(log )f x 的定义域是()A .[]1,1-B .1,33⎡⎤⎢⎥⎣⎦C .[]1,3D .2.(2022·北京师大附中高一期末)已知函数()f x x =,()2g x ax x =-,其中0a >,若[]11,3x ∀∈,[]21,3x ∃∈,使得()()()()1212f x f x g x g x =成立,则=a ()A .32B .43C .23D .123.(2022·河南南阳·高一期末)若函数()f x 的定义域为[]0,2,则函数()()lg g x f x =的定义域为______.4.(2022·全国·高三专题练习)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.5.(2022·全国·高三专题练习)设2()lg2xf x x+=-,则2(()2x f f x +的定义域为_______.6.(2022·江西·赣州市赣县第三中学高一开学考试)函数()f x =______.7.(2022·上海·高三专题练习)函数y =_____.8.(2022·上海·模拟预测)若函数()y f x =的值域是1[,3]2,则函数1()(21)(21)F x f x f x =+++的值域是________.9.(2022·全国·高一)函数2y =的值域是________________.10.(2021·全国·高一专题练习)已知函数22y x x =+在闭区间[,]a b 上的值域为[1,3]-,则⋅a b 的最大值为________.二、函数的基本性质1.(2021·江苏·海安高级中学高一阶段练习)已知函数()()2ln 122x xf x x -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是A .()(),11,-∞-+∞U B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭ D .()(),21,-∞-⋃+∞2.(2021·江苏·高一单元测试)已知函数()f x 的定义域是()0+∞,,且满足()()()f xy f x f y =+,112f ⎛⎫= ⎪⎝⎭,如果对于0x y <<,都有()()f x f y >,不等式()()32f x f x -+-≥-的解集为()A .[)(]1034-⋃,,B .112⎡⎤--⎢⎥⎣⎦,C .[)43--,D .[)10-,3.(2022·吉林·梅河口市第五中学高一期末)已知函数()22ln 1f x x x x =-+-,若实数a 满足()()121f a f a ->-,则实数a 的取值范围是()A .40,3⎛⎫ ⎪⎝⎭B .(),0∞-C .41,3⎛⎫ ⎪⎝⎭D .()40,11,3⎛⎫⎪⎝⎭4.(2022·北京·高三专题练习)已知函数()f x 的定义域为R ,当[2x ∈,4]时,224,23()2,34x x x f x x x x⎧-+⎪=⎨+<⎪⎩ ,()1g x ax =+,若对1[2x ∀∈,4],2[2x ∃∈-,1],使得21()()g x f x ,则正实数a 的取值范围为()A .(0,2]B .(0,7]2C .[2,)+∞D .7[2,)+∞5.(2022·全国·高三专题练习)已知函数2()21x x mf x +=+(01x ≤≤),函数()(1)g x m x=-(12x ≤≤).若任意的[]10,1x ∈,存在[]21,2x ∈,使得()()12f x g x =,则实数m 的取值范围为()A .51,3⎛⎤ ⎥⎝⎦B .[]2,3C .52,2⎡⎤⎢⎥⎣⎦D .55,32⎡⎤⎢⎥⎣⎦6.(多选)(2022·湖北·沙市中学高一期末)定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,若任给[]12,0x =-,存在[]22,1x ∈-,使得()()21g x f x =,则实数a 的取值可以为()A .12-B .14-C .18-D .187.(2022·河北·高三阶段练习)函数()212x ax bf x -+⎛⎫= ⎪⎝⎭的最大值为2,且在1,2⎛⎤-∞ ⎥⎝⎦上单调递增,则a 的范围是______,4b a+的最小值为______.8.(2022·全国·模拟预测)已知函数()f x 的定义域()(),00,D =-∞⋃+∞,对任意的1x ,2x D ∈,都有()()()12123f x x f x f x =+-,若()f x 在()0,∞+上单调递减,且对任意的[)9,t ∈+∞,()f m >m 的取值范围是______.9.(2022·河北省唐县第一中学高一期中)设函数()()20.5log 23f x x x =--,则()f x 的单调递增区间为_________.10.(2022·山西吕梁·高一期末)已知函数2231()2--=ax x y 在区间(-1,2)上单调递增,则实数a 的取值范围是_________.11.(2022·安徽省舒城中学高一阶段练习)已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是________.12.(2022·上海·曹杨二中高一期末)已知常数0a >,函数()y f x =、()y g x =的表达式分别为()21x f x ax =+、()3ag x x =-.若对任意[]1,x a a ∈-,总存在[]2,x a a ∈-,使得()()21f x g x ≥,则a 的最大值为______.13.(2022·全国·高三专题练习)设函数()123f x ax b x=--,若对任意的正实数a 和实数b ,总存在[]01,4x ∈,使得()0f x m >,则实数m 的取值范围是______.14.(2022·上海·高三专题练习)已知t 为常数,函数22y x x t =--在区间[0,3]上的最大值为2,则t =_____________15.(2022·重庆市万州第二高级中学高二阶段练习)已知函数2()(1)ln 1f x a x ax =+++(1a <-)如果对任意12,(0,)x x ∈+∞,1212()()4|f x f x x x -≥-,则a 的取值范围为_____________.16.(2022·浙江宁波·高一期末)已知()()()e 1ln 21x af x x a -=-+-,若()0f x ≥对()12,x a ∈-+∞恒成立,则实数=a ___________.17.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________.18.(2022·上海·高三专题练习)已知函数()800x x f x x x a x ⎧-<⎪=⎨⎪-≥⎩,若对任意的[)12,x ∈+∞,都存在[]22,1x ∈--,使得()()12f x f x a ⋅≥,则实数a 的取值范围为___________.19.(2022·全国·高三专题练习)设函数2()f x x ax b =++,对于任意的实数a ,b ,总存在0[0,4]x ∈,使得()f x t ≥成立,则实数t 的取值范围是________.三、分段函数1.(2022·江苏南京·三模)已知()22,0,0x x f x x x ⎧≥=⎨-<⎩,若∀x ≥1,f (x +2m )+mf (x )>0,则实数m 的取值范围是()A .(-1,+∞)B .1,4⎛⎫-+∞ ⎪⎝⎭C .(0,+∞)D .1,12⎛⎫- ⎪⎝⎭2.(2022·河南·二模(理))已知函数1,01()ln ,1x x f x x x -≤≤⎧=⎨>⎩,若()()f a f b =,且a b ¹,则()()bf a af b +的最大值为()A .0B .(3ln 2)ln 2-⋅C .1D .e3.(2022·宁夏·银川一中三模(文))已知()242,01,0x x m x f x x x x +⎧-+≤⎪=⎨+>⎪⎩的最小值为2,则m 的取值范围为()A .(],3-∞B .(],5-∞C .[)3,+∞D .[)5,+∞4.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是()A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞5.(2022·四川攀枝花·二模(文))已知函数()()222,1e ,1xx ax a x f x a R ax x ⎧-+≤=∈⎨->⎩,若关于x 的不等式()0f x ≥恒成立,则实数a 的取值范围为()A .[]0,1B .[]0,2C .[]1,e D .[]0,e6.(2022·浙江·高三专题练习)已知函数()22,,14,,xx a f x x x x x a ⎧<⎪=+⎨⎪-+≥⎩则当5a =时,函数()f x 有______个零点;记函数()f x 的最大值为()g a ,则()g a 的值域为______.7.(2022·北京市十一学校高三阶段练习)已知函数()2ln ,021,0x x f x kx x x ⎧>=⎨+-≤⎩,给出下列命题:(1)无论k 取何值,()f x 恒有两个零点;(2)存在实数k ,使得()f x 的值域是R ;(3)存在实数k 使得()f x 的图像上关于原点对称的点有两对;(4)当1k =时,若()f x 的图象与直线1y ax =-有且只有三个公共点,则实数a 的取值范围是()0,2.其中,所有正确命题的序号是___________.8.(2022·贵州·遵义市南白中学高一期末)已知函数1,0()lg ,0x x f x x x ⎧+<=⎨>⎩,()g x ²222x x λ=-+-,若关于x 的方程(())f g x λ=(R λ∈)恰好有6个不同的实数根,则实数λ的取值范围为_______.9.(2022·河南·鹤壁高中模拟预测(文))已知(),01e ,1x x xf x x <<⎧=⎨≥⎩,若存在210x x >>,使得()()21e f x f x =,则()12x f x ⋅的取值范围为___________.四、函数的图象1.(2022·全国·高三专题练习)已知函数2sin 62()41x x x f x π⎛⎫⋅+ ⎪⎝⎭=-,则()f x 的图象大致是()A.B .C .D .2.(2021·浙江省三门中学高三期中)已知函数()f x 的图像如图,则该函数的解析式可能是()A .ln xe x⋅B .ln xx e C .ln xx e +D .ln xe x-3.(2022·江西·景德镇一中高一期中)已知函数()f x =()A .B .C .D .4.(多选)(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为()A .B .C .D .5.(多选)(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是()A .B .C .D .6.(多选)(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是()A .B .C .D .五、二次函数1.(2022·江西景德镇·三模(理))已知二次函数()2f x ax bx c =++(其中0ac <)存在零点,且经过点()1,3和()1,3-.记M 为三个数a ,b ,c 的最大值,则M 的最小值为()A .32B .43C .54D .652.(2022·浙江·高三专题练习)设I M 表示函数()242f x x x =-+在闭区间I 上的最大值.若正实数...a 满足[][]0,,22a a a M M ≥,则正实数a 的取值范围是()A .122⎡⎤⎢⎥⎣⎦B .2⎡⎤⎣⎦C .2,2⎡⎣D .24⎡⎤+⎣⎦3.(2022·安徽·界首中学高一期末)已知函数()()212f x x mx x =++∈R ,且()y f x =在[]0,2x ∈上的最大值为12,若函数()()2g x f x ax =-有四个不同的零点,则实数a 的取值范围为()4.(2022·湖南长沙·高三阶段练习)已知函数2()f x x =,()21g x a x =-,a 为常数.若对于任意x 1,x 2∈[0,2],且x 1<x 2,都有1212()()()()f x f x g x g x --<,则实数a 的取值范围是___________.5.(2022·浙江·高三专题练习)对于函数()()y f x y g x ==,,若存在0x ,使()()00 f x g x =-,则称()()()()0000M x f x N x g x --,,,是函数()f x 与()g x 图象的一对“雷点”.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,恒有()()1f x f x +=,且当10x -<≤时,()f x x =.若()()()2120g x x a x =++-<<,函数()f x 与()g x 的图象恰好存在一对“雷点”,则实数a 的取值范围为____________________.6.(2022·江西·贵溪市实验中学高二期末)函数21()43f x ax ax =++的定义域为(,)-∞+∞,则实数a 的取值范围是___________.7.(2022·湖北·一模)若函数()f x 的定义域为R ,对任意的12,x x ,当12x x D -∈时,都有()()12f x f x D -∈,则称函数f (x )是关于D 关联的.已知函数()f x 是关于{4}关联的,且当[)4,0x ∈-时,()26f x x x =+.则:①当[)0,4x ∈时,函数()f x 的值域为___________;②不等式()03f x <<的解集为___________.六、指对幂函数1.(2022·山西·太原五中高三阶段练习(理))正实数,,a b c 满足422,33,log 4a b a b c c -+=+=+=,则实数,,a b c 之间的大小关系为()A .b a c <<B .a b c <<C .a c d<<D .b c a <<2.(2022·山东·模拟预测)若282log 323log +=⋅+a b a b ,则()A .12b a b<<B .2<<+b a b C .23b a b<<D .1132b a b<<3.