2.4有理数的除法(上课)
《有理数的除法》教案 (公开课)2022年

2.9 有理数的除法教案教学目标(一)教学知识点(1)理解有理数除法的法那么,会进行有理数的除法运算.(2)会求有理数的倒数.(二)能力训练要求1.理解有理数除法的法那么,会进行有理数的除法运算.2.会求有理数的倒数.(三)情感与价值观要求通过师生相互交流、探讨,激发学生的求知欲望,进一步提高学生灵活解题的能力.教学重点有理数除法法那么的运用,求一个负数的倒数.教学难点除法法那么有两个,在运用时要合理选用法那么1和法那么2,当能整除时用法那么1,在确定符号后,往往采用直接相除;在不能整除的情况下,特别是除数是分数时,用法那么2,把除法转变为乘法比较简便.教学方法师生共同讨论法.与学生展开讨论,从而使学生自己发现规律、总结规律,然后运用规律.教具准备投影片六张第一张:练习(记作§2.8 A)第二张:想一想(记作§2.8 B)第三张:法那么(记作§2.8 C)第四张:例1(记作§2.8 D)第五张:练习(记作§2.8 E)第六张:做一做(记作§2.8 F)教学过程Ⅰ.复习回忆,引入课题[师]上节课我们学习了有理数的乘法,能运用乘法法那么进行计算,谁能表达有理数的乘法法那么呢?[生]两数相乘,同号得正,异号得负,绝对值相乘,任何数与0相乘,积仍为0. [师]好,根据法那么能口答以下各题吗?(出示投影片§2.8 A)(1)(-3)×4; (2)3×(-31); (3)(-9)×(-3);(4)8×(-9); (5)0×(-2); (6)(-8)×(-6);[生](1)-12;(2)-1;(3)27;(4)-72;(5)0;(6)48[师]从答复以下问题中,知道大家已经掌握了有理数乘法法那么,我为此很快乐. 假设:两个因数的积和其中一个因数,要求另一个因数.那么我们用什么运算来计算呢? [生]用除法.[师]对,那我们今天就来研究有理数的除法.Ⅱ.讲授新课[师]除法是两个因数的积及其中一个因数,求另一个因数的运算,那10÷5是什么意思,商为几?0÷5呢?[生]10÷5表示一个数与5的积是10,商为2;0÷5表示一个数与5的积是0,商为0. [师]很好.那(-12)÷(-3)是什么意思呢?商为多少?[生](-12)÷(-3)表示一个数与-3的乘积是-12,商为4,对吧?[师]对,你是怎样考虑的?[生甲](-12)÷(-3)表示一个数与-3的乘积是-12,那什么数与-3的乘积是-12呢?+4.即:4×(-3)=-12.由除法的意义知道,乘法与除法是互为逆运算,所以:(-12)÷(-3)=4.[生乙]老师,我们在小学学过:除以一个数等于乘以这个数的倒数,那么计算(-12)÷(-3)时,就可以转化为(-12)×(-31)即:(-12)÷(-3)=(-12)×(-31)=4.这样可以吗?[师]可以,两位同学的思路都很正确,分析得也很好.那大家现在想一想:(出示投影片§2.8 B)(学生分析、计算、讨论)[生](1)-3;(2)8;(3)0;(4)-8;(5)-3;(6)-25;(7)3;(8)9;(9)-2;(10)3.[师]很好,大家来观察一下算式,看看商的符号及其绝对值与被除数和除数有没有关系?有,总结出规律.[生甲]两个有理数相除.同号得正,异号得负,并把绝对值相除,0除以不为0的数得0.[生乙]两个有理数相除总结出的规律与有理数的乘法法那么类似.都是先确定结果的符号,然后再确定结果的绝对值.老师,是吧?[师]对,大家总结得很好.在两个有理数相除时,首先确定商的符号,假设两个数是同号两数,那么商的符号为“+〞,假设这两个数是异号两数,那么商的符号为“-〞;其次确定商的绝对值,即被除数的绝对值除以除数的绝对值;还有0除以任何非0的数都得0.为什么要除以非0的数呢?[生]因为0不能作除数.[师]很好,这时,我们就总结出有理数的除法法那么:(出示投影片§2.8 C)(学生念一次,背一次)注意:(1)法那么中的“同号得正、异号得负〞是专指“两数相除〞的.(2)0不能作除数.[师]好,接下来我们通过例题来熟悉有理数除法法那么.(出示投影片§2.8 D)下面我们来做一练习.(出示投影片§2.8 E)[师]到现在为止,我们就学了有理数的乘法、除法法那么,在运用这两个法那么进行运算时,首先要确定结果的符号,然后再求结果的绝对值.