定义与命题教案二
湘教版数学八年级上册2.2《定义与命题》教学设计2

湘教版数学八年级上册2.2《定义与命题》教学设计2一. 教材分析《定义与命题》是湘教版数学八年级上册第2章第2节的内容。
这部分教材主要介绍定义与命题的概念,以及它们在数学中的重要性。
通过本节课的学习,学生能够理解定义与命题的含义,掌握如何正确书写定义与命题,以及如何判断一个命题的正确性。
教材中举例了一些常见的数学定义与命题,为学生提供了丰富的学习材料。
二. 学情分析学生在学习本节课之前,已经学习了数学的基本概念和符号,具备一定的逻辑思维能力。
但部分学生对抽象的概念理解较为困难,对命题的判断能力有待提高。
因此,在教学过程中,需要关注学生的学习差异,针对不同学生的学习需要进行引导和帮助。
三. 教学目标1.知识与技能:学生能够理解定义与命题的概念,掌握如何正确书写定义与命题。
2.过程与方法:学生通过观察、分析和判断,培养逻辑思维能力。
3.情感态度与价值观:学生培养对数学学科的兴趣,增强自信心,养成良好的学习习惯。
四. 教学重难点1.重点:定义与命题的概念及正确书写方法。
2.难点:对命题的正确判断,以及如何运用定义与命题解决实际问题。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解定义与命题的概念。
2.案例分析法:教师通过举例分析,让学生了解定义与命题在数学中的应用。
3.小组讨论法:学生分组讨论,培养合作精神,提高解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示相关定义与命题的案例。
2.学习材料:为学生准备一些相关的数学题目,用于巩固所学知识。
3.板书设计:准备板书,以便在课堂上进行讲解和展示。
七. 教学过程1.导入(5分钟)教师通过一个简单的数学问题,引导学生思考定义与命题的概念。
例如:请同学们思考,什么是直角?直角有哪些特征?2.呈现(10分钟)教师通过课件展示一些数学定义与命题的案例,让学生观察并分析。
如:平行线的定义、勾股定理等。
同时,教师对这些案例进行讲解,阐述定义与命题的含义和作用。
定义与命题(2)教案

1.2定义与命题(2)教案通过上面的练习,可以归纳出判断一个命题真假的方法:1.推理,根据已知事实来推断未知事实如:判断“对顶角相等”是否为真命题是真命题,理由如下:∵∠1+∠3=180°∠2+∠3=180°∴∠1=∠22.判断假命题,只需找一个反例证明即可。
判断下面命题的真假(1)如果a≠0,b≠0,那么a²+ab+b²=(a+b)²假命题,如:a=1,b=1时,a²+ab+b²=3,(a+b)²=4这时a²+ab+b²≠(a+b)²,所以这个命题是假命题。
(2)两个锐角之和一定是钝角假命题,如一个锐角为30°,另一个锐角为40°,则两角之和等于70°为锐角,所以这个命题是假命题。
判断一个命题为假命题,通常用反证法,举一个反例即可例题讲解例:判断下列命题的真假,并说明理由。
(1)三角形一条边的两个顶点到这条边上的中线所在的直线的距离相等。
(2)一组对边平行,另一组对边相等的四边形思考并回答问题加深理解,巩固新知是平行四边形。
(3))为实数(2aaa解:(1)是真命题,理由如下:如图1-1,在△ABC中,AD是BC边上的中线,BE⊥AD,CF⊥AD。
∵△ABD和△ACD的面积相等而△ABD的面积为AD·BE,△ACD的面积为AD·CF∴AD·BE=AD·CF∴BE=CF,所以这个命题是真命题。
(2)是假命题,理由如下:如图1-2,在四边形ABCD中,AD∥BC,AB=DC,但四边形ABCD不是平行四边形,所以这个命题是假命题。
是假命题,理由如下:取a=-2,则===2≠-2也就是≠a,所以这个命题是假命题。
判断一个命题是假命题,可以用反证法。
命题的反例是具备命题的条件,但不具备命题的结论的实例。
做一做判断下列命题的真假,并说明理由。
北师大版数学八年级上册《认识定义与命题》教案2

北师大版数学八年级上册《认识定义与命题》教案2一. 教材分析《认识定义与命题》是北师大版数学八年级上册的一章内容。
这一章节的主要目的是让学生理解命题的概念,掌握如何判断一个命题是真命题还是假命题,以及如何根据已知命题得出新的命题。
本章内容是学生学习几何初步知识的基础,也是进一步学习几何证明的关键。
二. 学情分析学生在七年级时已经学习了命题的概念,对命题有基本的了解。
但是,他们可能还没有完全理解命题与定义、定理之间的区别和联系。
此外,学生在逻辑思维方面可能还存在一些困难,需要通过实例和练习来进一步巩固。
三. 教学目标1.让学生理解命题的定义,能够判断一个命题是真命题还是假命题。
2.让学生掌握如何根据已知命题得出新的命题。
3.培养学生的逻辑思维能力,提高他们解决几何问题的能力。
四. 教学重难点1.教学重点:让学生理解命题的定义,掌握判断命题真假的方法,以及如何得出新的命题。