(2022·广东·模拟预测)已知()222022log f x x x =+,且()60.20.2log 11,lg ,4102022a f b f c f -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 之间的大小关系是__________.(用“<”连接)4.(2022·上海·华东师范大学附属东昌中学高三阶段练习)若关于x 的不等式()14log 321x x λ+⋅≤对任意的[)0,x ∈+∞恒成立,则实数λ的取值范围是______.5.(2022·云南·曲靖一中高二期中)函数()21949192120212049x f x x x x=--+,[]1949,2022α∃∈,对[],2049m β∀∈,()()f f αβ<都成立,则m 的取值范围(用区间表示)是_______6.(2022·江西宜春·模拟预测(文))若1,22x ⎡⎤∀∈⎢⎥⎣⎦,不等式2122log 0x x x ax -+<恒成立,则实数a 的取值范围为___________.7.(2022·天津·二模)已知()4log 41log x y +=+2x y +的最小值为__________.8.(2022·陕西·榆林市第十中学高二期中(文))要使函数124x x y a =++⋅在(],1x ∈-∞时恒大于0,则实数a 的取值范围是______.七、函数与方程1.(2022·天津·南开中学模拟预测)已知函数()2221,12810,1x x x f x x x x ⎧++≤=⎨-+>⎩,若函数()()1g x f x x a =+--恰有两个零点则实数a 的取值范围是()A .()723,4,48∞⎛⎫⋃+ ⎪⎝⎭B .23,48⎛⎫ ⎪⎝⎭C .23,8∞⎛⎫+ ⎪⎝⎭D .7,4⎛⎫+∞ ⎪⎝⎭2.(2022·安徽·蚌埠二中模拟预测(理))已知1120xx +=,222log 0x x +=,3233log 0x x --=,则()A .123x x x <<B .213x x x <<C .132x x x <<D .231x x x <<3.(2022·甘肃·临泽县第一中学高二期中(文))若函数2()(1)1x f x m x x =--+在区间(1,1)-上有2个零点()1212,x x x x <,则21e xx +的取值范围是()A .(1,e 1)-B .(2,e 1)+C .(1,)+∞D .(e 1,)-+∞4.(2022·山西·太原五中高三阶段练习(理))正实数,,a b c 满足422,33,log 4a b a b c c -+=+=+=,则实数,,a b c 之间的大小关系为()A .b a c <<B .a b c <<C .a c d<<D .b c a<<5.(2022·全国·模拟预测)已知函数()()22,22cos π,24xx f x x x ⎧-≤⎪=⎨<≤⎪⎩,实数123,,x x x ,4x 是函数()y f x m =-的零点,若1234x x x <<<,则132314242222x x x x x x x x +++++++的取值范围为()A .[)16,20B .()C .[)64,80D .()6.(2022·浙江·效实中学模拟预测)已知函数()2222x xf x --=+,对任意的实数a ,b ,c ,关于x 的方程()()20a f x bf x c ++=⎡⎤⎣⎦的解集不可能是()A .{}1,3B .{}1,2,3C .{}0,2,4D .{}1,2,3,47.(2022·陕西·模拟预测(理))已知1x 是方程32x x ⋅=的根,2x 是方程3log 2x x ⋅=的根,则12x x ⋅的值为()A .2B .3C .6D .108.(2022·福建南平·三模)已知函数()2e 9e 42x a a xf x x x --=++--有零点,则实数=a ___________.9.(2022·内蒙古呼和浩特·二模(文))若2log 3x x ⋅=,23y y ⋅=,ln 3z z ⋅=,则x 、y 、z 由小到大的顺序是___________.八、新定义题1.(2022·广东·梅州市梅江区梅州中学高一阶段练习)设x ∈R ,用[x ]表示不超过x 的最大整数,则[]y x =称为高斯函数.例如:[][]3, 5.1π=-6=-.已知函数()221xf x x =+,则函数()]y f x ⎡=⎣的值域为()A .{0,1-}B .{1-,1}C .{0,1}D .{1-,0,1}2.(2022·广东·华南师大附中高一期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数()()2134142f x x x x =-+<<,则函数()y f x ⎡⎤=⎣⎦的值域为()A .13,22⎡⎫⎪⎢⎣⎭B .{}1,0,1-C .{}1,0,1,2-D .{}0,1,23.(2022·上海民办南模中学高三阶段练习)德国数学家狄利克雷是解析数论的创始人之一,以其名命名狄利克雷函数的解析式为()0,1,x Qf x x Q ∉⎧=⎨∈⎩,关于狄利克雷函数()f x ,下列说法不正确的是().A .对任意x ∈R ,()()1f f x =B .函数()f x 是偶函数C .任意一个非零实数T 都是()f x 的周期D .存在三个点()()11,A x f x 、()()22,B x f x 、()()33,C x f x ,使得ABC 为正三角形4.(2022·新疆·一模(理))德国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一.以其命名的函数()1,0,x f x x ⎧=⎨⎩为有理数为无理数,称为狄利克雷函数,则关于函数()f x ,下列说法正确的是()A .()f x 的定义域为{}0,1B .()f x 的值域为[]0,1C .x R ∃∈,()()0f f x =D .任意一个非零有理数T ,()()f x T f x +=对任意x ∈R 恒成立5.(2022·河南·鹤壁高中模拟预测(文))黎曼函数是一个特殊的函数,由德国数学家波恩哈德·黎曼发现并提出,在高等数学中有着广泛的应用.黎曼函数定义在[]0,1上,其解析式为:()[]1,,,0,0,10,1q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数是既约真分数当或上的无理数.若函数()f x 是定义在实数集上的偶函数,且对任意x 都有()()20f x f x ++=,当[]0,1x ∈时,()()f x R x =,则()2022ln 20225f f ⎛⎫--= ⎪⎝⎭()A .15B .25C .25-D .15-6.(2022·吉林长春·模拟预测(文))纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是()1T ℃,空气的温度是()0T ℃,经过t 分钟后物体的温度T (℃)可由公式1034log T T t T T -=-得出,如温度为90℃的物体,放在空气中冷却约5分钟后,物体的温度是30℃,若根据对数尺可以查询出3log 20.6309=,则空气温度约是()A .5℃B .10℃C .15℃D .20℃7.(2022.安徽.淮南第二中学高二阶段练习)纳皮尔在他的《奇妙的对数表》一书中说过:没有什么比大数的运算更让数学工作者头痛,更阻碍了天文学的发展.许凯和斯蒂菲尔这两个数学家都想到了构造了如下一个双数列模型的方法处理大数运算.012345678910124816326412825651210241112...19202122232425 (2048)4096…52428810485762097152419430483886081677721633554432…如5121024⨯,我们发现512是9个2相乘,1024是10个2相乘.这两者的积,其实就是2的个数做一个加法.所以只需要计算91019+=.那么接下来找到19对应的数524288,这就是结果了.若()4log 202112261314520x =⨯,则x 落在区间()A .()1516,B .()22,23C .()42,44D .()44,468.(2022·内蒙古·赤峰红旗中学松山分校高一期末(文))纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是1T (℃),空气的温度是0T (℃),经过t 分钟后物体的温度T (℃)可由公式3104log T T t T T -=-得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出3log 20.6309=,则空气温度是()A .5℃B .10℃C .15℃D .20℃9.(2022·山西·朔州市平鲁区李林中学高一阶段练习)16、17世纪,随着社会各领域的科学知识迅速发展,庞大的数学计算需求对数学运算提出了更高要求,改进计算方法,提高计算速度和准确度成了当务之急.苏格兰数学家纳皮尔发明了对数,是简化大数运算的有效工具,恩格斯曾把纳皮尔的对数称为十七世纪的三大数学发明之一.已知ln 20.6931≈,ln 3 1.0986≈,设536N =,则N 所在的区间为(e 2.71828= 是自然对数的底数)()A .()1718,e eB .()1819,e eC .()1920,e eD .()2122,e e10.(2022·新疆石河子一中高三阶段练习(理))16、17世纪之交,苏格兰数学家纳皮尔发明了对数,在此基础上,布里格斯制作了第一个常用对数表,在科学技术中,还常使用以无理数e 为底数的自然对数,其中e 2.71828=⋅⋅⋅称之为“欧拉数”,也称之为“纳皮尔数”对数)x1.3102 3.190 3.797 4.71557.397ln x0.27000.69311.1600 1.33421.550 1.60942.001A .3.797B .4.715C .5D .7.39711.(2022·福建泉州·模拟预测)1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间[0,1]平均分成一段,去掉中间的一段,剩下两个闭区间10,3⎡⎤⎢⎥⎣⎦和2,13⎡⎤⎢⎥⎣⎦;第二步,将剩下的两个闭区间分别平均分为二段,各自去掉中间的一段,剩下四段闭区间:10,9⎡⎤⎢⎥⎣⎦,21,93⎡⎤⎢⎥⎣⎦,27,39⎡⎤⎢⎥⎣⎦,8,19⎡⎤⎢⎥⎣⎦;如此不断的构造下去,最后剩下的各个区间段就构成了二分康托集.若经历n 步构造后,20212022不属于剩下的闭区间,则n 的最小值是()A .7B .8C .9D .1012.(2022·全国·高三专题练习)广为人知的太极图,其形状如阴阳两鱼互纠在一起,因而被习称为“阴阳鱼太极图”如图是放在平面直角坐标系中的“太极图”整个图形是一个圆形区域224x y +≤.其中黑色阴影区域在y 轴左侧部分的边界为一个半圆.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则当224x y +≤时,下列不等式能表示图中阴影部分的是()A .()22(sgn())10x x y x +--≤B .()22(sgn())10y x y y -+-≤C .()22(sgn())10x x y x +--≥D .()22(sgn())10y x y y -+-≥13.(多选)(2022·安徽·高一期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如:[][]1.61, 2.13=-=-,设函数()[]1f x x x =+-,则下列关于函数()f x 叙述正确的是()A .()f x 为奇函数B .()1f x =⎡⎤⎣⎦C .()f x 在()01,上单调递增D .()f x 有最大值无最小值14.(多选)(2022·贵州贵阳·高一期末)历史上第一个给出函数一般定义的是19世纪数学家秋利克需(Dirichlet ),他是最早倡导严格化方法的数学家之一,狄利克雷在1829年给出了著名的狄利克雷函数:1,()0,x Qf x x Q ∈⎧=⎨∉⎩(Q 是有理数集),狄利克雷函数的出现表示数学家们对数学的理解发生了深刻的变化,从研究“算”转变到了研究“概念、性质、结构”.一般地,广文的秋利克雷函数可以定义为:,,(),,a x Q D x b x Q ∈⎧=⎨∉⎩(其中,a b ∈R ,且a b ¹).以下对()D x 说法正确的有()A .()D x 的定义域为RB .()D x 是非奇非偶函数C .()D x 在实数集的任何区间上都不具有单调性D .任意非零有理数均是()D x 的周期15.(多选)(2022·吉林·农安县教师进修学校高一期末)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可以应用到有限维空间并构成了一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L .E .J .Brouwer ),简单地讲就是对于满足一定条件的连续函数()f x ,如果存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点函数”,下列为“不动点函数”的是()A .()sin f x x x=+B .()23f x x x =--C .()221,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩D .()1f x x x=-16.(多选)(2021·吉林油田高级中学高一期中)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer ),简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A .()2xf x x=+B .()23f x x x =--C .()x f x x=-D .()ln 1f x x =+17.(多选)(2022·山东·广饶一中高一开学考试)中国传统文化中很多内容体现了数学的“对称美”,如图所示的太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:圆O 的圆心在原点,若函数的图像将圆O 的周长和面积同时等分成两部分,则这个函数称为圆O 的一个“太极函数”,则()A .