小学数学方阵问题类例题题解
方阵问题公式(附例题)

方阵问题公式(附例题)学生排队,士兵列队,横着排叫做行,竖着排叫做列。
如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
核心公式:方阵问题公式(1)实心方阵:(外层每边人数)2=总人数。
(2)空心方阵:(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。
或者是(最外层每边人数-层数)×层数×4=中空方阵的人数。
总人数÷4÷层数+层数=外层每边人数。
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?一、实心方阵1.方阵总人数=最外层每边人数的平方(方阵问题的核心)-每边数×每边数2人数=(阵最外层总人数+4)+13.外一层每边人数比内一层每边人数多24.去掉一行、一列的总人数=去掉的每边人数×2-15、每层数-(每边-1)×4二、空心方阵1外人数=总人数+4+层数+层数2数最=(最外层每边数-层数)×层数×4=(最外层数+最内层数)×层数+23内层数=外层数-84、每层数=(每边数-1)×45、实心方阵的总人数是一个完全平方数,空心方阵的总人数是4的倍数。
方阵问题方阵的基本特点:1、方阵不论哪一层.每边上的人(或物)数量都相同,每向里一层每边上的人数就少 2,每层总数少82、实心方阵:总数=每边数×每边数每边数=每层数+4+1每边数=(每横排与每竖排之和-1)+2每层数=(每边数-1)×43、空心方阵:总数=大实心方阵数-小实心方阵数总数=(最外层每边数-层数)×层数×4总数=(最外层数+最内层数)×层数+2最外层每边数-总数+4+层数+层数解决方阵问题的基本思路:1、避免重复方阵问题基本公式基本公式:(1)N排N列的实心方阵人数为N2人;(2)M排N列的实心长方阵人数为MXN人:(3)N排N列的方阵,最外层有 4N-4人:(4)在方阵或者长方阵中,相邻两圈人数,外圈比内圈多8人;(5)空心正M 边形阵,若每边有N个人,则共有MN-M个人;(6)方阵中:方阵人数=(最外层人数÷4+1)2方阵问题两大常见思维方法:(1)重叠点思维:若有边与边的重叠情况,把各边点数相加时重叠点计算了两次,因此需要再减去重叠点个数,才是最终的全部数目: (2法思维:如果需要计算“某种形状”的“某种外层”的数目,用整体数目减去内部的数目是一种常用的思维方法。
小学数学广角专题10.方阵问题_通用版

小学数学广角专题10.方阵问题_通用版夯实基础1.在一个正方形花坛的四周栽树,要求4个顶点各栽1棵,每边只栽10棵,共栽了()棵树.A.36B.32C.48D.40【答案】A【解析】试题分析:此题可以看做是空心方阵问题,四周点数=每边点数×4﹣4,由此即可解答.解:10×4﹣4=36(棵),答:一共栽了36棵树.故选:A.2.一队学生围成一个正方形,每边站了12人(四个顶点都有人),共有()名学生.A.44B.48C.52D.40【答案】A【解析】试题分析:因为每个顶点处的人数在每条边上重复相加,所以最外层人数=每边人数×4﹣4,由此即可解答.解:12×4﹣4,=48﹣4,=44(人),答:共有44人.故选:A.3.一个正方形平顶天花板上每边要装20盏彩灯,一共需要()盏彩灯.A.40B.76C.44D.50【答案】B【解析】试题分析:这个问题可以看做是空心方阵问题:根据四周点数之和=每边点数×4﹣4即可计算所需要的彩灯盏数.解:20×4﹣4=76(盏),答:一共需要76盏灯.故选:B.4.王大伯在正方形鱼塘的四周栽树,每边栽5棵,王大伯最少能栽棵,最多能栽棵.【答案】16,20.【解析】试题分析:要使植树的棵数最少,那么四个顶点都栽树,则植树棵数=每边植树棵数×4﹣4;要使植树的棵数最多,那么四个顶点都不栽,则栽树棵数=每边栽树棵数×4,据此计算即可解答.解:植树的棵数最少是:5×4﹣4=20﹣4=16(棵)植树的棵数最多是:5×4=20(棵)答:王大伯最少能栽16棵,最多能栽20棵.故答案为:16,20.5.在一个正方形操场的四周插上红旗,4个角上也插上红旗,如果每条边上插15面,那么四周一共插了面红旗.【答案】56【解析】试题分析:每一边上都插了15面红旗,那么15×4=60(面),其中四个角的红旗重复加了一次,所以要减去,即可得出红旗的总面数.解:15×4﹣4,=60﹣4,=56(面),答:四周一共插了56面红旗.故答案为:56.6.36个同学围成一个正方形,相邻两人之间的距离相等.每条边上站了人.【答案】10【解析】试题分析:因为围成一个封闭图形,所以间隔数等于总人数36个,因为是正方形,所以每边上有36÷4=9个间隔,则每边上的人数等于间隔数加1即可解答.解:36÷4+1,=9+1,=10(个).答:每边上站了10人.故答案为:10.7. 一个正方形游泳池的四周要安装护栏,每边安装10根,每个顶点都要安装,一共要安装多少根?【答案】36根【解析】试题分析:每个边上安装10根,一共是4个边,所以是10×4根,但是四个顶点的被计算了2次,所以再减去4就是一共要安装的根数。