2.教学难点:让学生理解命题与定义、定理之间的区别和联系,以及如何运用这些知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和解决问题,让学生理解命题的定义和性质。
2.使用实例和练习,让学生通过实际操作和思考,掌握判断命题真假的方法,以及如何得出新的命题。
3.鼓励学生进行合作学习,通过讨论和交流,提高他们的逻辑思维能力。
六. 教学准备1.准备相关的教学材料,如教材、PPT、黑板等。
2.准备一些实例和练习题,用于引导学生进行思考和练习。
七. 教学过程1.导入(5分钟)通过提出一个问题,引发学生的思考,例如:“什么是命题?”让学生回顾命题的概念,为后续的学习打下基础。
2.呈现(10分钟)通过PPT或黑板,呈现本节课的主要内容,包括命题的定义、如何判断命题的真假,以及如何得出新的命题。
同时,给出一些实例,让学生直观地理解这些概念。
3.操练(10分钟)让学生通过实际操作和思考,掌握判断命题真假的方法,以及如何得出新的命题。
7.2.2《定义与命题》教学设计

定义与命题(二)教学设计一、教材分析1、教材的地位和作用: 定义与命题的知识在贯穿于整个初中数学知识体系,但作为单独的章节进行学习,还是首次,在设计上体现了对数学本原的思考,关注的是数学知识的产生和发展过程,目的就是为了通过本节课以及后续知识的学习,使学生感受整个数学体系的建立和完善的过程,是由实验几何向推理几何过渡的重要章节.2、学情分析:本节课针对的是八年级上学期的学生,他们在数学学习上已经有了一定的积累,但这是他们第一次接触到严格的几何定理证明,要让学生初步体会证明的思路与书写的过程,这将会是他们学习上的一大难点。
二、教学目标(一)知识与技能1、了解判断真假命题的方法2、能正确区分公理、定理及其证明的含义3、理解本教科书上的八条基本事实,并通过实例感受证明的过程与格式(二)过程与方法过实例感受证明的过程与格式,初步感受公理化思想(三)情感态度与价值观阅读有关《原本》和公理化的资料,感受公理化方法对数学发展和促进人类文明进步的价值。
三、教学重、难点重点:正确区分公理、定理和证明间的关系难点:如何证明一个定理,明确证明的过程与格式四、教学过程分析本节课的教学过程设计分为:复习与回顾——引入新课——定理证明——小结五、教学过程(一)复习与回顾1、判断一件事情的句子,叫做命题2、一般地,每个命题都由条件和结论两部分组成.3、正确的命题称为真命题,不正确的命题称为假命题.4、要说明一个命题是假命题,常常可以举一个例子,使它具备命题的条件而不具备命题的结论,这种例子称为反例。
1、下列句子哪些是命题,哪些不是命题。
(1)动物都需要水(是)(2)猴子是动物的一种(是)(3)美丽的天空(否)(4)负数都小于零(是)(5)你的作业做完了吗?(否)(6)如果a=b,a=c,那么b=c(是)2、下列命题的条件和结论分别是什么,并说出哪些是真命题,哪些是假命题。
假命题的请举出反例(1)两个锐角之和一定是钝角(假命题)(2)直角三角形的两锐角互余(真命题)(3)两直线平行,同位角相等(真命题)(设计意图:回顾上节知识,为本节课的展开打好基础.)(二)、引入新课1、想一想:举一个反例就可以说明一个命题是假命题,那么如何证实一个命题是真命题呢?(设计意图:由上节课的知识内容自然的过度到本节课的知识点,开门见山,直奔主题,给学生讨论与思考的时间,引出寻找证明出发点的必要性)2、读一读:在数学发展史上,数学家们也遇到过类似的问题。
最新初中北师版八年级数学上册7.2定义与命题(2)公开课教案

(2) 定义与命题7.2 : 教学目标知识技能.了解真命题和假命题的概念。
1 .会在简单的情况下判别一个命题的真假。
2 .了解公理和定理的含义。
3 过程与方法,让学生在自己提出问题、.从生活命题引入数学命题,并通过小组活动1自己解决问题的过程中经历知识的产生过程归纳、并在这个过程中了解类比、, 分类等思维方法。
.在学生总结命题、真命题、定理和公理之间的关系中,感受数学知识间的2 内在联系。
.通过对真假命题的判断,初步体验举反例、推理说明等数学方法。
3 情感态度与价值观让学生在推理中感觉到数学的有用性。
教学重点:命题的真假的概念和判别。
教学难点判别命题的真假其实已涉及证明。
教学过程一、复习也就是给出它们的定,作出明确的规定,对名称和术语的含义加以描述:、定义1 . 义叫做命题,判断一件事情的句子:、命题的定义2命题的结构、3结论是由,条件是已知事项.每个命题都由条件和结论两部分组成: . 已知事项推断出的事项其中“如,那么……”的形式,命题可以写成“如果……,一般地:、命题的特征4 . “那么”引出的部分是结论,果”引出的部分是条件把下列命题改写成“如果┄┄那么┄┄”的形式,并指出命题的条件和结论、相等的角是对顶角;1 、钝角大于它的补角;2 、两直线平行,同位角相等;3 二、新授课想一想如何证实一个命题是真命题呢?:用学过的观察、实验法1生:这些方法往往不可靠2生:能不能根据已知的真命题来证明呢?3生那已知的真命题又是怎么证明的?4:生 . :……5生 . 公认的真命题称为公理推理的过程叫证明。
