化工原理课程设计管壳式换热器汇总

合集下载

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器本文主要介绍化工原理课程设计中涉及到的换热器的相关知识和设计思路。

换热器是化工工业中常用的设备之一,其主要功能是通过传导、对流和辐射的方式实现热量的传递,从而将一个流体的热量传递给另一个流体。

因此,在化工原理课程设计中涉及到换热器的设计,既需要考虑流体的物理性质,也需要考虑热力学参数的影响。

换热器的类型繁多,按照传热方式的不同可分为对流式换热器和辐射式换热器。

常用的对流式换热器包括管壳式换热器、板式换热器和螺旋式换热器等。

在换热器的设计中,需要首先确定换热器所要实现的传热方式和工作条件,如流体流速、进出口温度和压力等。

接下来需要考虑的问题是如何选择合适的材料以满足流体的物理性质和热力学参数的要求。

在化工原理课程设计中,换热器的设计重点之一是热力学计算。

为了实现对流体的热量传递,需要考虑流体的传热系数。

传热系数与流体的物理性质密切相关,包括流体的密度、比热、粘度和导热系数等。

通过对这些参数的测量和分析,可以计算出传热系数,并进而确定换热器的传热效率。

另外,在化工原理课程设计中,换热器的设计还需要考虑到换热器的尺寸、材料和结构等方面的问题。

尺寸的设计需要考虑工作流体的容积和流速等因素,以保证换热器的实现效率和安全性。

材料选择需要考虑到流体的化学性质,以避免流体与材料发生反应和腐蚀。

结构设计需要兼顾容易清洗、拆卸和维护的要求,以方便日常运行和维护。

总之,在化工原理课程设计中,换热器的设计是一个系统性的工程,包括物理学、化学和工程学等多个学科领域的综合运用。

只有充分理解流体的物理性质和热力学参数,才能做出合理的设计并实现高效的换热效果。

同时,还需要考虑到实际工程的应用需求,以满足生产的需要和安全的要求。

管壳式换热器设计总结

管壳式换热器设计总结

管壳式换热器设计总结管壳式换热器是一种常见的热交换设备,广泛应用于化工、石油、制药等行业。

其设计涉及到许多方面,包括换热原理、结构设计、材料选择等。

本文将从这些方面对管壳式换热器的设计进行总结和分析。

管壳式换热器的换热原理是通过管内流体与壳侧流体之间的热传导来实现热量的交换。

管内流体一般为待加热或待冷却的介质,而壳侧流体一般为冷却剂或加热介质。

通过这种方式,可以实现两种介质之间的热量转移,达到加热或冷却的目的。

管壳式换热器的结构设计是十分重要的。

它由管束、壳体、管板、管侧流体进出口以及壳侧流体进出口等部分组成。

管束是换热的核心部分,通过将多根管子固定在管板上,形成流体的通道。

而壳体则是管束的外部保护壳,起到支撑和密封的作用。

管侧流体通过管侧进出口进入管束内,与管内流体进行热量交换,然后再通过壳侧进出口流出。

这样的结构设计,既保证了换热效率,又方便了设备的安装和维护。

管壳式换热器的材料选择也是十分重要的一环。

由于在换热过程中,介质可能存在腐蚀、高温等问题,因此需要选择耐腐蚀、耐高温的材料。

常见的材料有不锈钢、钛合金等。

对于特殊的工况,还可以采用陶瓷、镍基合金等材料。

在管壳式换热器的设计过程中,还需要考虑一些其他因素。

首先是换热面积的确定,它与换热效果直接相关。

一般来说,换热面积越大,换热效果越好。

其次是流体的流速和流量,它们对换热器的换热效果和压力损失有着重要影响。

此外,还需要考虑到换热器的尺寸和重量,以及设备的安全性和可靠性等方面。

在实际应用中,还需要根据具体的工况和要求进行换热器的定制设计。

例如,在高温高压的条件下,需要采用密封性好、耐高温高压的结构和材料;在对流体的温度变化要求较高的情况下,需要采用多级换热器或增加管程等方式来提高换热效果。

管壳式换热器的设计需要考虑多个方面的因素,包括换热原理、结构设计、材料选择等。

合理的设计可以提高换热效率,降低能耗,满足工业生产的需求。

同时,还需要根据具体的工况和要求进行定制设计,以提高设备的安全性和可靠性。

化工原理课程设计——换热器

化工原理课程设计——换热器