小学数学典型应用题16:方阵问题(含解析)

小学数学典型应用题16:方阵问题(含解析)方阵问题【含义】将若干人或物依一定条件排成正方形(简称方阵)。
根据已知条件求总人数或总物数,这类问题就叫做方阵问题。
【数量关系】(1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数×每边人数空心方阵:总人数=外每边的人数平方-内每边的人数平方内每边人数=外每边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4解题思路和方法方阵问题有实心与空心两种。
实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。
例1:佳一学校参加运动会团体操比赛的运动员排成了一个正方形队列。
如果要使这个正方形队列减少一行和一列,则要减少23人。
那么参加团体操表演的运动员一共有多少人?解:1、要知道参加表演的运动员共有多少人,只需要找到最外层每边有多少人即可。
2、一个正方形队列,减去一行和一列,就是去掉了两条边上的人数,其中顶点上的人数计算了两次,所以减少的人数=每边的人数×2-1。
所以开始每边有(23+1)÷2=12(人),参加表演的有12×12=144(人)。
例2:欢欢用围棋子围成一个三层空心方阵,最外一层每边有围棋子16枚,欢欢摆这个方阵共用了多少枚围棋子?解法1:1、本题考查的空心方阵,根据四周的枚数和每边上的枚数之间的关系,算出每一层的棋子数。
2、方阵每向里一层,每边的枚数就减少2枚。
知道最外一层每边放16枚,就可求出第二层及第三层每边枚数,知道各层每边的枚数,就可以求出各层的总数。
最外一层的棋子的枚数:(16-1)×4=60(枚),第二层棋子的枚数:(16-2-1)×4=52(枚),第三层棋子的枚数:(16-2-2-1×4=11×4=44(枚),摆这个方阵共用了60+52+44=156(枚)棋子。
第讲 方阵问题

第八讲方阵问题姓名知识回顾:在方阵中,某一层的人(或物)数=每边人(或物)数×4-1×4,注意:每相邻两层的数量相差8例题一、实验小学武术队为庆祝“百年校庆”,排成了一个10行10列的方阵。
最外面一层有多少人?最外面第二层有多少人?点拨:因为最外面一层每条边有10人,四条边就有10×4=40(人),但是,由于四个角上的四个人被重复计算了一次,因此,最外面一层应该有: 40—1×4=36(人)我们也可以这样计算,用四个长方形把最外面一层分成完全一样的四块,每块有9人,所以最外面一层一共有(10—1)×4=36(人)。
最外面第二层有36—8=28(人)。
习题一、幼儿园大班的小朋友们排成了一个方阵,最外层的每边有15人,这个方阵的最外层有多少人?习题二、李爷爷承包了一个正方形的鱼塘,他在鱼塘的每边上都栽了8棵树苗,四个角上各栽了1棵树苗,那么李爷爷在鱼塘的四边上共栽了多少棵树苗?习题三、学校为了庆祝“五一”国际劳动节,在小广场上用花盆摆了一个方阵,最外层有100盆花,那么最外层的每边有多少盆花?例题二、育红小学高年级有学生552人,排成一个三层空心方阵进行队列训练,求这个空心方阵的每层人数。
点拨:因为“每相邻两层的数量都相差8。
”我们假设最内层有“1”份的学生,第二层有“1”份的学生多8人,最外层有“1”份的学生多16人。
因此,根据“和差问题”的方法可以得出每层的人数。
(552—8—8×2)÷(1+1+1)=528÷3=176(人)……第一层的人数;176+8=184(人)……第二层的人数;184+8=192(人)……第三层的人数。
答:一共有解放军126人。
习题一、东东用112颗珠子摆成了一个四层空心方阵,求这个空心方阵的每层、颗数。
习题二、参加“六一文艺汇演”的学生排成一个空心方阵,最外层是60人,最内层是36人,这批学生共有多少人?例题三、有一批解放军战士,如果排成三层空心方阵,多出18人;如果在中间的空心部分增排一层(排成四层),反而又少了2人,那么一共有解放军多少人?点拨:根据题意,在空心部分增排一层,人数由“多出18人”变成“反而少了2人”,因此,排这一层需要18+2=20(人)。
方阵问题带答案版

层数: (9-1)÷2+1=5(层)
8、若干名同学站成一个10×10的实心方阵.请问: 最外层一共有多少人?这个方阵一共有多少层? 从里向外算起的第3层有多少人?