对于圆O ,其“太极函数”有1个B .函数()()()2200x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩是圆O 的一个“太极函数”C .函数()33f x x x =-不是圆O 的“太极函数”D .函数())lnf x x =是圆O 的一个“太极函数”18.(2022·山东·德州市教育科学研究院二模)十九世纪下半叶集合论的创立,奠定了现代数学的基础,著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第1次操作;再将剩下的两个区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第2次操作...;每次操作都在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段:操作过程不断地进行下去,剩下的区间集合即是“康托三分集”,第三次操作后,依次从左到右第三个区间为___________,若使前n 次操作去掉的所有区间长度之和不小于2627,则需要操作的次数n 的最小值为____________.(lg 20.30=,lg 30.47=)19.(2022·江苏常州·高一期末)德国数学家康托(Cantor )创立的集合论奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的产物,具有典型的分形特征,其构造的操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第1次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第2次操作;以此类推,每次在上一次操作的基础上,将剩下的各个区间分别均分为3段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的元素构成的集合为“康托三分集”.定义区间(,)a b 长度为b a -,则构造“康托三分集”的第n 次操作去掉的各区间的长度之和为______,若第n 次操作去掉的各区间的长度之和小于1100,则n 的最小值为______.(参考数据:lg 20.3010=,lg30.4771=)20.(2022·浙江·乐清市知临中学高二期中)黎曼函数(Riemannfunction )是一个特殊函数,由德国数学家黎曼发现并提出,黎曼函数定义在[]0,1上,其定义为()[]1,,,0,0,10,1q qx p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数是不可以再约分的真分数或者上的无理数,则1R π⎛⎫= ⎪⎝⎭________.21.(2022·河南新乡·三模(理))黎曼函数是一个特殊的函数,由德国数学家波恩哈德·黎曼发现并提出,在高等数学中有着广泛的应用.黎曼函数定义在[]0,1上,其解析式如下:()[]1,,,0,0,10,1.q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩都是正整数,是既约真分数或上的无理数若函数()f x 是定义在R 上的奇函数,且对任意x 都有()()220f x f x ++-=,当[]0,1x ∈时,()()f x R x =,则()202220225f f ⎛⎫+-= ⎪⎝⎭___________.22.(2021·全国·高一单元测试)黎曼函数是一个特殊的函数,由德国著名的数学家波恩哈德·黎曼发现提出,在高等数学中有着广泛的应用.黎曼函数定义在[0,1]上,其定义为:()1,(,00,101q q x p q p p p R x x ⎧=⎪=⎨⎪=⎩都是正整数,是既约真分数),或(,)上的无理数,若函数()f x 是定义在R 上的奇函数,且对任意x 都有()()20f x f x +=-,当[0,1]x ∈时,()()f x R x =,则()18lg 305f f ⎛⎫+= ⎪⎝⎭________.23.(2021·湖北·荆门市龙泉中学高一阶段练习)解析式相同,定义域不同的两个函数称为“同族函数”.对于函数21y x =+,值域为{1,2,4}的“同族函数”的个数为______个.24.(2022·江苏省苏州实验中学高二阶段练习)十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,),33记为第一次操作;再将剩下的两个区间120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于9,10则需要操作的次数n 的最小值为____.(参考数据:lg 2=0.3010,lg 3=0.4771)25.(2022·四川省南充高级中学高三阶段练习(文))太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,设圆22:1O x y +=,则下列说法中正确的序号是______.①函数()3f x x =是圆O 的一个太极函数;②圆O 的所有非常数函数的太极函数都不能为偶函数;③函数()sin f x x =是圆O 的一个太极函数;④函数()f x 的图象关于原点对称是()f x 为圆O 的太极函数的充要条件.26.(2022·广东·惠来县第一中学高一阶段练习)布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续实函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点"函数,而称0x 为该函数的一个不动点.现新定义:若0x 满足()00f x x =-,则称0x 为()f x 的次不动点.(1)判断函数()22f x x =-是否是“不动点”函数,若是,求出其不动点;若不是,请说明理由(2)已知函数()112g x x =+,若a 是()g x 的次不动点,求实数a 的值:(3)若函数()()12log 42x xh x b =-⋅在[]0,1上仅有一个不动点和一个次不动点,求实数b 的取值范围.。

新高考数学选填压轴题(三)与答案

新高考数学选填压轴题(三)与答案

2023年新高考地区数学选填压轴题汇编(三)一、单选题1.(2022·湖北·宜昌市夷陵中学模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 与抛物线C 2:y 2=2px p >0 有公共焦点F ,过F 作双曲线一条渐近线的垂线,垂足为点A ,延长FA 与抛物线C 2相交于点B ,若点A 为线段FB 的中点,双曲线C 1的离心率为e ,则e 2=( )A.3+12B.5+12C.5+13D.5+232.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f (x )是定义在R 上的奇函数,若对任意的x 1,x 2∈0,+∞) ,且x 1≠x 2,都有x 1f x 1 -x 2f x 2x 1-x 2<0成立,则不等式mf m -2m -1 f 2m -1 >0的解集为( )A.13,1 B.(-∞,1)C.1,∞D.-∞,13∪1,+∞ 3.(2022·湖北·黄冈中学模拟预测)十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ⋅0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是( )A.sin30∘B.sin33∘C.sin36∘D.sin39∘4.(2022·湖北·黄冈中学模拟预测)某旅游景区有如图所示A 至H 共8个停车位,现有2辆不同的白色车和2辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为( )A.288B.336C.576D.16805.(2022·山东·模拟预测)已知函数f (x )=xe x -2a (ln x +x )有两个零点,则a 的最小整数值为( )A.0B.1C.2D.36.(2022·山东·模拟预测)已知函数f (x )=A sin (ωx +φ)(ω>0,0<φ<π)为偶函数,在0,π3单调递减,且在该区间上没有零点,则ω的取值范围为( )A.32,2B.1,32C.32,52D.0,327.(2022·江苏·南京市雨花台中学模拟预测)直线x -y +1=0经过椭圆x 2a 2+y 2b2=1a >b >0 的左焦点F ,交椭圆于A 、B 两点,交y 轴于C 点,若FC=2AC ,则该椭圆的离心率是( )A.10-22B.3-12C.22-2D.2-18.(2022·江苏·南京市雨花台中学模拟预测)已知△OAB ,OA =1,OB =2,OA ⋅OB=-1,过点O 作OD 垂直AB 于点D ,点E 满足OE =12ED ,则EO ⋅EA的值为( )A.-328B.-121C.-29D.-2219.(2022·江苏·南京市雨花台中学模拟预测)若函数f x =e x -2x 图象在点x 0,f x 0 处的切线方程为y =kx +b ,则k -b 的最小值为( )A.-2B.-2+1eC.-1eD.-2-1e10.(2023·江苏·南京市第一中学模拟预测)已知定义域是R 的函数f x 满足:∀x ∈R ,f 4+x +f -x =0,f 1+x 为偶函数,f 1 =1,则f 2023 =( )A.1B.-1C.2D.-311.(2022·湖南·长沙一中高三阶段练习)蜂巢是由工蜂分泌蜂蜡建成的,从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是109∘28 ,这样的设计含有深刻的数学原理.我著名数学家华罗庚曾专门研究蜂巢的结构,著有《谈谈与蜂房结构有关的数学问题》一书.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF -A B C D E F 的三个顶点A ,C ,E 处分别用平面BFM ,平面BDO ,平面DFN 截掉三个相等的三棱锥M -ABF ,O -BCD ,N -DEF ,平面BFM ,平面BDO ,平面DFN 交于点P ,就形成了蜂巢的结构.如图,设平面PBOD 与正六边形底面所成的二面角的大小为θ,则( )A.tan θ=33tan54∘44 B.sin θ=33tan54∘44 C.cos θ=33tan54∘44D.tan θ=3tan54∘44 12.(2022·湖南·长沙市明德中学高三开学考试)已知2021ln a =a +m ,2021ln b =b +m ,其中a ≠b ,若ab <λ恒成立,则实数λ的取值范围为( )A.2021e 2,+∞B.20212,+∞C.20212,+∞D.2021e 2,+∞试卷第1页,共3页13.(2022·湖南·长沙市明德中学高三开学考试)己知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A =AB ,F 1B ⋅F 2B=0,则C 的离心率为( )A.2B.5C.3+1D.5+114.(2022·湖南·长沙市明德中学高三开学考试)已知函数f x =cos 2ωx 2+32sin ωx -12ω>0,x ∈R .若函数f x 在区间π,2π 内没有零点,则ω的取值范围是A.0,512B.0,512 ∪56,1112 C.0,56D.0,512 ∪56,111215.(2022·湖南·高三开学考试)已知a =2,b =513,c =(2+e )1e ,则a ,b ,c 的大小关系为( )A.b <c <aB.c <b <aC.b <a <cD.c <a <b16.(2022·湖北·高三开学考试)已知a ,b ,c 均为不等于1的正实数,且ln c =a ln b ,ln a =b ln c ,则a ,b ,c 的大小关系是( )A.c >a >bB.b >c >aC.a >b >cD.a >c >b17.(2022·湖北·襄阳五中高三开学考试)设f x 是定义在R 上的连续的函数f x 的导函数,f x -f x +2e x <0(e 为自然对数的底数),且f 2 =4e 2,则不等式f x >2xe x 的解集为( )A.-2,0 ∪2,+∞B.e ,+∞C.2,+∞D.-∞,-2 ∪2,+∞18.(2022·湖北·襄阳五中高三开学考试)已知实数α,β满足αe α-3=1,βln β-1 =e 4,其中e 是自然对数的底数,则αβ的值为( )A.e 3B.2e 3C.2e 4D.e 419.(2022·湖北·应城市第一高级中学高三开学考试)已知F c ,0 (其中c >0)是双曲线x 2a 2-y 2b2=1a >0,b >0 的焦点.圆x 2+y 2-2cx +b 2=0与双曲线的一条渐近线l 交于A 、B 两点.已知l 的倾斜角为30°.则tan ∠AFB =( )A.-2B.-3C.-22D.-2320.(2022·湖北·应城市第一高级中学高三开学考试)设函数f x =sin x -1 +e x -1-e 1-x -x +3,则满足f x +f 3-2x <6的x 的取值范围是( )A.3,+∞ B.1,+∞ C.-∞,3D.-∞,1 二、多选题21.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f x =log 2x ,(0<x <2)x 2-8x +13,x ≥2,若f x =a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A.0<a <1B.x 1+2x 2∈22,92C.x 1+x 2+x 3+x 4∈10,212D.2x 1+x 2∈22,322.(2022·湖北·宜昌市夷陵中学模拟预测)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,则( )A.当P 在平面BCC 1B 1上运动时,四棱锥P -AA 1D 1D 的体积不变B.