. 经过证明的真命题称为定理 : 本套教材选用如下命题作为公理两点确定一条直线。
1. 两点之间线段最短。
2.,如果同位角相等,两条直线被第三条直线所截3.; 那么这两条直线平行 ; 同位角相等,两条平行线被第三条直线所截4. ; 两边及其夹角对应相等的两个三角形全等5. ; 两角及其夹边对应相等的两个三角形全等6. ; 三边对应相等的两个三角形全等7. . 对应角相等,全等三角形的对应边相等8. 同角(等角)的补角相等。
初二数学最新教案-定义与命题(2) 精品

定义与命题
课时2
【教学目标】
一、教学知识点
1.命题的组成.
2.命题真假的判断。
二、能力训练要求:
1.使学生能够分清命题的条件和结论,能判断命题的真假
2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法
三、情感与价值观要求:
1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一
2.帮助学生了解数学发展史,拓展视野,激发学习兴趣
3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值
【教学重点】准确的找出命题的条件和结论
【教学难点】理解判断一个真命题需要证明
【教学方法】探讨、合作交流
【教具准备】投影片【教学过程】。
北师大版八年级数学7.2定义与命题(2)教案

3.同一平面内,过一点有且只有一条直线与直线垂直.4.两条直线被条直线所截,如果同位角相等,那么这两条直线平行〔即:同位角相等,两直线平行〕5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.〔SAS)7.两角及其夹边分别相等的两个三角形全等. (ASA)8.三边分别相等的两个三角形全等. (SSS)另外一条根本领实我们将在后面的学习中认识它.9.平行线截线段成比例.【设计:总结学生学过的根本领实,并以它们作为证明的出发点,初步构建几何证明的“公理化体系〞,培养学生逻辑推理能力.用数学的三种语言〔文字语言、符号语言、图示语言〕表达“九条根本领实〞,提高学生数学语言的表达能力.】思考四:代数知识中是否也有“公理〞呢?能举例说明吗?探究活动三:感受代数中的公理数与式的运算律和运算法则、等式的有关性质和不等式的有关性质都可以看作公理.在等式或不等式中,一个量可以用它的等量来代替.例如:如果a=b,b=c,则a=c,这一性质也可以作为证明的依据,称为“等量代换〞.如果a>b,b>c,那么a>c, 称为“不等式的传递性.〞【设计:用学生学过的具体实例,感受代数的公理化思想.】思考五:请同学们结合所学知识,谈谈你对“根本领实〞或“公理〞的理解?〔1〕公理是通过长期实践反复验证过的,不需要再进行推理论证而都成认的真命题.〔2〕公理可以作为判定其他命题真假的依据.【设计:深刻理解公理的独立性、完备性、和谐性.】教学活动三: 典例分析例:如下图,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角. 求证:∠AOC=∠BOD.证明:∵直线AB与直线CD相交于点O〔〕,∴∠AOB和∠COD都是平角〔平角的定义〕.∴∠AOC和∠BOD都是∠AOD的补角〔补角的定义〕.∴ ∠AOC=∠BOD〔同角的补角相等〕.定理:对顶角相等.【设计:严格证明几何定理“对顶角相等〞,初步感受证明的思路和书写过程.】随堂练习:证明定理: 三角形的任意两边之和大于边.:如图,△ABC.求证:AB+BC>AC,BC+CA>AB,CA+AB>BC.证明:∵AC是以点A、点C为端点的线段〔〕,∴AB+BC>AC〔两点之间,线段最短〕.∵AB是以点A、点B为端点的线段〔〕,∴ BC+CA>AB 〔两点之间,线段最短〕.∵BC是以点B、点C为端点的线段〔〕,∴ CA+AB>BC 〔两点之间,线段最短〕.【设计:证明定理,感受证明的思路和书写过程.】教学活动四: 文化拓展数学文化阅读材料一:数学家欧几里得;数学文化阅读材料二:《几何原本》;数学文化阅读材料三:徐光启与《几何原本》.【设计:了解《几何原本》和数学家欧几里得、徐光启,感受公理化方法对数学开展和促进人类文明进步的价值.】板书设计一.公理、证明和定理的含义二.数学的“九条根本领实〞三.代数中的公理作业设计定义与命题〔二〕作业单。
定义与命题(二)预优秀教案