下面我们做一做(出示投影片§2.8 F)[师]得出计算结果后,比较每一小题两式的结果,有规律吗?[生]结果一样,说明两式相等.即:1÷(-52)=1×(-125) 0.8÷(-103)=0.8×(-310) (-41)÷(-601)=(-41)×(-60) 由此得出:除以一个数等于乘以这个数的倒数.[师]对.通过计算总结,又得到有理数的除法的另一法那么,我们可把这个法那么称为法那么二,把前面的那个法那么称为法那么一.这两个运算法那么在本质上是一致的.在计算时,可根据具体的情况选用这两个法那么.一般来说,两数能整除时,应用法那么一较简单;两数不能整除或除数为分数时,应用法那么二.法那么二是除以一个数等于乘以这个数的倒数,那什么叫互为倒数呢? [生]乘积为1的两个有理数是互为倒数.[师]那我们现在回头看刚刚“做一做〞的(1)小题:1÷(-52);它的意思是-52与什么数相乘,积为1呢? [生]-25 [师]那-25与-52是什么数呢? [生]互为倒数. [师]对.因为互为倒数的乘积为1,所以1÷(-52)的商就是-52的倒数.大家再看: 1÷(-78)=1×(-87)=-87 可知:-78与-87是互为倒数,那谁能总结一下怎样求一个负数的倒数呢? [生]1除以这个负数,就等于这个负数的倒数.[师]很好,要求一个负数的倒数,只需要1除以这个负数得到的商就是这个负数的倒数.如果这个负数是分数,那么只需要把这个分数的分子、分母颠倒即可.想一想:正数的倒数是什么数,负数的倒数是什么数?0呢?[生]正数的倒数是正数,负数的倒数是负数,0没有倒数.[师]很好.大家要求一个数的倒数时,一定要注意:(1)0没有倒数.(2)互为倒数的两数为同号.Ⅲ.课堂练习课本P 51随堂练习1.计算: (1)215÷(-71); (2)(-1)÷(-1.5);(3)(-3)÷(-52)÷(-41); (4)(-3)÷[(-52)÷(-41)]. 解:(1)215÷(-71)=-(215×7)=-35 (2)(-1)÷(-1.5)=+(1÷1.5)=+(1×32)=32 (3)(-3)÷(-52)÷(-41)=+(3×25)÷(-41)=215÷(-41)=215×(-4)=-30 (4)(-3)÷[(-52)÷(-41)]=(-3)÷[(-52)×(-4)]=(-3)÷[+(52×4)] =(-3)÷58=(-3)×85=-815. 2.阅读课本P 50~52,然后小结.Ⅳ.课时小结本节课主要学习了有理数的除法运算.有理数除法运算的步骤与有理数加、减、乘一样,都是先确定符号,再确定绝对值,在进行有理数除法运算时,要根据题目的特点,恰当地选择有理数除法法那么进行计算,有理数除法转化为乘法后,可以利用乘法的运算律性质简化运算.Ⅴ.课后作业(一)课本P 52习题2.8 1、2、3、4、5.(二)1.预习内容:P 52~542.预习提纲(1)乘方的概念.(2)如何进行乘方运算.Ⅵ.活动与探究1.假设1059、1417、2312分别被自然数x除时,所得的余数都是y,那么x-y的值等于( )A.15B.1C.164D.179(1999年竞赛)过程:对于除法运算中的整除性与非整除性,小学已初步探讨过.有以下公式:被除数=除数×商被除数=除数×商+余数可以让学生利用此公式进行变化、培养学生灵活解题的能力.设三数被自然数x除时,商分别为自然数a、b、c.那么:ax+y=1059 ①bx+y=1417 ②cx+y=2312 ③②-①得 (b-a)x=358③-①得 (c-a)x=1253③-②得 (c-b)x=895由于:a≠b b≠c c≠a所以,x是358、1253、895的公约数即x=179,由此可得y=164x-y=15结果:选A2.求除以8和9都是余1的所有三位数的和.过程:可以让学生借鉴(1)题来变化、运算.可设三位数为n,它是除以8、9的商分别为x、y余1的数.那么:n=8x+1;n=9y+1由此可知:三位数n减去1,就是8和9的公倍数,即为:144、216、288、360、432、504、576、648、720、792、864、936.