化工原理课程设计管壳式换热器选型姓名:学号:10091693班级:工092指导老师:袁萍前言1.换热器的设备简介传热是热能从热流体间接或直接传向冷流体的过程。

其性质复杂,不但要考虑经过间壁的热传导,而且要考虑到间壁两边流体的对流传热,有时还须考虑到辐射传热。

在化学工业中常遇到的热交换问题,根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

其中间壁式换热器詹用量最大,据统计,这类换热器占总用量的99%。

间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设计资料基本齐全,在许多国家都有了系列化的标准。

因此,作为广泛应用于各个领域的工业设备,它在国民经济中具有非常重要的作用。

换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。

管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U型管式换热器、双重管式换热器、填料函式换热器和双管板换热器等。

前3种应用比较普遍。

固定管板式换热器的结构:主要有外壳、管板、管束、顶盖(又称封头)等部件构成。

它的特点是结构简单,没有壳侧密封连接,相同的壳体内径排管最多,在有折流板的流动中旁路最小,管程可以分成任何管程数,因两个管板由管子互相支撑,故在各种管壳式换热器中它的管板最薄,造价最低,因而得到广泛应用。

这种换热器的缺点是:壳程清洗困难,有温差应力存在。

这种换热器适用于两种介质温差不大,或温差较大但壳程压力不高及壳程介质清洁,不易结垢的场合。

在满足工艺过程要求的前提下,换热器应达到安全与经济的目标。

换热器设计的主要任务是参数选择和结构设计、传热计算及压降计算等。

设计主要包括壳体形式、管程数、换热管类型、管长、管子排列、管子支承结构、冷热流体的流动通道等工艺设计和封头、壳体、管板等零部件的结构、强度设计计算。

化工原理课程设计管壳式换热器的设计

化工原理课程设计管壳式换热器的设计

西北大学化工学院列管式换热器的工艺设计说明书题目: 列管式换热器的工艺设计和选用课程名称: 化工原理课程设计专业: 化学工程与工艺班级: 09级学生姓名: 李哲学号: 2009115057指导教师: 吴峰设计起止时间:2012 年1月1日至2012 年 1月13日设计题目:列管式换热器的工艺设计和选用一、设计条件炼油厂用循环水将煤油油从230℃冷却到120℃。

柴油流量位28700kg/h;循环水初温为22℃,经换热后升温到46℃。

换热器的热损失可忽略。

管、壳程阻力压降不大于100kPa。

试设计能完成上述任务的列管式换换热器。

二、设计说明书的内容1、设计题目及原始数据;2、目录;3、设计方案的确定;4、工艺计算及主体设备设计;5、辅助设备的计算及选型;(主要设备尺寸、衡算结果等);6、设计结果概要或设计结果汇总表;7、参考资料、参考文献;目录一.设计任务及设计条件 (3)二.设计方案 (3)1.换热器类型选择 (3)2.流程选择 (3)3.流向选择 (3)三.确定物性数据 (3)四.估算传热面积 (3)五.工艺结构尺寸计算 (3)1.管径及管内流速选择 (3)2.传热管数和传热管程数 (4)3.平均传热温差校正及壳程数 (5)4.传热管排列和分程方法 (5)5.壳体内径 (5)6.折流板 (5)7.其他主要附件 (6)8.接管 (6)9.壁厚的确定、封头 (7)六.换热器核算 (7)(一).热流量核算 (7)1.壳程表面传热系数核算 (8)2.管程表面传热系数核算 (8)3.污垢热阻 (9)4.传热面裕度 (9)(二)传热管壁温及壳体壁温计算 (9)(三)阻力计算 (10)1.管程流体阻力计算 (10)2.壳程流体阻力计算 (10)七.换热器主要计算结果汇表 (11)八.主要符号说明 (11)九.换热器主要结构尺寸图和管子布置图 (12)十.参考文献 (15)一.设计任务及设计条件:用循环冷却水将流量为28700Kg/h 的煤油从230℃降至120℃,冷却水为清净河水,进口温度22℃,选定冷却水出口温度46℃,设计一台列管换热器完成冷却任务。