最外层人数:
(10-1)×4=36(人)
层数: 10÷2=5(层)
从里向外第3层人数:
4+8×2=20(人)
或 36-2×8=20(人)
最外层人数 : (6-1)×4=20(人)
总人数 : 20+(20-8)=32(人)
4、某校少先队员可以排成一个四层空心方阵,如果 最外层每边有20个学生, 问:(1)这个空心方阵最里边一周有多少个学生? (2)这个四层空心方阵共有多少个学生? (1)最外层人数:(20-1)×4=76(个)
最里边人数:76-3×8=52(个)
每边人数:48÷4+1=13(人)
总人数:13×13=169(人)
3、三年级一班参加运动会入场式,排成一个方阵,最 外层一周的人数为20人。 问:(1)方阵最外层每边的人数是多少? (2)这个方阵共有多少人?
(1)每边人数:20÷4+1=6(人) (2)总人数:6×6=36(人)
4、军训的学生进行队列表演,排成一个7行7列的 正方形队列,如果去掉一行一列,要去掉多少人? 还剩下多少人?
例题: 1、有一个正方形池塘。四个角都栽一棵树。棵)
2、用围棋排成三层空心方阵,最里层共有12颗, 求这个方阵共有棋子多少颗?
12+8=20(颗) 20+8=28(颗)
12+20+28=60(颗)
3、四(1)班的学生进行队列训练,排成两层空 心方阵,已知最外层每边有6人,求这个班共有多 少人?
(2)总人数:52+60+68+76=256(个) 或 (52+76)×4÷2=256(个)
方阵问题经典例题和练习题

方阵问题一、知识要点及基本方法方阵问题应用题就是把人或物按照一定的条件排成正方形,再根据已知条件求出人或物的数量的应用题。
特点是:方阵每边的实物数量相等,同边上相邻两层的实物数量相差2,相邻两层的实物数量相差8。
数量关系:(1)方阵每边人数和四周人数的关系:(每边人数-1)×4=四周人数四周人数÷4+1=每边人数(2)方阵总人数的计算方法:实心方阵:每边人数×每边人数=总人数空心方阵:外边人数×外边人数-内边人数×内边人数=总人数若将空心方阵分成4个相等的矩形计算,则:(外边人数-层数)×层数×4=总人数二、例题精讲例1 四年级同学参加广播操比赛,要排列成每行8人,共8行方阵。
排列这个方阵共需要多少名同学?解题分析这是一道实心方阵问题,求这个方阵里有多少名同学,就是求实心方阵中布点的总数。
排列成每行8人点,共8行,就是有8个8点。
求方阵里有多少名同学,就是求8个8人是多少人?解:8×8=64(人)答:排列这个方阵,共需要64名同学。
例2 有一堆棋子,刚好可以排成每边6只的正方形。
问棋子的总数是多少?最外层有多少只棋子?解题分析依题意可以知道:每边6只棋子的正方形,就是棋子每6只1排,一共有6排的实心方阵。
根据方阵问题应用题的解题规律,求实心方阵总数的数量关系,总人数=每边人数×每边人数,从而可以求出棋子的总数是多少只。
而最外层棋子数则等于每边棋子数减去1乘以行数4,即(6-1)×4只。
解:(1)棋子的总数是多少?6×6=36(只)(2)最外层有多少只棋子?(6-1)×4=20(只)答:棋子的总数是36只,最外层有20只棋子。
例3 一堆棋子排成一个实心方阵,共有8行8列,如果去掉一行一列,要去掉多少只棋子?还剩下多少只棋子?解题分析排成方阵的棋子,无论排在任何地方,都既是其中一排的棋子,也是其中一行的棋子,所以,无论去掉哪一行和哪一列,总会有一只棋子被重复去掉1次,因此,要求出去掉一行一列去掉多少只棋子,就是要求出比原来方阵中2行的棋子数少1只。
小学数学方阵问题应用题及参考答案