当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是π3,π2C.使直线AP 与平面ABCD 所成的角为45°的点P 的轨迹长度为π+42D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,PF 长度的最小值是523.(2022·湖北·黄冈中学模拟预测)已知正数x ,y ,z 满足3x =4y =12z ,则( )A.1x +1y =1zB.6z <3x <4yC.xy <4z 2D.x +y >4z24.(2022·湖北·黄冈中学模拟预测)高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德,牛顿并列为世界三大数学家,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,例如[-2.1]=-3,[2.1]=2.则下列说法正确的是( )A.函数y =x -[x ]在区间[k ,k +1)(k ∈Z )上单调递增B.若函数f (x )=sin xe x -e -x,则y =[f (x )]的值域为{0}C.若函数f (x )=|1+sin2x -1-sin2x |,则y =[f (x )]的值域为{0,1}D.x ∈R ,x ≥[x ]+125.(2022·湖北·黄冈中学模拟预测)华人数学家李天岩和美国数学家约克给出了“混沌”的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用.在混沌理论中,函数的周期点是一个关键概念,定义如下:设f (x )是定义在R 上的函数,对于x ∈R ,令x n =f (x n -1)(n =1,2,3,⋯),若存在正整数k 使得x k =x 0,且当0<j <k 时,x j ≠x 0,则称x 0是f (x )的一个周期为k 的周期点.若f (x )=2x ,x <122(1-x ),x ≥12,下列各值是f (x )周期为1的周期点的有( )A.0 B.13 C.23D.126.(2022·湖北·黄冈中学模拟预测)在数列a n 中,对于任意的n ∈N *都有a n >0,且a 2n +1-a n +1=a n ,则下列结论正确的是( )A.对于任意的n ≥2,都有a n >1B.对于任意的a 1>0,数列a n 不可能为常数列C.若0<a 1<2,则数列a n 为递增数列D.若a 1>2,则当n ≥2时,2<a n <a 127.(2022·山东·模拟预测)已知点P 在棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上运动,点Q 是CD 的中点,点P 满足PQ ⊥AC 1,下列结论正确的是( )A.点P 的轨迹的周长为32B.点P 的轨迹的周长为62C.三棱锥P -BCQ 的体积的最大值为43D.三棱锥P -BCQ 的体积的最大值为2328.(2022·山东·模拟预测)正弦信号是频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名,很多复杂的信号都可以通过多个正弦信号叠加得到,因而正弦信号在实际中作为典型信号或试卷第1页,共3页测试信号而获得广泛应用已知某个声音信号的波形可表示为f (x )=2sin x +sin2x ,则下列叙述不正确的是( )A.f (x )在[0,2π)内有5个零点B.f (x )的最大值为3C.(2π,0)是f (x )的一个对称中心D.当x ∈0,π2时,f (x )单调递增29.(2022·山东·模拟预测)已知函数f (x )=e x ,x ≥0-x 2-4x ,x <0,方程f 2(x )-t ⋅f (x )=0有四个实数根x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,下列说法正确的是( )A.x 1x 4∈(-6ln2,0]B.x 1+x 2+x 3+x 4的取值范围为[-8,-8+2ln2)C.t 的取值范围为[1,4)D.x 2x 3的最大值为430.(2022·江苏·南京市雨花台中学模拟预测)阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C :y =x 2上两个不同点A ,B 横坐标分别为x 1,x 2,以A ,B 为切点的切线交于P 点.则关于阿基米德三角形PAB 的说法正确的有( )A.若AB 过抛物线的焦点,则P 点一定在抛物线的准线上B.若阿基米德三角形PAB 为正三角形,则其面积为334C.若阿基米德三角形PAB 为直角三角形,则其面积有最小值14D.一般情况下,阿基米德三角形PAB 的面积S =|x 1-x 2|2431.(2023·江苏·南京市第一中学模拟预测)已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A.x 2f x 1 <x 1f x 2B.x 1+f x 1 <x 2+f x 2C.f x 1 -f x 2 x 1-x 2<0D.当ln x >-1时,x 1f x 1 +x 2f x 2 >2x 2f x 132.(2023·江苏·南京市第一中学模拟预测)已知a ,b 为正实数,且ab =32a +b -42,则2a +b 的取值可以为( )A.1B.4C.9D.3233.(2023·江苏·南京市第一中学模拟预测)下列不等式正确的是( )A.log 23<log 49B.log 23<lg15C.log 812>log 1215D.log 812>log 63634.(2022·湖南·长沙一中高三阶段练习)已知函数f (x )=x ln (1+x ),则( )A.f (x )在(0,+∞)单调递增B.f (x )有两个零点C.曲线y =f (x )在点-12,f -12处切线的斜率为-1-ln2D.f (x )是偶函数35.(2022·湖南·长沙一中高三阶段练习)已知函数f x =x ln x,x>00,x=012f x+1,x<0,则下列说法正确的有( )A.当x∈-3,-2时,f x =18x+3ln x+3B.若不等式f x -mx-m<0至少有3个正整数解,则m>ln3C.过点A-e-2,0作函数y=f x x>0图象的切线有且只有一条D.设实数a>0,若对任意的x≥e,不等式f x ≥a x e a x恒成立,则a的最大值是e36.(2022·湖南·长沙市明德中学高三开学考试)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线C:y2=2px(p>0),O为坐标原点,一条平行于x轴的光线l1从点M(5,2)射入,经过C上的点A反射后,再经C上另一点B反射后,沿直线l2射出,经过点N.下列说法正确的是( )A.若p=2,则|AB|=4B.若p=2,则MB平分∠ABNC.若p=4,则|AB|=8D.若p=4,延长AO交直线x=-2于点D,则D,B,N三点共线37.(2022·湖南·长沙市明德中学高三开学考试)已知a>1,x1,x2,x3为函数f(x)=a x-x2的零点,x1<x2<x3,下列结论中正确的是( )A.x1>-1B.x1+x2<0C.若2x2=x1+x3,则x3x2=2+1 D.a的取值范围是1,e2e38.(2022·湖北·高三开学考试)关于函数f x =ae x+sin x,x∈-π,π,下列结论中正确的有( )A.当a=-1时,f x 的图象与x轴相切B.若f x 在-π,π上有且只有一个零点,则满足条件的a的值有3个C.存在a,使得f x 存在三个极值点D.当a=1时,f x 存在唯一极小值点x0,且-1<f x0<039.(2022·湖北·襄阳五中高三开学考试)已知函数f x =xx-1,x<15ln xx,x≥1,下列选项正确的是( )A.函数f x 的单调减区间为-∞,1、e,+∞B.函数f x 的值域为-∞,1C.若关于x的方程f2x -a f x=0有3个不相等的实数根,则实数a的取值范围是5e,+∞D.若关于x的方程f2x -a f x=0有5个不相等的实数根,则实数a的取值范围是1,5 e试卷第1页,共3页40.(2022·湖北·应城市第一高级中学高三开学考试)已知函数f (x )=sin 4x +π3 +cos 4x -π6,则下列结论正确的是( )A.f (x )的最大值为2B.f (x )在-π8,π12上单调递增C.f (x )在[0,π]上有4个零点D.把f (x )的图象向右平移π12个单位长度,得到的图象关于直线x =-π8对称41.(2022·湖北·应城市第一高级中学高三开学考试)已知函数f 2x +1 的图像关于直线x =1对称,函数y =f x +1 关于点1,0 对称,则下列说法正确的是( )A.f 1-x =f 1+x B.f x 的周期为4C.f 1 =0D.f x =f 32-x 三、填空题42.(2022·湖北·宜昌市夷陵中学模拟预测)已知f (x )是定义在R 上的偶函数,当x ≥0时,f x =x -2a e x+2a 2-4.若f (x )的图象与x 轴恰有三个交点,则实数a 的值为___________.43.(2022·湖北·黄冈中学模拟预测)空间四面体ABCD 中,∠ACD =60∘,二面角A -CD -B 的大小为45∘,在平面ABC 内过点B 作AC 的垂线l ,则l 与平面BCD 所成的最大角的正弦值___________.44.(2022·湖北·黄冈中学模拟预测)函数f (x )=a x +2bx +e 2,其中a ,b 为实数,且a ∈(0,1).已知对任意b >4e 2,函数f (x )有两个不同零点,a 的取值范围为___________________.45.(2022·湖北·黄冈中学模拟预测)已知平面向量a ,b和单位向量e 1 ,e 2 满足e 1 =-e 2 ,a -e 1 +e 2 =3a +e 1 -e 2 ,b =λa +μe 1 ,2λ+μ=2,当a变化时,b 的最小值为m ,则m 的最大值为__________.46.(2022·山东·模拟预测)已知双曲线Ω:x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,P 为Ω上一点,M为△PF 1F 2的内心,直线PM 与x 轴正半轴交于点H ,|OH |=2a3,且PF 1 =3PF 2 ,则Ω的渐近线方程为________.47.(2022·江苏·南京市雨花台中学模拟预测)在平面四边形ABCD 中,AB =CD =1,BC =2,AD =2,∠ABC =90°,将△ABC 沿AC 折成三棱锥,当三棱锥B -ACD 的体积最大时,三棱锥外接球的体积为______.48.(2022·江苏·南京市雨花台中学模拟预测)已知数列a n 中,a 1=32,且满足a n =12a n -1+12n n ≥2,n ∈N *,若对于任意n ∈N *,都有λn ≥a n 成立,则实数λ的最小值是_________.49.(2023·江苏·南京市第一中学模拟预测)已知函数y =e -2x +1的图象与函数y =ln -x -1 -32的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为______.50.(2022·湖南·长沙一中高三阶段练习)已知函数f x =x 2+a ln 2x +1 有两个不同的极值点x 1、x 2,且x 1<x 2,则实数a 的取值范围是___________.51.(2022·湖南·长沙市明德中学高三开学考试)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,O 为△ABC 的外心,且有AB +BC =233AC ,sin C (cos A -3)+cos A sin A =0,若AO =xAB +yAC ,x ,y ∈R ,则x -2y =________.52.(2022·湖北·襄阳五中高三开学考试)如图,正方形ABCD 的边长为10米,以点A 为顶点,引出放射角为π6的阴影部分的区域,其中∠EAB =x ,π12≤x ≤π4,记AE ,AF 的长度之和为f x .则f x 的最大值为___________.53.(2022·湖北·应城市第一高级中学高三开学考试)已知a =2ln4,b =ln3ln2,c =32,则a 、b 、c 的大小关系是___________(用>连接).54.(2022·湖北·应城市第一高级中学高三开学考试)已知正方体ABCD -A 1B 1C 1D 1的棱长为3,点E 为棱D 1C 1上一动点,点F 为棱BB 1上一动点,且满足EF =2,则三棱锥B 1-EFC 1的体积取最大值时,三棱锥B 1-EFC 1外接球的表面积为___________.四、双空题55.(2022·湖南·长沙一中高三阶段练习)定义离心率是5-12的椭圆为“黄金椭圆”.已知椭圆E :x 210+y 2m=1(10>m >0)是“黄金椭圆”,则m =___________,若“黄金椭圆”C :x 2a 2+y 2b2=1(a >b >0)两个焦点分别为F 1-c ,0 、F 2(c ,0)(c >0),P 为椭圆C 上的异于顶点的任意一点,点M 是△PF 1F 2的内心,连接PM 并延长交F 1F 2于点N ,则|PM ||MN |=___________.试卷第1页,共3页新高考数学选填压轴题(三)一、单选题1.(2022·湖北·宜昌市夷陵中学模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 与抛物线C 2:y 2=2px p >0 有公共焦点F ,过F 作双曲线一条渐近线的垂线,垂足为点A ,延长FA 与抛物线C 2相交于点B ,若点A 为线段FB 的中点,双曲线C 1的离心率为e ,则e 2=( )A.3+12B.5+12C.5+13D.5+23【答案】B 【解析】根据题意,作图如下:因为双曲线C 1和抛物线C 2共焦点,故可得a 2+b 2=p 24,又F c ,0 到y =b a x 的距离d =bca 2+b 2=b ,即AF =b ,又A 为BF 中点,则BF =2b ,设点B x ,y ,则2b =x +p 2,解得x =2b -p 2;由a 2+b 2=p 24可得OA =a ,则由等面积可知:12×BF ×OA =12×OF ×y ,解得y =4abp,则B 2b -p 2,4abp ,则x A =b ,y A =2ab p ,又点A 在渐近线y =b a x 上,即b 2a =2abp,即2a 2=pb ,又p 2=4a 2+4b 2,联立得a 4-a 2b 2-b 4=0,即b 2a 2-a 2b 2+1=0,解得b 2a2=5-12,故e 2=1+b 2a2=5+12.