化工原理课程设计之管壳式换热器选型

化工原理课程设计之管壳式换热器选型

化工原理课程设计之管壳式换热器选型管壳式换热器是化工行业中一种常见的设备,用于进行热能转移。

在化工原理课程设计中,学生需要进行管壳式换热器的选型,以达到最佳的热能转移效果,同时保证安全和经济性。

本文将探讨化工原理课程设计之管壳式换热器选型。

一、管壳式换热器的原理和结构管壳式换热器是一种常见的热交换器,由壳体、管束、管板、导流板、管箱、堵头等部分组成。

壳体与管束之间形成机械密封,壳体内外分别为热源侧和冷却侧。

当热源流经壳体内部,热量会通过管壁传递到管子内部的冷却液;当冷却液流经壳体的外部,管子内部的冷却液会释放热量,从而实现热能的转移。

管壳式换热器具有传热效率高、适用范围广、耐腐蚀性好等优点。

二、管壳式换热器的选型方法选择合适的管壳式换热器是化工原理课程设计的关键,以下是一些选择管壳式换热器的要点。

1.计算热量传递量在选型时,需要计算出热量传递量,以此来进行匹配。

热负荷是指单位时间内传递的热量,通常以热量流通的单位时间的百分比表示。

2.计算传热系数传热系数是指达到热量传递所需的热传导度、传热表面积、传热温度差、传热介质之间热传导特性等因素综合影响下的综合因素。

在选型时,需要计算出传热系数,以此来判断热量传递的效果。

传热系数越高,则热量传递效果越好。

3.计算换热面积在计算传热系数和热量传递量的基础上,可以计算出所需的换热面积。

换热面积要考虑到热传载体的流量、热传载体的温度差、传热介质之间的传热系数等因素。

4.考虑设备材质、耐压、操作温度等因素在选型时,还需要考虑设备材质、耐压和操作温度等因素。

这些因素在不同的工艺流程中都有可能影响热能转移的效果。

在选择管壳式换热器的时候,需要根据具体的工艺流程来判断哪些因素是需要考虑的。

三、工程实践应用在工程实践中,化工原理课程设计之管壳式换热器选型是非常重要的。

适当的设计可以提高生产效率和质量、减少能源消耗和资源浪费,从而实现经济效益和社会效益的双赢。

在实际操作中,我们可以根据具体的工艺流程,选择合适的管壳式换热器,进行换热的工作。

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。

该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。

根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。

其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。

浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。

浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。

这种结构适用于温差较大或壳程压力较高的情况。

但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。

U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。

壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。

这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。

多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。

这种结构可以提高传热效率,但也会增加流体阻力。

因此,需要根据具体情况来选择多管程的数量。

总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。

不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。

在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。

换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。

浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。

但其缺点是结构复杂,造价高。

填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。

但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。

1化工原理课程设计(换热器)解析

1化工原理课程设计(换热器)解析

一、设计题目:设计一台换热器二、操作条件:1、煤油:入口温度140℃,出口温度40℃。

2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于1×105Pa。

4、每年按330天计,每天24小时连续运行。

三、设备型式:管壳式换热器四、处理能力:114000吨/年煤油五、设计要求:1、选定管壳式换热器的种类和工艺流程。

2、管壳式换热器的工艺计算和主要的工艺尺寸设计。

3、设计结果概要或设计结果一览表。

4、设备简图(要求按比例画出主要结构及尺寸)。

5、对本设计的评述及有关问题的讨论。

第1章设计概述1、1热量传递的概念与意义[1](205)1、1、1 传热的概念所谓的传热(又称热传递)就是间壁两侧两种流体之间的热量传递问题。

由热力学第二定律可知,凡是有温差存在时,就必然发生热量从高温处传递到低温处,因此传热是自然界和工程技领域中极普遍的一种传递现象。

1、1、2 传热的意义化工生产中的很多过程和单元操作,都需要进行加热和冷却,如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量,又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。