小学数学方阵问题应用题及参考答案1.全校排成一方阵做操.已知外层共有80人,那么这个学校共有多少学生做操?2.学校要美化校园,要在正方形水池四周摆花,四个角都摆一盆,每边都摆5盆,那么一共要准备多少盆花.3.同学们在操场上排队,每行人数和行数恰好相等,最外一圈有100人,每行多少人.4.同学们在操场上排队,每行人数和行数恰好相等,最外一圈有100人,每行同学们做操,排成一个正方形的队伍,从前,后,左,右数,小红都是第5个,问一共有多少人.5.把12枚棋子均匀围成一个正方形,每边是几枚棋子?6.一个池塘(正方形),每边都种10棵树,最少需要种多少棵,如果有48棵树苗,4角上都要种,平均每边种多少棵.7.四年级大家唱大家跳排成方阵,最外层每边都是25人,最外层一共有多少名队员?整个方阵共有多少名队员?8.一个方阵,最外层每边有10人,最外层一共有多少人?9.一个正方形的操场边长20米,如果每边栽5棵数(每个角的顶点栽一棵),一共要栽多少棵树?每两棵树之间的距离多少米?10.在一个边长是40米的正方形草地的四周擦彩旗,每隔5米插1面(正方形的每个顶点插1面),一共要插多少面彩旗.11.同学们用小红花排成了一个四层空心方阵,最外层每边12朵,共有红花多少朵?12.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少个棋子.摆这个三层空心方阵共用了多少个棋子.13.在迎接神七返回的庆祝活动中,瑞金三中的同学们朝气蓬勃地扭着秧歌,排成了两个正方形阵,每一边有20人,在每个方阵的中心空出了36人的正方形空地,你能算出这个队伍的人数吗?14.一群人排成n×n的方阵,最外3层共有120人,求n的数值.15.共有960名男生站成一个三层的空心方阵,问:中间一层每边有多少人?参考答案:1.解:80÷4+1=21(人),21×21=441(人);答:这个学校共有441个学生做操.【分析】由于四个顶点上的人属于相邻的两个边公共的人,所以每边的人数是:80÷4+1=21(人),因此这个方阵共有学生21×21=441(人),据此解答.2.解:(5-1)×4=4×4=16(盆)答:一共要准备16盆花.【分析】由题意,此题可看作是一个空心方阵,要求四周一共要摆多少盆花,根据“四周的盆数=(每边的盆数-1)×4”解答即可.3. 解:100÷4+1=25+1=26(人)答:每行26人.【分析】每行人数和行数恰好相等,即排成的是一个正方形实心方阵,已知最外一圈有100人,根据“每边的人数=四周的人数÷4+1”解答即可.4.解:每边人数是:5×2﹣1=9(人),共有:9×9=81(人),答:一共有81人.【分析】因为从前、后、左、右数,小红都是第5个,所以每行都有:5×2﹣1=9人,由此利用方阵问题中:总人数=每边人数×每边人数,即可解答.5.解:12÷4+1=4(枚),答:围成的正方形的每边棋子数是4枚.【分析】此题可以利用空心方阵的每边点数=四周点数÷4+1,先求出围成的这个正方形的每边上的棋子数,再进行选择.6.解:(10-1)×4 =9×4 =36(棵)48÷4+1 =12+1 =13(棵)答:最少需要种36棵,如果有48棵树苗,4角上都要种,平均每边种13棵.故答案为:36,13.7.解:25×4-4=100-4=96(名)25×25=625(名)答:最外层一共有96名队员,整个方阵共有625名队员.【分析】根据方阵问题中最外层人数=每边人数×4-4实心方阵中总人数=每边人数×每边人数;代入数据即可解答.8.解:10×4-4=40-4=36(人)答:最外层共有36人.故答案为:36.【分析】最外层每边都是10人,4条边共有:10×4=40(人),由于四个顶点重复计算了1次,实际最外层共有40-4=36(人).9.