故选:B .2.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f (x )是定义在R 上的奇函数,若对任意的x 1,x 2∈0,+∞) ,且x 1≠x 2,都有x 1f x 1 -x 2f x 2x 1-x 2<0成立,则不等式mf m -2m -1 f 2m -1 >0的解集为( )A.13,1 B.(-∞,1)C.1,∞D.-∞,13∪1,+∞ 【答案】D【解析】∵函数f (x )是定义在R 上的奇函数∴g x =xf x 为定义在R 上的偶函数又∵x 1f x 1 -x 2f x 2 x 1-x 2<0∴g x =xf x 在0,+∞) 上递减,则g x 在-∞,0 上递增mf m -2m -1 f 2m -1 >0即mf m >2m -1 f 2m -1则m <2m -1 解得:m ∈-∞,13∪1,+∞ .故选:D .3.(2022·湖北·黄冈中学模拟预测)十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ⋅0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是( )A.sin30∘ B.sin33∘ C.sin36∘ D.sin39∘【答案】B【解析】(sin x )=cos x =1-x 22!+x 44!-x 66!+⋯+-1 n -1x 2n -22n -2 !+⋯所以cos1=1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯=sin π2-1=sin 90∘-180∘π ,由于90∘-180∘π 与33∘最接近,故选:B 4.(2022·湖北·黄冈中学模拟预测)某旅游景区有如图所示A 至H 共8个停车位,现有2辆不同的白色车和2辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为( )A.288B.336C.576D.1680【答案】B【解析】解:第一步:排白车,第一行选一个位置,则第二行有三个位置可选,由于车是不相同的,故白车的停法有4×3×2=24种,第二步,排黑车,若白车选AF ,则黑车有BE ,BG ,BH ,CE ,CH ,DE ,DG 共7种选择,黑车是不相同的,故黑车的停法有2×7=14种,根据分步计数原理,共有24×14=336种,故选:B5.(2022·山东·模拟预测)已知函数f (x )=xe x -2a (ln x +x )有两个零点,则a 的最小整数值为( )A.0 B.1C.2D.3【答案】C【解析】f (x )=xe x -2a (ln x +x )=e x +ln x -2a (ln x +x ),设t =x +ln x (x >0),t =1+1x>0,即函数在0,+∞ 上单调递增,易得t ∈R ,于是问题等价于函数g t =e t -2at 在R 上有两个零点,g t =e t -2a ,若a ≤0,则g t >0,函数g t 在R 上单调递增,至多有1个零点,不合题意,舍去;若a >0,则x ∈-∞,ln2a 时,g t <0,g t 单调递减,x ∈ln2a ,+∞ 时,g t >0,g t 单调递增.因为函数g t 在R 上有两个零点,所以g t min =g ln2a =2a 1-ln2a <0⇒a >e2,而g 0 =1>0,限定t >1 ,记φt =e t -t ,φ t =e t -1>0,即φt 在1,+∞ 上单调递增,于是φt =e t -t >φ1 =e -1>0⇒e t>t ,则t >2时 ,e t2>t 2⇒e t>t 24,此时g t >t 24-2at =t 4t -8a ,因为a >e 2,所以8a>4e >1,于是t >8a 时,g t >0.综上:当a >e2时,有两个交点,a 的最小整数值为2.故选:C .6.(2022·山东·模拟预测)已知函数f (x )=A sin (ωx +φ)(ω>0,0<φ<π)为偶函数,在0,π3单调递减,且在该区间上没有零点,则ω的取值范围为( )A.32,2 B.1,32C.32,52D.0,32【答案】D【解析】因为函数为偶函数,且在0,π3 单调递减,所以φ=π2+k πk ∈Z ,而0<φ<π,则φ=π2,于是f (x )=A cos ωx (ω>0),函数在0,π3 单调递减,且在该区间上没有零点,所以0<π3ω≤π2⇒ω∈0,32 .故选:D .7.(2022·江苏·南京市雨花台中学模拟预测)直线x -y +1=0经过椭圆x 2a 2+y 2b2=1a >b >0 的左焦点F ,交椭圆于A 、B 两点,交y 轴于C 点,若FC=2AC ,则该椭圆的离心率是( )A.10-22B.3-12C.22-2D.2-1【答案】A【解析】由题意可知,点F -c ,0 在直线x -y +1=0上,即1-c =0,可得c =1,直线x -y +1=0交y 轴于点C 0,1 ,设点A m ,n ,FC=1,1 ,AC =-m ,1-n ,由FC =2AC 可得-2m =121-n =1 ,解得m =-12n =12,椭圆x 2a 2+y 2b2=1a >b >0 的右焦点为E 1,0 ,则AE =1+12 2+0-12 2=102,又AF =-1+12 2+0-12 2=22,∴2a =AE +AF =10+22,因此,该椭圆的离心率为e =2c 2a =210+22=410+2=410-2 8=10-22.故选:A .8.(2022·江苏·南京市雨花台中学模拟预测)已知△OAB ,OA =1,OB =2,OA ⋅OB=-1,过点O 作OD 垂直AB 于点D ,点E 满足OE =12ED ,则EO ⋅EA的值为( )A.-328B.-121C.-29D.-221【答案】D【解析】由题意,作出图形,如图,∵OA =1,OB =2,OA ⋅OB=-1∴OA ⋅OB =1×2cos ∠AOB =2cos ∠AOB =-1,∴cos ∠AOB =-12,由∠AOB ∈0,π 可得∠AOB =2π3,∴AB =OA 2+OB 2-2⋅OA ⋅OB ⋅cos ∠AOB =7,又S △AOB =12⋅OA ⋅OB ⋅sin ∠AOB =12⋅OD ⋅AB =32,则OD =37,∴EO ⋅EA =-OE ⋅ED +DA =-2OE 2=-29⋅OD 2=-29×37=-221.故选:D .9.(2022·江苏·南京市雨花台中学模拟预测)若函数f x =e x -2x 图象在点x 0,f x 0 处的切线方程为y =kx +b ,则k -b 的最小值为( )A.-2 B.-2+1eC.-1eD.-2-1e【答案】D【解析】由f x =e x -2x 求导得:f (x )=e x -2,于是得f (x 0)=e x 0-2,函数f (x )=e x -2x 图象在点(x 0,f (x 0))处的切线方程为y -(e x 0-2x 0)=(e x 0-2)(x -x 0),整理得:y =(e x 0-2)x +(1-x 0)e x 0,从而得k =e x 0-2,b =(1-x 0)e x 0,k -b =x 0e x 0-2,令g (x )=xe x -2,则g (x )=(x +1)e x ,当x <-1时,g (x )<0,当x >-1时,g (x )>0,于是得g (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,则g (x )min =g (-1)=-2-1e,所以k -b 的最小值为-2-1e.故选:D10.(2023·江苏·南京市第一中学模拟预测)已知定义域是R 的函数f x 满足:∀x ∈R ,f 4+x +f -x =0,f 1+x 为偶函数,f 1 =1,则f 2023 =( )A.1 B.-1C.2D.-3【答案】B【解析】因为f 1+x 为偶函数,所以f x 的图象关于直线x =1对称,所以f 2-x =f x ,又由f 4+x +f -x =0,得f 4+x =-f -x ,所以f 8+x =-f -4-x =-f 6+x ,所以f x +2 =-f x ,所以f x +4 =f x ,故f x 的周期为4,所以f 2023 =f 3 =-f 1 =-1.故选:B .11.(2022·湖南·长沙一中高三阶段练习)蜂巢是由工蜂分泌蜂蜡建成的,从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是109∘28 ,这样的设计含有深刻的数学原理.我著名数学家华罗庚曾专门研究蜂巢的结构,著有《谈谈与蜂房结构有关的数学问题》一书.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF -A B C D E F 的三个顶点A ,C ,E 处分别用平面BFM ,平面BDO ,平面DFN 截掉三个相等的三棱锥M -ABF ,O -BCD ,N -DEF ,平面BFM ,平面BDO ,平面DFN 交于点P ,就形成了蜂巢的结构.如图,设平面PBOD 与正六边形底面所成的二面角的大小为θ,则( )A.tan θ=33tan54∘44 B.sin θ=33tan54∘44 C.cos θ=33tan54∘44D.tan θ=3tan54∘44 【答案】C【解析】先证明一个结论:如图,△ABC 在平面α内的射影为△ABC ,C -AB -C 的平面角为θ,θ∈0,π2 ,则cos θ=S △ABCS △ABC.证明:如图,在平面β内作CE ⊥AB ,垂足为E ,连接EC ,因为△ABC 在平面α内的射影为△ABC ,故CC ⊥α,因为AB ⊂α,故CC ⊥AB ,因为CE ∩AB =E ,故AB ⊥平面ECC .因为EC ⊂平面ECC ,故C E ⊥AB ,所以∠CEC 为二面角的平面角,所以∠CEC =θ.在直角三角形CEC 中,cos ∠CEC =cos θ=ECEC=S △ABCS △ABC .由题设中的第二图可得:cos θ=S △DBCS △DBO.设正六边形的边长为a ,则S △DBC =12a 2×32=34a 2,如图,在△DBO 中,取BD 的中点为W ,连接OW ,则OW ⊥BD ,且BD =3a ,∠BOD =109°28 ,故OW =32a ×1tan54°44,故S △DBO =12×3a ×32a ×1tan54°44 =34a 2×1tan54°44 ,故cos θ=33tan54°44 .故选:C .12.(2022·湖南·长沙市明德中学高三开学考试)已知2021ln a =a +m ,2021ln b =b +m ,其中a ≠b ,若ab <λ恒成立,则实数λ的取值范围为( )A.2021e 2,+∞ B.20212,+∞C.20212,+∞D.2021e 2,+∞【答案】C【解析】令f (x )=ln x -12021x ,则f (x )=1x -12021=2021-x2021x,∴当x ∈(0,2021)时,f (x )>0,当x ∈(2021,+∞)时,f (x )<0,∵f (2021)>0,∴设0<a <2021<b ,则ba=t (t >1),两式相减,得2021ln b a =b -a ,则2021ln t =a (t -1),∴a =2021ln t t -1,b =at =2021t ln tt -1,∴ab =20212⋅t (ln t )2(t -1)2,令g (t )=t (ln t )2-(t -1)2,∴g (t )=(ln t )2+2ln t -2t +2,令h (t )=(ln t )2+2ln t -2t +2,则h (t )=2t(ln t +1-t ),令m (t )=ln t +1-t ,则m (t )=1t-1<0,∴函数m (t )在(1,+∞)上单调递减,∴m (t )<m (1)=0,即h (t )<0,∴h (t )<h 1 =0,∴g (t )<0,∴函数g (t )在(1,+∞)上单调递减,∴g (t )<g 1 =0,∴t (ln t )2-(t -1)2<0,∴t (ln t )2(t -1)2<1,∴ab <20212,∴实数λ的取值范围为20212,+∞ ,故选:C .13.(2022·湖南·长沙市明德中学高三开学考试)己知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A =AB ,F 1B ⋅F 2B=0,则C 的离心率为( )A.2B.5C.3+1D.5+1【答案】A 【解析】如下图示,因为F 1A =AB ,F 1B⋅F 2B =0,O 是F 1F 2中点,所以A 是F 1B 中点且F 1B ⊥F 2B ,则OA ⊥F 1B ,OF 1=OB =c ,因为直线OA 是双曲线x 2a 2-y 2b2=1的渐近线,所以k OA =-b a ,k F 1B =a b ,直线F 1B 的方程为y =ab (x +c ),联立y =a b (x +c )y =b ax,解得B a 2c b 2-a 2,abc b 2-a 2 ,则|OB |2=a 4c 2b 2-a 2 2+a 2b 2c 2b 2-a 22=c 2,整理得b 2=3a 2,因为c 2-a 2=b 2,所以4a 2=c 2,e =ca=2.故选:A14.(2022·湖南·长沙市明德中学高三开学考试)已知函数f x =cos 2ωx 2+32sin ωx -12ω>0,x ∈R .若函数f x 在区间π,2π 内没有零点,则ω的取值范围是A.0,512 B.0,512 ∪56,1112 C.0,56D.0,512 ∪56,1112【答案】D【解析】 (1)ωπ+π6,2ωπ+π6 ⊆(2k π,2k π+π),k ∈Z ,则{ωx +π6≥2k π2ωπ+π6≤2k π+π ,则{ω≥2k -16ω≤k +512,取k =0 ,∵ω>0, ∴0<k ≤512;(2)ωπ+π6,2ωπ+π6 ⊆(2k π+π,2k π+2π),k ∈Z ,则{ωπ+π6≥2k π+π2ωπ+π6≤2k π+2π ,解得:{ω≥2k +56ω≤k +1112,取k=0 ,∴56≤k ≤1112;综上可知:k 的取值范围是0,512 ∪56,1112,选D .15.