所以传热是最常见的重要单元操作之一。

无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。

此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。

归纳起来化工生产中对传热过程的要求经常有以下两种情况:①强化传热过程,如各种换热设备中的传热。

②削弱传热过程,如设备和管道的保温,以减少热损失。

1、2 换热器的概念与意义[2]1、2、1 换热器的概念在不同温度的流体间传递热能的装置称为热交设备,简称为换热器。

在换热器中至少要有两种不同的流体,一种流体温度较高,放出热量:另一种流体则温度较低,吸收热量。

化工原理课程设计换热器《化工原理课程设计》报告换热器的设计

化工原理课程设计换热器《化工原理课程设计》报告换热器的设计

化工原理课程设计换热器《化工原理课程设计》报告换热器的设计《化工原理课程设计》报告换热器的设计目录概述1.1.换热器设计任务书 - 4 -1.2换热器的结构形式 - 7 -2.蛇管式换热器 - 7 -3.套管式换热器 - 7 -1.3换热器材质的选择 - 8 -1.4管板式换热器的优点 - 9 -1.5列管式换热器的结构 -10 -1.6管板式换热器的类型及工作原理 -11 -1.7确定设计方案 -12 -2.1设计参数 -12 -2.2计算总传热系数 -13 -2.3工艺结构尺寸 -14 -2.4换热器核算 -15 -2.4.1.热流量核算 -16 -2.4.2.壁温计算 -18 -2.4.3.换热器内流体的流动阻力-19 -概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

35%~40%。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。

换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。

换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。

其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。

表2-1 传热器的结构分类类型特点间壁式管壳式列管式固定管板式刚性结构用于管壳温差较小的情况(一般≤50℃),管间不能清洗带膨胀节有一定的温度补偿能力,壳程只能承受低压力浮头式管内外均能承受高压,可用于高温高压场合 U型管式管内外均能承受高压,管内清洗及检修困难填料函式外填料函管间容易泄漏,不宜处理易挥发、易爆炸及压力较高的介质内填料函密封性能差,只能用于压差较小的场合釜式壳体上部有个蒸发空间用于再沸、蒸煮双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中套管式能逆流操作,用于传热面较小的冷却器、冷凝器或预热器螺旋管式沉浸式用于管内流体的冷却、冷凝或管外流体的加热喷淋式只用于管内流体的冷却或冷凝板面式板式拆洗方便,传热面能调整,主要用于粘性较大的液体间换热螺旋板式可进行严格的逆流操作,有自洁的作用,可用作回收低温热能平板式结构紧凑,拆洗方便,通道较小、易堵,要求流体干净板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触蓄热式换热过程分阶段交替进行,适用于从高温炉气中回收热能的场合完善的换热器在设计或选型时应满足以下各项基本要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计管壳式换热器汇总公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]设计一台换热器目录化工原理课程设计任务书设计概述试算并初选换热器规格1. 流体流动途径的确定2. 物性参数及其选型3. 计算热负荷及冷却水流量4. 计算两流体的平均温度差5. 初选换热器的规格工艺计算1. 核算总传热系数2. 核算压强降经验公式设备及工艺流程图设计结果一览表设计评述参考文献化工原理课程设计任务书一、设计题目:设计一台换热器二、操作条件:1、苯:入口温度80℃,出口温度40℃。