解:5×4-4 =20-4 =16(棵)20÷(5-1)=20÷4 =5(米)答:一共要栽16棵树,每两棵树之间的距离5米.故答案为:16,5.【分析】根据方阵问题中最外层点数=每边点数×4-4,即可求出植树的总棵数;因为每条边上植树5棵,所以每条边上都有5-1=4个间隔,据此可以求出每个间隔的长度是20÷4=5米.10.解:40÷5+1 =8+1 =9(面)9×4-4 =36-4 =32(面)答:一共要插32面彩旗.故答案为:32.【分析】(1)先求出40里面有几个5,再加1就是每边最多要插的面数;(2)再用每边插的面数×4-4即可解答.11.解:(12-4)×4×4=8×16=128(朵)答:共有红花128朵.【分析】由题意知,要求这个四层空心方阵共有红花多少朵,就是求这个方阵的总点数;根据方阵问题中:空心方阵的总人数=(最外层每边的人数-空心方阵的层数)×空心方阵的层数×4解答即可.12.解:根据分析可得,最里层:15﹣2×2=11(个),(11﹣1)×4=40(个)(15﹣3)×3×4=12×12=144(个)答:明明摆这个方阵最里层一周共有40个棋子.摆这个三层空心方阵共用了144个棋子.故答案为:40,144.【分析】由于方阵每减少一层,每边的围棋子数减少2个,所以这个方阵最里层每边有:15﹣2×2=11个,那么明明摆这个方阵最里层一周共有:(11﹣1)×4=40(个);根据公式:空心方阵的总点数=(最外层每边的点数﹣空心方阵的层数)×空心方阵的层数×4,可得:(15﹣3)×3×4=144(个);据此解答.13.解:(20×20﹣36)×2=(400﹣36)×2=364×2=728(人)答:这个队伍有728人.【分析】每一边有20人,则实心时应该有20×20=400人,减去36人的正方形空地,每一个方阵应有400﹣36=364人.两个方阵共有364×2=728人14.解:120÷4÷3+3=10+3=13(人)这个方阵的最外层每边13人,也就是n=13.答:n的数值是13.【分析】由题意知,可以先看成一个三层空心方阵,已知共有学生120人,要求最外层每边有多少名学生,据方阵问题中:空心方阵的总人数=(最外层每边的人数﹣空心方阵的层数)×空心方阵的层数×4,可得出:最外层每边人数=总人数÷4÷层数+层数,据此解答即可.15.解:最外层每边人数是:960÷4÷3+3,=80+3,=83(人),83﹣2=81(人),答:中间一层每边人数是81人.【分析】根据方阵问题中:空心方阵的总人数=(最外层每边的人数﹣空心方阵的层数)×空心方阵的层数×4,可得出最外层每边人数=空心方阵总人数÷4÷空心方阵的层数+空心方阵的层数,据此求出最外层每边人数,则再减去2人,就是中间一层的每边人数,据此解答即可.。
第八章方阵问题经典例题和练习题

第八章方阵问题一、知识要点及基本方法方阵问题应用题就是把人或物按照一定的条件排成正方形,再根据已知条件求出人或物的数量的应用题。
特点是:方阵每边的实物数量相等,同边上相邻两层的实物数量相差2,相邻两层的实物数量相差8。
数量关系:(1)方阵每边人数和四周人数的关系:(每边人数-1)×4=四周人数四周人数÷4+1=每边人数(2)方阵总人数的计算方法:实心方阵:每边人数×每边人数=总人数空心方阵:外边人数×外边人数-内边人数×内边人数=总人数若将空心方阵分成4个相等的矩形计算,则:(外边人数-层数)×层数×4=总人数二、例题精讲例1 四年级同学参加广播操比赛,要排列成每行8人,共8行方阵。
排列这个方阵共需要多少名同学?解题分析这是一道实心方阵问题,求这个方阵里有多少名同学,就是求实心方阵中布点的总数。
排列成每行8人点,共8行,就是有8个8点。