(2022·湖南·高三开学考试)已知a =2,b =513,c =(2+e )1e ,则a ,b ,c 的大小关系为( )A.b <c <aB.c <b <aC.b <a <cD.c <a <b【答案】A【解析】由题意,可得a =(2+2)12,b =(2+3)13,c =(2+e )1e ,所以令f x =1x ⋅ln 2+x ,(x >0),则fx =x x +2-ln 2+xx 2,令g x =x x +2-ln 2+x ,(x >0),则g x =-x(x +2)2<0,所以g x 在0,+∞ 上单调递减,g x <g 0 =0,所以f x <0恒成立,所以f x 在0,+∞ 上单调递减,因为2<e <3,所以f 2 >f e >f 3 ,即12ln 2+2 >1e ln 2+e >13ln 2+3 ,所以ln (2+2)12>ln (2+e )1e>ln (2+3)13,所以412>(2+e )1e>513,即b <c <a .故选:A .16.(2022·湖北·高三开学考试)已知a ,b ,c 均为不等于1的正实数,且ln c =a ln b ,ln a =b ln c ,则a ,b ,c 的大小关系是( )A.c >a >b B.b >c >aC.a >b >cD.a >c >b【答案】D【解析】∵ln c =a ln b ,ln a =b ln c 且a 、b 、c 均为不等于1的正实数,则ln c与ln b同号,ln c与ln a同号,从而ln a、ln b、ln c同号.①若a、b、c∈0,1,则ln a、ln b、ln c均为负数,ln a=b ln c>ln c,可得a>c,ln c=a ln b>ln b,可得c>b,此时a>c>b;②若a、b、c∈1,+∞,则ln a、ln b、ln c均为正数,ln a=b ln c>ln c,可得a>c,ln c=a ln b>ln b,可得c>b,此时a>c>b.综上所述,a>c>b.故选:D.17.(2022·湖北·襄阳五中高三开学考试)设f x 是定义在R上的连续的函数f x 的导函数,f x -f x +2e x<0(e为自然对数的底数),且f2 =4e2,则不等式f x >2xe x的解集为( )A.-2,0∪2,+∞B.e,+∞C.2,+∞D.-∞,-2∪2,+∞【答案】C【解析】设g x =f xe x-2x,则g x =f x -f xe x-2=f x -f x -2e xe x,∵f x -f x +2e x<0,∴g x >0,函数g x 在R上单调递增,又f2 =4e2,∴g2 =f2e2-4=0,由f x >2xe x,可得f xe x-2x>0,即g x >0=g2 ,又函数g x 在R上单调递增,所以x>2,即不等式f x >2xe x的解集为2,+∞.故选:C.18.(2022·湖北·襄阳五中高三开学考试)已知实数α,β满足αeα-3=1,βlnβ-1=e4,其中e是自然对数的底数,则αβ的值为( )A.e3B.2e3C.2e4D.e4【答案】D【解析】因为αeα-3=1,所以αeα=e3,所以α+lnα=3.因为βlnβ-1=e4,所以lnβ+ln lnβ-1=4.联立α+lnα-3=0lnβ-1+ln lnβ-1-3=0 ,所以α与lnβ-1是关于x的方程x+ln x-3=0的两根.构造函数f x =x+ln x-3,该函数的定义域为0,+∞,且该函数为增函数,由于fα =f lnβ-1=0,所以α=lnβ-1,又α+lnα-3=0,所以lnβ-1+lnα-3=0,即lnαβ=4,解得αβ=e4.故选:D.19.(2022·湖北·应城市第一高级中学高三开学考试)已知F c,0(其中c>0)是双曲线x2a2-y2b2=1a>0,b>0的焦点.圆x2+y2-2cx+b2=0与双曲线的一条渐近线l交于A、B两点.已知l的倾斜角为30°.则tan∠AFB=( )A.-2B.-3C.-22D.-23【答案】C 【解析】如图所示:x 2+y 2-2cx +b 2=0,化为x -c 2+y 2=c 2-b 2=a 2,因为渐近线l 的倾斜角为30°,所以tan30∘=b a =33,圆心F c ,0 到直线y =bax 的距离为:d =bca1+b a2=b ,又AF =BF =a ,所以cos 12∠AFB =b a =33,sin 12∠AFB =63,则tan 12∠AFB =2,所以tan ∠AFB =2tan 12∠AFB1-tan 212∠AFB=2×21-2 2=-22,故选:C20.(2022·湖北·应城市第一高级中学高三开学考试)设函数f x =sin x -1 +e x -1-e 1-x -x +3,则满足f x +f 3-2x <6的x 的取值范围是( )A.3,+∞ B.1,+∞ C.-∞,3 D.-∞,1【答案】B【解析】假设g x =sin x +e x -e -x -x ,x ∈R ,所以g -x =sin -x +e -x -e x +x ,所以g x +g -x =0,所以g x 为奇函数,而f x =sin x -1 +e x -1-e 1-x -x -1 +3是g x 向右平移1个单位长度,向上平移3个单位长度,所以f x 的对称中心为1,3 ,所以6=f x +f 2-x ,由f x =sin x -1 +e x -1-e 1-x -x +4求导得f x =cos x -1 +e x -1+e 1-x -1=e x -1+1ex -1+cos x -1 -1因为e x -1+1e x -1≥2e x -1⋅1e x -1=2,当且仅当e x -1=1e x -1即x =1,取等号,所以f x ≥0,所以f x 在R 上单调递增,因为f x +f 3-2x <6=f x +f 2-x 得f 3-2x <f 2-x 所以3-2x <2-x ,解得x >1,故选:B 二、多选题21.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f x =log 2x ,(0<x <2)x 2-8x +13,x ≥2,若f x =a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A.0<a <1B.x 1+2x 2∈22,92C.x 1+x 2+x 3+x 4∈10,212D.2x 1+x 2∈22,3【答案】ACD【解析】在同一坐标系中作出函数y =f x ,y =a 的图象,如图所示:由图象知:若f x =a 有四个不同的实数解,则0<a <1,故A 正确;因为log 2x 1 =log 2x 2 ,即-log 2x 1=log 2x 2,则1x 1=x 2,所以x 1+2x 2=1x 2+2x 2,1<x 2<2,因为y =1x 2+2x 2在1,2 上递增,所以1x 2+2x 2∈3,92,故B 错误;因为x 1+x 2=1x 2+x 2,1<x 2<2,y =1x 2+x 2在1,2 上递增,所以1x 2+x 2∈2,52,而x 3+x 4=8,所以x 1+x 2+x 3+x 4∈10,212 ,故C 正确;因为2x 1+x 2=2x 2+x 2,1<x 2<2,y =1x 2+2x 2在1,2 上递减,在2,2 上递增,则2x 2+x 2∈[22,3),故D 正确;故选:ACD22.(2022·湖北·宜昌市夷陵中学模拟预测)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,则( )A.当P 在平面BCC 1B 1上运动时,四棱锥P -AA 1D 1D 的体积不变B.当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是π3,π2C.使直线AP 与平面ABCD 所成的角为45°的点P 的轨迹长度为π+42D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,PF 长度的最小值是5【答案】ABC【解析】A 选项,底面正方形AA 1D 1D 的面积不变,P 到平面AA 1D 1D 的距离为正方体棱长,故四棱锥P -AA 1D 1D 的体积不变,A 选项正确;B 选项,D 1P 与A 1C 1所成角即D 1P 与A C 所成角,当P 在端点A ,C 时,所成角最小,为π3,当P 在AC 中点时,所成角最大,为π2,故B 选项正确;C 选项,由于P 在正方体表面,P 的轨迹为对角线AB 1,AD 1,以及以A 1为圆心2为半径的14圆弧如图,故P 的轨迹长度为π+42,C 正确;D 选项,FP 所在的平面为如图所示正六边形,故FP 的最小值为6,D 选项错误.故选:ABC .23.(2022·湖北·黄冈中学模拟预测)已知正数x ,y ,z 满足3x =4y =12z ,则( )A.1x +1y =1zB.6z <3x <4yC.xy <4z 2D.x +y >4z【答案】ABD【解析】设3x =4y =12z =t ,t >1,则x =log 3t ,y =log 4t ,z =log 12t ,所以1x +1y =1log 3t +1log 4t =log t 3+log t 4=log t 12=1z,A 正确;因为6z3x =2log 12t log 3t =2log t 3log t 12=log 129<1,则6z <3x ,因为3x4y =3log 3t 4log 4t =3log t 44log t 3=log t 64log t 81=log 8164<1,则3x <4y ,所以6z <3x <4y ,B 正确;因为x +y -4z =log 3t +log 4t -4log 12t =1log t 3+1log t 4-4log t 12=log t 3+log t 4log t 3log t 4-4log t 3+log t 4=log t 3-log t 42log t 3log t 4log t 3+log t 4 >0,则x +y >4z ,D 正确.因为1z =1x +1y =x +y xy ,则xy z =x +y >4z ,所以xy >4z 2,C 错误.故选:ABD .24.(2022·湖北·黄冈中学模拟预测)高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德,牛顿并列为世界三大数学家,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,例如[-2.1]=-3,[2.1]=2.则下列说法正确的是( )A.函数y =x -[x ]在区间[k ,k +1)(k ∈Z )上单调递增B.若函数f (x )=sin xe x -e -x,则y =[f (x )]的值域为{0}C.若函数f (x )=|1+sin2x -1-sin2x |,则y =[f (x )]的值域为{0,1}D.x ∈R ,x ≥[x ]+1【答案】AC【解析】对于A ,x ∈[k ,k +1),k ∈Z ,有[x ]=k ,则函数y =x -[x ]=x -k 在[k ,k +1)上单调递增,A 正确;对于B ,f 3π2=sin 3π2e 3π2-e -3π2=-1e 3π2-e-3π2∈(-1,0),则f 3π2=-1,B 不正确;对于C ,f (x )=(1+sin2x -1-sin2x )2=2-21-sin 22x =2-2|cos2x |,当0≤|cos2x |≤12时,1≤2-2|cos2x |≤2,1≤f (x )≤2,有[f (x )]=1,当12<|cos2x |≤1时,0≤2-2|cos2x |<1,0≤f (x )<1,有[f (x )]=0,y =[f (x )]的值域为{0,1},C 正确;对于D ,当x =2时,[x ]+1=3,有2<[2]+1,D 不正确.故选:AC25.(2022·湖北·黄冈中学模拟预测)华人数学家李天岩和美国数学家约克给出了“混沌”的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用.在混沌理论中,函数的周期点是一个关键概念,定义如下:设f (x )是定义在R 上的函数,对于x ∈R ,令x n =f (x n -1)(n =1,2,3,⋯),若存在正整数k 使得x k =x 0,且当0<j <k 时,x j ≠x 0,则称x 0是f (x )的一个周期为k 的周期点.若f (x )=2x ,x <122(1-x ),x ≥12,下列各值是f (x )周期为1的周期点的有( )A.0 B.13 C.23D.1【答案】AC【解析】A :x 0=0时,x 1=f 0 =0,周期为1,故A 正确;B :x 0=13时,x 1=f 13 =23,x 2=f 23 =23,x 3=⋯=x n =23,所以13不是f x 的周期点.故B 错误;C :x 0=23时,x 1=x 2=⋯=x n =23,周期为1,故C 正确;D :x 0=1时,x 1=f 1 =0,∴1不是f x 周期为1的周期点,故D 错误.故选:AC .26.(2022·湖北·黄冈中学模拟预测)在数列a n 中,对于任意的n ∈N *都有a n >0,且a 2n +1-a n +1=a n ,则下列结论正确的是( )A.对于任意的n ≥2,都有a n >1B.对于任意的a 1>0,数列a n 不可能为常数列C.若0<a 1<2,则数列a n 为递增数列D.若a 1>2,则当n ≥2时,2<a n <a 1【答案】ACD 【解析】A :由a n +1=a n a n +1+1,对∀n ∈N *有a n >0,则a n +1=an a n +1+1>1,即任意n ≥2都有a n >1,正确;B :由a n +1(a n +1-1)=a n ,若a n 为常数列且a n >0,则a n =2满足a 1>0,错误;C :由an a n +1=a n +1-1且n ∈N *,当1<a n +1<2时0<an a n +1<1,此时a 1=a 2(a 2-1)∈(0,2)且a 1<a 2,数列a n 递增;当a n +1>2时an a n +1>1,此时a 1=a 2(a 2-1)>a 2>2,数列a n 递减;所以0<a 1<2时数列a n 为递增数列,正确;D:由C分析知:a1>2时a n+1>2且数列a n递减,即n≥2时2<a n<a1,正确.