所以满足条件的所有三位数的和为:144+216+288+360+432+504+576+648+720+792+864+936+1×12=72×(2+3+4+5+6+7+8+9+10+11+12+13)+1×12=72×(2+13)×6+12=6492答案:6492板书设计1.8 完全平方公式(一)●教学目标(一)教学知识点1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.(二)能力训练要求1.经历探索完全平方公式的过程,进一步开展符号感和推理能力.2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.(三)情感与价值观要求1.了解数学的历史,激发学习数学兴趣.2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.●教学重点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.●教学难点1.完全平方公式的推导及其几何解释.2.完全平方公式结构特点及其应用.●教学方法自主探索法学生在教师的引导下自主探索完全平方公式的几何解释、代数运算角度的推理,揭示其结构特点,然后到达合理、熟练地应用.●教具准备投影片四张第一张:试验田的改造,记作(§1.8.1 A)第二张:想一想,记作(§1.8.1 B)第三张:例题,记作(§1.8.1 C)第四张:补充练习,记作(§1.8.1 D)●教学过程Ⅰ.创设问题情景,引入新课[师]去年,一位老农在一次“科技下乡〞活动中得到启示,将一块边长为a 米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡〞活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种.同学们,谁来帮老农实现这个愿望呢?(同学们开始动手在练习本上画图,寻求解决的途径)[生]我能帮这位爷爷.[师]你能把你的结果展示给大家吗?[生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.图1-25[师]你能用不同的方式表示试验田的面积吗?[生]改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.[生]也可以把试验田的总面积看成四局部的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.Ⅱ.讲授新课1.推导完全平方公式[师]我们通过比照试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料说明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度也能推导出这样的公式呢?(出示投影片§1.8.1 A)想一想:(1)(a+b)2等于什么?你能用多项式乘法法那么说明理由吗?(2)(a-b)2等于什么?你是怎样想的.(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)[生]用多项式乘法法那么可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2 (1)[师]上面的几何解释和代数推导各有什么利弊?[生]几何解释完全平方公式给我们以非常直观的认识,但几何解释(a+b)2=a2+2ab+b2,受到了条件限制:a>0且b>0;代数推导完全平方公式虽然不直观,但在推导的过程中,a,b可以是正数,可以是负数,零,也可以是单项式,多项式.[师]同学们分析得很有道理.接下来,我们来完成第(2)问.[生]也可利用多项式乘法法那么,那么(a-b)2=(a-b)(a-b)=a2-ab-ba+b2=a2-2ab+b2.[生]我是这样想的,因(a+b)2=a2+2ab+b2中的a、b可以是任意数或单项式、多项式.我们用“-b〞代替公式中的“b〞,利用上面的公式就可以得到(a-b)2=[a+(-b)]2.[师]这位同学的想法很好.因为他很留心我们表述的每一句话的含义,你能继续沿着这个思路做下去吗?我们一块试一下.[师生共析](a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2↓↓↓↓ ↓ ↓(a +b)2=a2+2·a ·b + b2=a2-2ab+b2.