2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。

4、每年按300天计,每天24小时连续运行。

三、设备型式:管壳式换热器四、处理能力:99000吨/年苯五、设计要求:1、选定管壳式换热器的种类和工艺流程。

2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。

3、设计结果概要或设计结果一览表。

4、设备简图。

(要求按比例画出主要结构及尺寸)5、对本设计的评述及有关问题的讨论。

1.设计概述热量传递的概念与意义1.热量传递的概念热量传递是指由于温度差引起的能量转移,简称传热。

由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。

2. 化学工业与热传递的关系化学工业与传热的关系密切。

这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。

此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。

总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。

应予指出,热力学和传热学既有区别又有联系。

热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学士热力学的扩展。

3.传热的基本方式根据载热介质的不同,热传递有三种基本方式:(1)热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。

热传导的条件是系统两部分之间存在温度差。

(2)热对流(简称对流)流体各部分之间发生相对位移所引起的热传递过程称为热对流。

热对流仅发生在流体中,产生原因有二:一是因流体中各处温度不同而引起密度的差别,使流体质点产生相对位移的自然对流;二是因泵或搅拌等外力所致的质点强制运动的强制对流。

此外,流体流过固体表面时发生的对流和热传导联合作用的传热过程,即是热由流体传到固体表面(或反之)的过程,通常称为对流传热。

(3)热辐射因热的原因而产生的电磁波在空间的传递称为热辐射。

热辐射的特点是:不仅有能量的传递,而且还有能量的转移。

换热器的概念及意义在化工生产中为了实现物料之间能量传递过程需要一种传热设备。

这种设备统称为换热器。

在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝。

换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递到温度较低的流体,以满足工艺上的需要。

它是化工炼油,动力,原子能和其他许多工业部门广泛应用的一种通用工艺设备,对于迅速发展的化工炼油等工业生产来说,换热器尤为重要。

换热器在化工生产中,有时作为一个单独的化工设备,有时作为某一工艺设备的组成部分,因此换热器在化工生产中应用是十分广泛的。

任何化工生产中,无论是国内还是国外,它在生产中都占有主导地位。

【表】换热器设计要求11封头热压成形时,终压温度的检测12壳体直线度的检测13氢工况的判别及材料要求3、管壳式换热器的简介管壳式换热器是目前应用最为广泛的一种换热器。

它包括:固定管板式换热器、U型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。

管壳式换热器由管箱、壳体、管束等主要元件构成。

管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。

另一个对换热器热力性能有较大影响的基本元件是折流板(或折流杆)。

管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。

1)工作原理:管壳式换热器和螺旋板式换热器、板式换热器一样属于间壁式换热器,其换热管内构成的流体通道称为管程,换热管外构成的流体通道称为壳程。

管程和壳程分别通过两不同温度的流体时,温度较高的流体通过换热管壁将热量传递给温度较低的流体,温度较高的流体被冷却,温度较低的流体被加热,进而实现两流体换热工艺目的。

2)主要技术特性:一般管壳式换热器与其它类型的换热器比较有以下主要技术特性:1、耐高温高压,坚固可靠耐用;2、制造应用历史悠久,制造工艺及操作维检技术成熟;3、选材广泛,适用范围大。

二 试算并初选换热器规格 1.流体流动途径的确定本换热器处理的是两流体均不发生相变的传热过程,且均不易结垢,根据两流体的情况,故选择苯走换热器的管程,循环水走壳程。

2.确定流体的定性温度、物性数据,并选择列管换热器的型式冷却介质为循环水,取入口温度为:25 ℃,出口温度为:(25+5~10) ℃ 苯的定性温度: 6024080=+=m T ℃ 水的定性温度: 5.2723025=+=m t ℃ 两流体的温差: 5.325.2760=-=+m m t T ℃由于两流体温差不大于50℃,故选用固定管板式列管换热器. 查《化学工程手册》——化工基础数据 化学工业出版社 P265图4-21表4-33 可有: =苯μcp =·s =水μcp =·sP238图4-15表4-16 可有: =苯Cp 0=(㎏·o C) =水Cp (㎏·oC)P274图4-28(2)液体导热系数 可有: =苯λ(m·o C) 水λ=(m·o C)查《化工手册》上卷 山东科学技术出版社两流体在定性温度下的物性数据如下:3.计算热负荷和冷却水流量 4.计算两流体的平均温度差暂按单壳程、多管程进行计算,逆流时平均温度差为: 而 091.0258025301212=--=--=T T t t P由《化工原理》上册232P 页查图4-19可得:82.0=Φ∆t 所以C t t m t m 9.2707.2996.0=⨯=∆Φ=∆∆, 又因为>8.0,故可选用单壳程的列管换热器。