故选:ACD27.(2022·山东·模拟预测)已知点P在棱长为2的正方体ABCD-A1B1C1D1的表面上运动,点Q是CD的中点,点P满足PQ⊥AC1,下列结论正确的是( )A.点P的轨迹的周长为32B.点P的轨迹的周长为62C.三棱锥P-BCQ的体积的最大值为43D.三棱锥P-BCQ的体积的最大值为23【答案】BD【解析】取BC的中点为E,取BB1的中点为F,取A1B1的中点为G,取A1D1的中点为H,取DD1的中点为M,分别连接QE,EF,FG,GH,HM,MQ,由AC1⊥QE,AC1⊥EF,且QE∩EF=E,所以AC1⊥平面EFGHMQ,由题意可得P的轨迹为正六边形EFGHMQ,其中|QE|=|EF|=2,所以点P的轨迹的周长为62,所以A不正确,B正确;当点P在线段HG上运动时,此时点P到平面BCQ的距离取得最大值,此时V P-BCQ有最大值,最大值为V max=13×12×2×1×2=23,所以C不正确,D正确.故选:BD28.(2022·山东·模拟预测)正弦信号是频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名,很多复杂的信号都可以通过多个正弦信号叠加得到,因而正弦信号在实际中作为典型信号或测试信号而获得广泛应用已知某个声音信号的波形可表示为f(x)=2sin x+sin2x,则下列叙述不正确的是( )A.f(x)在[0,2π)内有5个零点B.f(x)的最大值为3C.(2π,0)是f(x)的一个对称中心D.当x∈0,π2时,f(x)单调递增【答案】ABD【解析】对于A,由f(x)=2sin x+sin2x=2sin x(1+cos x),令f(x)=0,则sin x=0或cos x=-1,易知f(x)在[0,2π)上有2个零点,A错误.对于B,因为2sin x≤2,sin2x≤1,由于等号不能同时成立,所以f(x)<3,B错误.对于C,易知f(x)为奇函数,函数关于原点对称,又周期为2π,故(2π,0)是f(x)的一个对称中心.对于D,f (x)=2cos x+2cos2x=2(2cos x-1)(cos x+1),因为cos x+1≥0,所以2cos x-1>0时,即:x∈2kπ-π3,2kπ+π3(k∈Z)时,f(x)单调递增,x∈2kπ+π3,2kπ+5π3(k∈Z)时,f(x)单调递减,故D错误.故选:ABD29.(2022·山东·模拟预测)已知函数f(x)=e x,x≥0-x2-4x,x<0,方程f2(x)-t⋅f(x)=0有四个实数根x1,x2,x3,x4,且满足x1<x2<x3<x4,下列说法正确的是( )。

高考数学填空题压轴题精选3

高考数学填空题压轴题精选3

江苏高考压轴题精选1.如图为函数()(01)f x x x <<的图象,其在点(())M t f t ,l l y 处的切线为,与轴和直线1=y 分别交于点P 、Q , 点N (0, 1), 若△PQN 的面积为b 时的点M 恰好有两个, 则b 的取值范围为 ▲ . 解:2. 已知⊙A :221x y +=, ⊙B : 22(3)(4)4x y -+-=, P 是平面内一动点, 过P 作⊙A 、⊙B 的切线,切点分别为D 、E , 若PE PD =, 则P 到坐标原点距离的最小值为 ▲ .解:设)(y x P ,, 因为PE PD =, 所以22PD PE =, 即14)4()3(2222-+=--+-y x y x ,整理得:01143=-+y x , 这说明符合题意的点P 在直线01143=-+y x 上,所以点)(y x P ,到坐标原点距离的最小值即为坐标原点到直线01143=-+y x 的距离, 为5113. 等差数列{}n a 各项均为正整数, 13a =, 前n 项和为n S , 等比数列{}n b 中, 11b =,且2264b S =, {}n b是公比为64的等比数列.求n a 与n b ;解:设{}n a 的公差为d , {}n b 的公比为q , 则d 为正整数,3(1)n a n d =+-, 1n n b q -=依题意有1363(1)22642(6)64n n nda d n d ab q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩①由(6)64d q +=知q 为正有理数, 故d 为6的因子1, 2, 3, 6之一,解①得2,8d q == 故132(1)21,8n n n a n n b -=+-=+=y xOP M QN4. 在ABC ∆中, 2=⋅BC AC AB (1)求22AC AB +(2)求ABC ∆面积的最大值.解:(1)因为||||2BC AC AB =-=u u u r u u u r u u u r , 所以4222=+⋅-AB AB AC AC ,又因为 2AB AC ⋅=u u u r u u u r, 所以228AB AC +=u u u r u u u r ; (2)设||||||AB c AC b BC a ===u u u r u u u r u u u r,,, 由(1)知822=+c b , 2=a , 又因为bcbc bc a c b A 22282cos 222=-=-+=,所以A bc A bc S ABC2cos 121sin 21-==∆=222222421cb c b c b ⋅-≤34)2(21222=-+c b , 当且仅当c b a ==时取“=”, 所以ABC ∆的面积最大值为3.5. 设等差数列{}n a 的公差为d , 0d >, 数列{}n b 是公比为q 等比数列, 且110b a =>. (1)若33a b =, 75a b =, 探究使得n m a b =成立时n m 与的关系; (2)若22a b =, 求证:当2>n 时, n n b a <.解:记a b a ==11, 则1,)1(-=-+=m m n aq b d n a a , ……………1分(1)由已知得2426a d aq a d aq ⎧+=⎨+=⎩,,消去d 得4232aq aq a -=, 又因为0≠a , 所以02324=+-q q , 所以2122==q q 或, ……………5分若12=q , 则0=d , 舍去;……………6分 若22=q , 则2a d =, 因此12)1(-=-+⇔=m m n aq a n a b a 1211-=-+⇔m q n , 所以1221-=+m n (m 是正奇数)时, m n b a =;……………8分(2)证明:因为0,0>>a d , 所以111212>+=+===ada d a a ab b q , …………11分2>n 时, 1)1(---+=-n n n aq d n a b a =d n q a n )1()1(1-+--=d n q q q q a n )1()1)(1(22-+++++--ΛΛd n n q a )1()1)(1(-+--<=[]0))(1()1()1(22=--=+--b a n d q a n所以, 当n n b a n <>时,2. …………………………16分6. 已知圆O :221x y +=, O 为坐标原点. (1)边长为2的正方形ABCD 的顶点A 、B 均在圆O 上, C 、D 在圆O 外, 当点A 在圆O 上运动时,C 点的轨迹为E . (ⅰ)求轨迹E 的方程;(ⅱ)过轨迹E 上一定点00(,)P x y 作相互垂直的两条直线12,l l , 并且使它们分别与圆O 、轨迹E相交, 设1l 被圆O 截得的弦长为a , 设2l 被轨迹E 截得的弦长为b , 求a b +的最大值.(2)正方形ABCD 的一边AB 为圆O 的一条弦, 求线段OC 长度的最值.解:(1)(ⅰ)连结OB , OA , 因为OA =OB =1, AB =2, 所以222AB OB OA =+,所以4OBA π∠=, 所以34OBC π∠=, 在OBC ∆中, 52222=⋅-+=BC OB BC OB OC ,所以轨迹E 是以O 为圆心, 5为半径的圆,所以轨迹E 的方程为522=+y x ; (ⅱ)设点O 到直线12l l ,的距离分别为12d d ,,因为21l l ⊥, 所以2222212005d d OP x y +==+=, 则22215212d d b a -+-=+,则[])5)(1(2)(64)(222122212d d d d b a --++-=+≤4⎥⎥⎦⎤⎢⎢⎣⎡--⋅++-262)(622212221d d d d =22124[122()]d d -+=4(1210)8-=,当且仅当221222125,15,d d d d ⎧+=⎨-=-⎩, 即22219,21,2d d ⎧=⎪⎪⎨⎪=⎪⎩时取“=”,所以b a +的最大值为22(2)设正方形边长为a , OBA θ∠=, 则cos 2a θ=, 0,2θπ⎡⎫∈⎪⎢⎣⎭.当A 、B 、C 、D 按顺时针方向时, 如图所示, 在OBC ∆中,2212cos 2a a OC θπ⎛⎫+-+= ⎪⎝⎭,即2(2cos )122cos sin OC θθθ=++⋅⋅24cos 12sin 2θθ=++ 2cos 22sin 2322sin 234θθθπ⎛⎫=++=++ ⎪⎝⎭由2,444θππ5π⎡⎫+∈⎪⎢⎣⎭, 此时(1,21]OC ∈; 当A 、B 、C 、D 按逆时针方向时, 在OBC ∆中,2212cos 2a a OC θπ⎛⎫+--= ⎪⎝⎭,即2(2cos )122cos sin OC θθθ=+-⋅⋅24cos 12sin 2θθ=+-xODB A 11 1- 1-θCy xO DBA11 1-θCy2cos 22sin 2322sin 234θθθπ⎛⎫=-+=--+ ⎪⎝⎭,由2,444θππ3π⎡⎫-∈-⎪⎢⎣⎭, 此时[21,5)OC ∈-, 综上所述, 线段OC 长度的最小值为21-, 最大值为21+.7. 已知函数()1ln ()f x x a x a R =--∈.(1)若曲线()y f x =在1x =处的切线的方程为330x y --=, 求实数a 的值; (2)求证:0)(≥x f 恒成立的充要条件是1a =;(3)若0a <, 且对任意(]1,0,21∈x x , 都有121211|()()|4||f x f x x x -≤-, 求实数a 的取值范围.另解:042≤--ax x 在(]1,0∈x 上恒成立, 设4)(2--=ax x x g , 只需[)0,30041)1(04)0(-∈⇒⎪⎩⎪⎨⎧<≤--=<-=a a a g g .8. 已知函数2()3,()2f x mx g x x x m =+=++. (1)求证:函数()()f x g x -必有零点; (2)设函数()G x =()()1f x g x --(ⅰ)若|()|G x 在[]1,0-上是减函数, 求实数m 的取值范围;,a b ()a G x b ≤≤[],a b ,a b存在,说明理由.9. 已知函数()1ax x ϕ=+, a 为正常数. (1)若()ln ()f x x x ϕ=+, 且92a =, 求函数()f x 的单调增区间;(2)若()|ln |()g x x x ϕ=+, 且对任意12,(0,2]x x ∈, 12x x ≠, 都有2121()()1g x g x x x -<--,求a 的的取值范围.解:(1) 2221(2)1'()(1)(1)a x a x f x x x x x +-+=-=++,∵92a =, 令'()0f x >, 得2x >, 或12x <, ∴函数()f x 的单调增区间为1(0,)2, (2,)+∞.(2)∵2121()()1g x g x x x -<--, ∴2121()()10g x g x x x -+<-,∴221121()[()]0g x x g x x x x +-+<-, 设()()h x g x x =+, 依题意, ()h x 在(]0,2上是减函数.当12x ≤≤时, ()ln 1ah x x x x =+++, 21'()1(1)a h x x x =-++,令'()0h x ≤, 得:222(1)1(1)33x a x x x x x+≥++=+++对[1,2]x ∈恒成立, 设21()33m x x x x =+++,则21'()23m x x x =+-, ∵12x ≤≤, ∴21'()230m x x x=+->, ∴()m x 在[1,2]上是增函数, 则当2x =时, ()m x 有最大值为272, ∴272a ≥.当01x <<时, ()ln 1ah x x x x =-+++, 21'()1(1)a h x x x =--++, 令'()0h x ≤, 得: 222(1)1(1)1x a x x x x x+≥-++=+--, 设21()1t x x x x =+--, 则21'()210t x x x=++>, ∴()t x 在(0,1)上是增函数, ∴()(1)0t x t <=, ∴0a ≥, 综上所述, 272a ≥10. (1)设10+<<a b , 若对于x 的不等式()()22ax b x >-的解集中的整数恰有3个,则实数a 的取值范围是 ▲ .(2)若关于x 的不等式()2221x ax -<的解集中的整数恰有3个, 则实数a 的取值范围是▲ .解:(1)()3,1(2)⎪⎭⎫ ⎝⎛1649,92511. 已知{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中1122432,1,,2a b a b a b ====,且存在常数α、β, 使得n a =log n b αβ+对每一个正整数n 都成立,则βα= ▲ .12. 在直角坐标系平面内两点Q P ,满足条件:①Q P ,都在函数)(x f 的图象上;②Q P ,关于原点对称, 则称点对),(Q P 是函数)(x f 的一个“友好点对”(点对),(Q P 与),(P Q 看作同一个“有好点对”).已知函数⎪⎩⎪⎨⎧≥<++=,0,2,0,142)(2x ex x x x f x 则函数)(x f 的“友好点对”有 ▲ 个.13. 