求方阵里有多少名同学,就是求8个8人是多少人?解:8×8=64(人)答:排列这个方阵,共需要64名同学。
例2 有一堆棋子,刚好可以排成每边6只的正方形。
问棋子的总数是多少?最外层有多少只棋子?解题分析依题意可以知道:每边6只棋子的正方形,就是棋子每6只1排,一共有6排的实心方阵。
根据方阵问题应用题的解题规律,求实心方阵总数的数量关系,总人数=每边人数×每边人数,从而可以求出棋子的总数是多少只。
而最外层棋子数则等于每边棋子数减去1乘以行数4,即(6-1)×4只。
解:(1)棋子的总数是多少?6×6=36(只)(2)最外层有多少只棋子?(6-1)×4=20(只)答:棋子的总数是36只,最外层有20只棋子。
例3 一堆棋子排成一个实心方阵,共有8行8列,如果去掉一行一列,要去掉多少只棋子?还剩下多少只棋子?解题分析排成方阵的棋子,无论排在任何地方,都既是其中一排的棋子,也是其中一行的棋子,所以,无论去掉哪一行和哪一列,总会有一只棋子被重复去掉1次,因此,要求出去掉一行一列去掉多少只棋子,就是要求出比原来方阵中2行的棋子数少1只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十三、方阵问题。
例1 树苗若干株,恰好可栽成每边6株的实心方阵。
树苗的总数是多少?正方形最外层有多少株?
解法一:每边6棵栽成正方形,即6株一排,共6排,所以树苗的总数是6×6=36(株)正方形最外层的株数由右图知,应等于每边株数减去1,乘上边数。
所以正方形最外层有
(6-1)×4=20(株)
解法二:由解法一图可知,因四角上的株数重复计算,每边株数×4的积应是“一周的总株数+4”,即每边株数×4=一周的总株数+4,由此可推知,一周的总株数=每边的株数×4-4。
所以正方形最外层有
6×4-4=20(株),树苗的总数是6×6=36(株)
注意:此题解答中用到的基本数量关系:一周的总株数=(每边株数- 1)×4;一周的总株数=每边株数×4-4。
这些是解此类题时常用的,并且据此还可推得:
每边株数=一周的总株数÷4+1
每边株数=(一周的总株数+4)÷4
例2 以若干粒棋子排成正方形,余12粒;依下图纵横添一粒而排成正方形,则不足17粒。
求棋子共有多少粒?
解法一:如图所示,为已排成之方阵,新添的棋子则按0排列。
由题意知,若增加12+17=29(粒)棋子,则纵、横可添1粒可排成方阵,这时方阵每边粒数应为(29+1)÷2=15(粒)。
此方阵棋子总数为15×15=225(粒),所以要求的棋子总数
为225-17=208(粒)。
解法二:设已排成的方阵每边有x粒,则纵横添1粒而排成的方阵每边为(x+1)粒,依题意得(x+1)2-17=x2+12解方程得x=14,所以棋子共有14×14+12=208(粒)。
例3 五年级学生,排成一个中空的方阵,最外层人数共52人,最内层人数共28人,问五年级学生有多少人?
解:由例1“注意”知,此中空方阵最外层每边人数是52÷4+1=14(人);最内层每边人数是28÷4+1=8(人)。
而方阵每扩展一层,每边要增加2人;反之每边要减少2人。
故此方阵空心部分的最外层每边有8-2=6(人),此空心方阵可容纳6×6=36(人),所以五年级有学生14×14-36=160(人)。
注意:此题解中得出的结论:“方阵每扩展一层,每边就要增加2人;反之,每边要减少2人”这是解此类题时常用的。
练习十八
1.以棋子排成正方形,其外周为84粒,求棋子总数是多少粒。
2.运动员排成每边15人的实心方阵余35人,若排成每边16人的空心方阵,还余多少人?
3.一队解放军,排成10层空心方阵,最外层每边人数是30人,这队解放军共有多少人?。