于是,我们得到又一个公式:(a-b)2=a2-2ab+b2(2)[师]你能用语言描述上述公式(1)、(2)吗?[生]公式(1)用语言描述为:两个数的和的平方等于这两个数的平方和与它们积的2倍的和;公式(2)用语言描述为:两个数的差的平方等于这两个数的平方和与它们积的2倍的差.这两个公式为完全平方公式.它们和平方差公式一样可以使整式的运算简便.2.应用、升华出示投影片(§1.8.1 B)[例1]利用完全平方公式计算:(1)(2x-3)2;(2)(4x+5y)2;(3)(mn-a)2.分析:利用完全平方公式计算,第一步先选择公式;第二步,准确代入公式;第三步化简.解:(1)方法一:[例2]利用完全平方公式计算(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;(4)(x+y)2-(x-y)2;(5)(2x-3y)2(2x+3y)2.分析:此题需灵活运用完全平方公式,(1)题可转化为(2y-x)2或(x-2y)2,再运用平方差公式;(2)题需转化为(x+y)2,利用和的完全平方公式;(3)题利用加法结合律变形为[(x+y)-z]2(或[x+(y-z)]2、[(x-z)+y]2),再用完全平方公式计算;(4)题可利用完全平方公式,再合并同类项,也可逆用平方差公式进行计算.(5)题可先逆用幂的运算性质变形,再用平方差公式和完全平方公式.解:(1)方法一:(-x+2y)2=(2y-x)2=4y 2-4xy+x 2;方法二:(-x+2y)2=[-(x -2y)]2=(x -2y)2=x 2-4xy+4y 2.(2)(-x -y)2=[-(x+y)]2=(x+y)2=x 2+2xy+y 2.(3)(x+y -z)2=[(x+y)-z ]2=(x+y)2-2(x+y)·z+z 2=x 2+y 2+z 2+2xy -2zx -2yz.(4)方法一:(x+y)2-(x -y)2=(x 2+2xy+y 2)-(x 2-2xy+y 2)=4xy.方法二:(x+y)2-(x -y)2=[(x+y)+(x -y)][(x+y)-(x -y)]=4xy.(5)(2x -3y)2(2x+3y)2=[(2x -3y)(2x+3y)]2=[4x 2-9y 2]2=16x 4-72x 2y 2+81y 4.Ⅲ.随堂练习课本1.计算: (1)(21x -2y)2;(2)(2xy+51x)2; (3)(n+1)2-n 2.解:(1)(21x -2y)2=(21x)2-2·21x·2y+(2y)2=41x 2-2xy+4y 2 (2)(2xy+51x)2=(2xy)2+2·2xy·51x+(51x)2=4x 2y 2+54x 2y+251x 2(3)方法一:(n+1)2-n 2=n 2+2n+1-n 2=2n+1.方法二:(n+1)2-n 2=[(n+1)+n ][(n+1)-n ]=2n+1.Ⅳ.课后作业1.课本习题1.13的第1、2、3题.2.阅读“读一读〞,并答复文章中提出的问题.Ⅴ.活动与探究甲、乙两人合养了n 头牛,而每头牛的卖价恰为n 元.全部卖完后两人分钱方法如下:先由甲拿10元,再由乙拿10元,如此轮流,拿到最后剩下缺乏十元,轮到乙拿去,为了平均分配,甲应该补给乙多少元钱?[过程]因牛n头,每头卖n元,故共卖得n2元.令a表示n的十位以前的数字,b表示n的个位数字.即n=10a+b,于是n2=(10a+b)2=100a2+20ab+b2=10×2a(5a+b)+b2.因甲先取10元,而乙最后一次取钱时缺乏10元,所以n2中含有奇数个10元,以及最后剩下缺乏10元.但10×2a(5a+b)中含有偶数个10元,因此b2中必含有奇数个10元,且b<10,所以b2只可能是1、4、9、16、25、36、49、64、81,而这九个数中,只有16和36含有奇数个10,因此b2只可能是16或36,但这两个数的个位数都是6,这就是说,乙最后所拿的是6元(即剩下缺乏10元).[结果]甲比乙多拿了4元,为了平均分配甲必须补给乙2元.●板书设计1.8. 