个人采集整理仅供参照学习课题:定义与命题(二)一、学习目标: 1. 学习证明地过程与格式;2、感觉公义化思想,认识本套教材所采纳地基本领实.课题:定义与命题(二)二、预习引领(一)预习课本 P167-170一、学习目标: 1. 学习证明地过程与格式;2、感觉公义化思想,认识本套教材所采纳地基本领实.1、什么是公义?本套教材采纳地证明依照有哪些?请写下来并熟记.二、预习引领(一)预习课本 P167-1701、什么是公义?本套教材采纳地证明依照有哪些?请写下来并熟记.2、经过 P169 例题,学习文字命题地证明过与格式.试证明以下命题 .定理:三角形随意两边之和大于第三边已知:如图求证 :证明:(二)预习作业做在作业本上课本 P171 习题 7.31、2三、讲堂练习1、配套练习册 P135 练习二基础训练2、如图,在△ ABD和△ ACE 中,有以下四个论断:①AB = AC ;② AD = AE ;③∠ B=∠ C;④ BD =CE.请以此中三个论断作为条件,余下地一个论断作为结论,写出一个正确地命题__________. (用序号地形式写出 ),并进行证明 .2、经过 P169 例题,学习文字命题地证明过与格式.试证明以下命题 .定理:三角形随意两边之和大于第三边已知:如图求证 :证明:(二)预习作业做在作业本上课本 P171习题 7.3 1、2三、讲堂练习1、配套练习册P135 练习二基础训练2、如图,在△ ABD 和△ ACE 中,有以下四个论断:① AB = AC;② AD = AE ;③∠ B =∠ C;④ BD =CE.请以此中三个论断作为条件,余下地一个论断作为结论,写出一个正确地命题__________ . (用序号地形式写出),并进行证明.个人采集整理仅供参照学习concerned and the relevant obligee.转载或引用本文内容一定是以新闻性或资料性公共免费信息为使用目版权声明地地合理、好心引用,不得对本文内容原意进行误解、改正,并自负版权本文部分内容,包含文字、图片、以及设计等在网上采集整理. 版权为等法律责任 .个人全部Reproduction or quotation of the content of this article must This article includes some parts, including text, pictures,be reasonable and good-faith citation for the use of news orand design. Copyright is personal ownership.informative public free information. It shall not misinterpret or 用户可将本文地内容或服务用于个人学习、研究或赏识,以及其余非modify the original intention of the content of this article, and商业性或非盈余性用途,但同时应恪守著作权法及其余有关法律地规定,shall bear legal liability such as copyright.不得入侵本网站及有关权益人地合法权益. 除此之外,将本文任何内容或服务用于其余用途时,须征得自己及有关权益人地书面允许,并支付酬劳.Users may use the contents or services of this article forpersonal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time, theyshall abide by the provisions of copyright law and other relevantlaws, and shall not infringe upon the legitimate rights of thiswebsite and its relevant obligees. In addition, when any contentor service of this article is used for other purposes, writtenpermission and remuneration shall be obtained from the person。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义与命题
教学目标
(一)教学知识点
1.命题的组成:条件和结论.
2.命题的真假.
3.了解数学史.
(二)能力训练要求
1.能够分清命题的题设和结论.会把命题改写成“如果……,那么……”的形式;能判断命题的真假.
2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.3.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值.
(三)情感与价值观要求
1.通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体.
2.通过了解数学知识,拓展学生的视野,从而激发学生学习的兴趣.
教学重点
找出命题的条件(题设)和结论.
教学难点
找出命题的条件和结论.
教学方法
讲练相结合法.