已知ABC ∆的三边长c b a ,,满足b a c a c b 22≤+≤+,, 则a b的取值范围是 ▲ . 解:⎪⎭⎫ ⎝⎛23,32已知ABC ∆的三边长c b a ,,满足b a c a c b 3232≤+≤+,, 则ab的取值范围是 ▲ . 解:⎪⎭⎫ ⎝⎛35,43xyO14. 已知分别以21,d d 为公差的等差数列{}n a ,{}n b ,满足120091,409a b ==. (1)若11=d ,且存在正整数m ,使得200920092-=+m m b a ,求2d 的最小值;(2)若0k a =, 1600k b =且数列200921121,,,,,,b b b b a a a k k k k K K ++-,的前项n 和n S 满足200920129045k S S =+,求 {}n a 的通项公式.解:(1)证明:220092009m m a b +=-Q ,21120092[(1)]2009a m d b md ∴+-=+-, 即200940922-+=md m , ……4分21600160080d m m m m ∴=+≥⋅=. 等号当且仅当"1600"mm =即"40"=m 时成立,故40m =时, 2min []80d = . ……7分(2)0k a =Q , 1600k b =, 120091,409a b ==200912112009()()k k k k S a a a a b b b -+∴=++++++++L L=++2)(1k a a k 2)12009)((2009+-+k b b k 2009(2010)22k k -=+, …10分 200920129045k S S =+Q 1()201290452k a a k +=+=904522012+k201290452k ∴⋅+2009(2010)22k k -=+40202009201018090k ∴=⨯-, 220099k ∴=-, 1000k ∴= ……13分故得1,011000==a a 又, 11999d ∴=-,1210001(1)999999n a a n d n ∴=+-=-, 因此{}n a 的通项公式为n a n 99919991000-=. ……15分15. 已知函数)(3ln )(R a ax x a x f ∈--=. (1)当1a =时, 求函数)(x f 的单调区间;(2)若函数)(x f y =的图像在点))2(,2(f 处的切线的倾斜角为︒45, 问:m 在什么范围取值时,对于任意的[]2,1∈t , 函数⎥⎦⎤⎢⎣⎡++=)('2)(23x f m x x x g 在区间)3,(t 上总存在极值?(3)当2=a 时, 设函数32)2()(-+--=xep x p x h , 若在区间[]e ,1上至少存在一个0x , 使得)()(00x f x h >成立, 试求实数p 的取值范围. 24,1e e ⎛⎫+∞⎪-⎝⎭16. 如图, 在△ABC 中, 已知3=AB , 6=AC , 7BC =, AD 是BAC ∠平分线. (1)求证:2DC BD =;(2)求AB DC ⋅u u u r u u u r的值.(1)在ABD ∆中, 由正弦定理得sin sin AB BDADB BAD=∠∠①, 在ACD ∆中, 由正弦定理得sin sin AC DCADC CAD=∠∠②, 所以BAD CAD ∠=∠, sin sin BAD CAD ∠=∠, sin sin()sin ADB ADC ADC π∠=-∠=∠, 由①②得36BD AB DC AC ==, 所以2DC BD =(2)因为2DC BD =, 所以BC DC 32=. 在△ABC 中, 因为22222237611cos 223721AB BC AC B AB BC +-+-===⋅⨯⨯, 所以22()||||cos()33AB DC AB BC AB BC B π⋅=⋅=⋅-u u u r u u u r u u u r u u u r u u ur u u u r2112237()3213=⨯⨯⨯-=- 17. 已知数列{}n a 的前n 项和为n S , 数列{}1n S +是公比为2的等比数列.(1)证明:数列{}n a 成等比数列的充要条件是13a =;AB CD(2)设n n n n a b )1(5--=(*∈N n ), 若1+<n n b b 对任意*∈N n 成立, 求1a 的取值范围.18. 已知分别以1d 和2d 为公差的等差数列{}n a 和{}n b 满足181=a , 3614=b .(1)若181=d , 且存在正整数m , 使得45142-=+m mb a , 求证:1082>d ; (2)若0==k k b a , 且数列142121b b b a a a k k k ,,,,,,,ΛΛ++的前n 项和n S 满足k S S 214=,求数列{}n a 和{}n b 的通项公式; (3)在(2)的条件下,令>==a a d a c n n b n a n ,,, 且1≠a ,问不等式n n n n d c d c +≤+1是否对一切正整数n 都成立?请说明理由.19. 若椭圆)0(12222>>=+b a by a x 过点(-3, 2), 离心率为33, ⊙O 的圆心为原点,直径为椭圆的短轴, ⊙M 的方程为4)6()8(22=-+-y x , 过⊙M 上任一点P 作⊙O 的切线P A 、PB , 切点为A 、B .(1)求椭圆的方程;(2)若直线P A 与⊙M 的另一交点为Q , 当弦PQ 最大时, 求直线P A 的直线方程; (3)求⋅的最大值与最小值.(1)1101522=+y x ;(2)直线PA 的方程为:0509130103=--=+-y x y x 或 (3)21. 设函数x m mx x x f )4(31)(223-+-=, R x ∈, 且函数)(x f 有三个互不相同的零点βα,,0, 且βα<, 若对任意的[]βα,∈x , 都有)1()(f x f ≥成立, 求实数m 的取值范围. 解:20. 已知集合{}k x x x x x x D =+>>=212121,0,0),(, 其中k 为正常数. (1)设21x x u =, 求u 的取值范围;(2)求证:当1≥k 时, 不等式⎪⎭⎫⎝⎛-≤⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立; (3)求使不等式⎪⎭⎫⎝⎛-≥⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立的k 取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学填空压轴题之
函数
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
[函数与不等式的应用(恒成立)]
17.若不等式22|log |11||2,(,2)2
x x a x x -+≥∈上恒成立,则实数a 的取值范围为_ _ 16.已知关于n 的不等式n n n n 2)1)(5(322+-<--λ对任意*N n ∈恒成立,则实数λ的取值范围是 ▲ )8
37,(-∞ 17、(改编题)不等式xy x y x a 4)5(222+≤+对于任意非零实数x ,y 均成立,则实数a 的最大值为 ▲ . 5
4- 3. 已知函数155)(2++=x x x ϕ)(R x ∈,函数)(x f y =的图象与)(x ϕ的图象关于点)2
1,0(中心对称。

(1)求函数)(x f y =的解析式;
(2)如果)()(1x f x g =,)2,)](([)(1≥∈=-n N n x g f x g n n ,试求出使0)(2<x g 成
立的x 取值范围;
(3)是否存在区间E ,使{}Φ=<⋂0)(x f x E 对于区间内的任意实数x ,只要
N n ∈,且2≥n 时,都有0)(<x g n 恒成立
[函数的图象与性质]
16.已知函数2342011()12342011=+-+-+⋅⋅⋅+x x x x f x x ,2342011
()12342011
=-+-+-⋅⋅⋅-x x x x g x x , 设()(3)(3)=+⋅-F x f x g x ,且函数()F x 的零点均在区间[,](,,)<∈a b a b a b Z 内,
则-b a 的最小值为____▲
17.已知m 是正整数,若关于x 的方程2100x m -+=有整数解,则m 所有可
能的取值集合是 ▲ .{}3,14,30
16.若函数2012()2012
x f x x -=+在区间[]b a ,(,a b 为整数)上的值域是[]0,1,则满足条件的数对()b a ,共有 ▲ 对;4025
17.设函数n a n n x f x x x x +-++++=)1(321lg )( ,其中R a ∈对于任意的正整数n (2≥n ),如果不等式n x x f lg )1()(->在区间[)+∞,1有解,则实数a 的取值范围为 ▲ .2
1>a 16.若函数|1|
log )(+=x t x f 在区间(-2,-1)上恒有,0)(>x f ,则关于t 的不等式
)1()18(f f t >-的解集为____________(0,3
1) 15.设函数()(0,1)1
x
x a f x a a a =>≠+,[]m 表示不超过实数m 的最大整数,则函数 11[()][()]22
f x f x -+--的值域是 .{-1,0} 17.设函数sin cos [sin cos ]()()2x x xc x f x x R +--=∈,若在区间[0,]m 上方程3()2f x =-恰有4个解,则实数m 的取值范围是 。

11. 若函数f (x )=e x -2x-a 在R 上有两个零点,则实数a 的取值范围是
_________________.()+∞-,2ln 22
9.已知()f x 是以2为周期的偶函数,且当[0,1]x ∈时,()f x x =,若在区间[1,3]-内,方程()1(,1)f x kx k k R k =++∈≠且有4个零点,则k 取值范围是__________.
4.已知函数:)(1)(a x R a x
a a x x f ≠∈--+=且 (Ⅰ)证明:f(x)+2+f(2a -x)=0对定义域内的所有x 都成立.
(Ⅱ)当f(x)的定义域为[a+2
1,a+1]时,求证:f(x)的值域为[-3,-2]; (Ⅲ)设函数g(x)=x 2+|(x -a)f(x)| ,求g(x) 的最小值 .(分类讨论)
[二次函数的图象与性质]
17.【2011年甘肃省河西五市部分普通高中高三第二次联合考试】
设二次函数2()4()f x ax x c x R =-+∈的值域为[0,)+∞,则1919c a +++的最大值为 56 已知函数|12|)(2-+=x x x f ,若1-<<b a ,且()()f a f b =,则b a +=μ的取值范围为 ▲ )4,422(---(答案有问题)
已知函数|12|)(2-+=x x x f ,若1-<<b a ,且()()f a f b =,则b a ab ++=μ的取值范围为 ▲ (-1,1)
17.【根据2011杭二模改编】已知函数,,13)(3R x x x x f ∈+-=,}1|{+≤≤=t x t x A ,}1|)(||{≥=x f x B 集合B A ⋂只含有一个元素,则实数t 的取值范围是 ▲ .(0,13-)
16. (理科)二次函数f(x)=)(2R b a b ax x ∈++、
(I )若方程f(x)=0无实数根,求证:b>0;
(II )若方程f(x)=0有两实数根,且两实根是相邻的两个整数,求证:f(-
a)=)1(4
12-a ; (III )若方程f(x)=0有两个非整数实根,且这两实数根在相邻两整数之间,试证明存在整数k ,使得4
1)(≤k f . [新定义]
14.直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数()f x 的图象恰好通
过*()k k N ∈个格点,则称函数()f x 为k 阶格点函数,下列函数:
①0.5()log f x x =②x
x f ⎪⎭
⎫ ⎝⎛=51)(;③;2363)(2++-=πππx x x f ④,x x f sin )(=其中是一阶格点函数的有 。

③④ (16) 设函数()f x 的定义域为D ,若存在非零实数k 使得对于
任意x D ∈,有()()f x k f x +≥,则称()f x 为D 上的“k 调函数”.如果定义域是
[1,)-+∞的函数2()f x x =为[1,)-+∞上的“k 调函数”,那么实数k 的取值范围是
___▲ .2≥k
14.定义在区间[a ,b]上的连结函数()y f x =,如果[,]a b ξ∃∈,使得
()()'()()f b f a f b a ξ-=-,则称ξ为区间[a ,b]上的“中值点”。

下列函数:
①()32;f x x =+②2()1;f x x x =-+③()ln(1)f x x =+;④31()()2
f x x =-中,在区间[0,1]上“中值点”多于一个函数序号为 。

(写出所有..满足条件的函数的序号)
① ④
8.设函数()f x 的定义域为D ,如果存在正实数k ,使对任意x D ∈,都有x k D +∈,且()()f x k f x +>恒成立,则称函数()f x 为D 上的“k 型增函数”.已知()f x 是定义在R 上的奇函数,且当0x >时,()||2f x x a a =--,若()f x 为R 上的“2011型增函数”,则实数a 的取值范围是__________.
14.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k 棵树种
植在点()k k k P x y ,
处,其中11x =,11y =,当2k ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡--⎤⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩
,.
()T a 表示非负实数a 的整数部分,例如(2.6)2T =,(0.2)0T =.按此方案第2010棵树种。

相关文档
最新文档