5.试算和初选换热器的规格根据低温流体为水,高温流体为有机物(参见《化工原理》P355)有K 值的范围:430~850W/(2m ·o C ), 假设()2400/K W m C =⋅又因为苯走管程且初选mm .219⨯Φ,L= 4.5m 的列管,所以设 s m u i /9.0=由 i i in d u V 24π= 可求得:单管程的管子根数: 221153694283002436000.015 3.140.94i ii Vn u d π⨯===⨯⨯⨯⨯⨯根 管程数: 6682.34===L L N i p 所以 428108p i n N n =⨯=⨯=根 将这些管子进行排列有图如下:据此初选固定管板式换热器规格尺寸为:实际传热面积289.225.4015..014.3108m L d n S =⨯⨯⨯==π若采用此传热面积的换热器,则要求过程的总传热系数为:•=⨯⨯=∆=K 25/(4335.3289.221022.3m W t S Q m ℃)三 工艺计算1. 核算总传热系数1)计算管程对流传热系数i αs m A V u i s i 925.0325.99636002430000477.0114000000=⨯⨯⨯⨯==(与假设相一致 合适)图 壳程摩擦系数f 0与Re 0的关系所以2)计算壳程对流传热系数0α换热器中心附近管排中流体流通截面积为: 式中 --h 折流挡板间距,取300mm ;--t 管中心距,对mm 5.225⨯Φ,mm t 32=。

因为 h kg W C /4.15=所以由正三角形排列得:因为 0Re 在3102⨯~6101⨯范围内,故可用下式计算0α()()μλαΦ⨯=31055.000Pr Re 36.0ed 6.4151.010381.010828.1Pr 330=⨯⨯⨯==-λμp C壳程中水被加热,取 05.1=Φμ,所以 48405.1)6.4()24154(05.0151.036.03155.00=⨯⨯⨯=α()C m W ⋅2/ 3)确定污垢热阻管内、外侧污垢热阻分别取为:(井水)有机液体),W C m R W C m R so si /00017.0(/0002.022 ⋅=⋅=4)总传热系数0K因为苯为有机物,管子材料选用不锈钢,取其导热系数为/5.16W w =λ(m·oC),总传热系数0K 为:由前面计算可知,选用该型号换热器时,要求过程的总传热系数为()C m W ⋅2/443,在传热任务所规定的流动条件下,计算出的0K 为()C m W ⋅2/526,其安全系数为:100360360443⨯-%=2.20% 故所选择的换热器是合适的。

2. 核算压强降1)计算管程压强降前面已算出:s m u i 925.0=, 4106225.1Re ⨯=i (湍流)取不锈钢管壁粗糙度 mm 1.0=ε 则0067.0151.0==id ε,由《化工原理》上册第一章P54的Re --λ关系图中查得: 033.0=λ8所以 ()Pa u d L P i i 43222925.0325.996015.05.4033.02221=⨯⨯⨯=⋅=∆ρλ 对于mm 219⨯Φ的管子 4,Ns=1 2)计算壳程压强降其中 ()21115.12001u N n Ff P Ns F B c s ρ+=∆==,,,管子为正三角形排列,取F= 取折流挡板间距 m h 15.0= 折流挡板数:29115.05.41=-=-=h L N B 壳程流通面积 ()()200025.0019.0124.015.0m d n D h A c =⨯-⨯=-= 834410381.06.8362.0019.0Re 3000=⨯⨯⨯==-μρu d >500 所以 ()Pa P 771022.06.8361291264.04.021=⨯⨯+⨯⨯⨯=∆,由上面计算可知,该换热器管程与壳程的压强均满足题目要求,故所选换热器合适。

相关文档
最新文档