教学过程课件展示
Ⅰ.巧设现实情境,引入课题
[师]上节课我们研究了命题,那么什么叫命题呢?
[生]判断一件事情的句子,叫做命题.
[师]好.下面大家来想一想:
[生甲]这五个命题都是用“如果……,那么……”的形式叙述的.
[生乙]每个命题都是由已知得到结论.
[生丙]这五个命题的每个命题都有条件和结论.
[师]很好.这节课我们继续来研究命题.
Ⅱ.讲授新课
[师]大家刚才观察到上面的五个命题中,每个命题都有条件(condition)和结论(conclusion)两部分组成.
条件是已知的事项,结论是由已知事项推断出的事项.
一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论.
如:上面的命题(1)中,如果引出的部分“两个三角形的三条边对应相等”是条件,那么引出的部分“这两个三角形全等”是结论.
有些命题没有写成“如果……,那么……”的形式,题设和结论不明显.如:“同角的余角相等”,对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式.
如:“同角的余角相等”可以写成“如果两个角是同一个角的余角,那么这两个角相等”.
注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述,命题的结论部分,有时也可用“求证……”或“则……”等形式表述.
下面我们来做一做
[生乙]第二个命题的条件是:a>b,b>c,结论是:a=c.
[生丙]第三个命题的条件是:在两个三角形中,有两角和其中一角的对边对应相等.结论是:这两个三角形全等.
[生丁]第四个命题的条件是:菱形的四条边.结论是:都相等.
[生戊]丁同学说得不对.这个命题可改写为:如果一个四边形是菱形,那么这个四边形的四条边都相等.显然,这个命题的条件是:一个四边形是菱形.结论是:这个四边形的四条边都相等.
[生己]第五个命题可改写为:如果两个三角形全等,那么这两个三角形的面积相等.则这个命题的题设是:两个三角形全等.结论是:这两个三角形的面积相等.
[师]同学们分析得很好.能够经过分析,准确地找出命题的条件和结论.接下来我们来思考
[生甲]第三个、第四个、第五个命题是正确的.第一个、第二个命题是不正确的.
图6-10
[生乙]我们讨论的结果是与甲同学的一样.如图6-10,∠1=∠2,从图形中可知∠1与∠2不是对顶角.所以第一个命题:如果两个角相等,那么它们是
对顶角是错误的.
[生丙]第二个命题中的a取6,b取3,c取2,这样可知:a与c是不相等的.所以第二个命题是不正确的.
[师]很好.同学们不仅能辨别命题的正确与否,还能举例说明命题的错误.真棒!我们把正确的命题称为真命题(true statement),不正确的命题称为假命题(false statement).
由大家刚才分析可以知道:要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例(counter example).
注意:对于假命题并不要求,在题设成立时,结论一定
..错误.事实上,只
要你不能保证
..结论一定成立,这个命题就是假命题了.因此,要说明一个命题是假命题,只要举出一个“反例”就可以了.
那一个正确的命题如何证实呢?大家来想一想:(出示投影片§6.2.2 C)
[生乙]这些方法往往并不可靠.
[生丙]能不能根据已经知道的真命题证实呢?
[生丁]那已经知道的真命题又是如何证实的?
[生戊]哦……那可怎么办呢?
……
[师]其实,在数学发展史上,数学家们也遇到过类似的问题,公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得(Euclid,公元前300前后)编写了一本书,书名叫《原本》(Elements),为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的起始依据.其中的数学名词称为原名,公认的真命题称为公理(axiom).除了公理外,其他真命题的正确性都通过推理的方法证实.推理的过程称为证明(proof).经过证明的真命题称为定理(theorem),而证明所需的定义、公理和其他定理都编写在要证明的这个定理的前面.
《原本》问世之前,世界上还没有一本数学书籍像《原本》这样编排.因此,《原本》是一部具有划时代意义的著作.
[生]老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实.
[师]对,我们这套教材有如下命题作为公理:
[师]好.除这些以外,等式的有关性质和不等式的有关性质都可以看作公理.
在等式或不等式中,一个量可以用它的等量来代替.如:如果a=b,b=c,那么,a=c,这一性质也看做公理,称为“等量代换”.
注意:(1)公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题.
(2)公理可以作为判定其他命题真假的根据.
好,下面我们通过“读一读”来进一步了解《原本》这套书,进而了解数学史.
Ⅳ.课时小结
本节课我们主要研究了命题的组成及真假.知道任何一个命题都是由条件和结论两部分组成.命题分为真命题和假命题.
在辨别真假命题时.注意:假命题只需举一个反例即可.而真命题除公理和性质外,必须通过推理得证.。