完全平方公式(一)一、几何背景试验田的总面积有两种表示形式:①a2+2ab+b2②(a+b)2比照得:(a+b)2=a2+2ab+b2二、代数推导(a+b)2=(a+b)(a+b)=a2+2ab+b2(a-b)2=[a+(-b)]2=a2-2ab+b2三、例题讲例例1.利用完全平方公式计算:(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2四、随堂练习(略)●备课资料一、杨辉杨辉,中国南宋时期杰出的数学家和数学教育家.在13世纪中叶活动于苏杭一带,其著作甚多.他著名的数学书共五种二十一卷.著有?详解九章算法?十二卷(1261年)、?日用算法?二卷(1262年)、?乘除通变本末?三卷(1274年)、?田亩比类乘除算法?二卷(1275年)、?续古摘奇算法?二卷(1275年).杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和开展,有的还编成了歌诀,如九归口诀。
2.4有理数的除法(课件)七年级数学上册(浙教版2024)

=-7+9+(-28)+12=-14
∴原式=
03
典例精析
例5、混合计算:(1) ÷(-5)÷(- )×5
(3)2÷(- )× ÷(-5 )
(2)(-64)÷ × ÷(-25)
(4)
(+5 )÷(-4 )×(- )÷(-3 )
(2)【法一】原式=(- )÷
=(- )÷ =(- )×3=
【法二】原式的倒数=( - + - )÷(- )
=( - + - )×(-42)= ×(-42)+(- )×(-42)+ ×(-42)+(- )×(-42)
教学目标
01
02
贴近生活实例感受有理数的除法,理解有理数除法法则
能灵活运用有理数乘、除法法则进行乘除混合运算
有理数的除法
01
课堂引入
为促进中小企业发展,我国针对增值税和企业所得
税出台了一系列优惠政策。根据优惠政策,某企业
预计2023年全年可减少税款20万元,平均每月减少
多少万元?若规定缴税增加为正,减少为负,则可
规律:除以一个不等于0的数,等于乘以这个数的倒数。
02
知识精讲
一般地,有理数的乘法与除法之间有以下关系:
除以一个数(不等于0),等于乘以这个数的倒数。
有理数的除法教案(14篇)

有理数的除法教案(14篇)有理数的除法教案1教学目标1.理解有理数除法的意义,娴熟掌控有理数除法法那么,会进行运算;2.了解倒数概念,会求给定有理数的倒数;3.通过将除法运算转化为乘法运算,培育同学的转化的思想;通过运算,培育同学的运算技能。
教学建议〔一〕重点、难点分析本节教学的重点是娴熟进行运算,教学难点是理解法那么。
1.有理数除法有两种法那么。
法那么1:除以一个数等于乘以这个数的倒数。
是把除法转化为乘法来解决问题。
法那么2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。
如:按法那么1计算:原式;按法那么2计算:原式。
2.对于除法的两个法那么,在计算时可依据详细的状况选用,一般在不能整除的状况下应用第一法那么。
如;在有整除的状况下,应用第二个法那么比较方便,如;在能整除的状况下,应用第二个法那么比较方便,如,如写成就麻烦了。
〔二〕知识结构〔三〕教法建议1.同学实际运算时,老师要强调先确定商的符号,然后在依据不怜悯况采用适当的方法求商的绝对值,求商的绝对值时,可以径直除,也可以乘以除数的倒数。
2.关于0不能做除数的问题,让同学结合学校的知识接受这一认识就可以了,不必详细讲解并描述0为什么不能做除数的理由。
3.理解倒数的概念〔1〕依据定义乘积为1的两个数互为倒数,即:,那么互为倒数。
如:,那么2与,-2与互为倒数。
〔2〕由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。
如:求的倒数:计算,-2就是的倒数。
一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。
如-2可以看作,分子、分母颠倒位置后为,就是的倒数。
〔3〕倒数与相反数这两个概念很简单混淆。
要留意区分。
首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。
如:,2与互为倒数,2与-2互为相反数。
其次互为倒数的两个数符号相同,而互为相反数符号相反。
有理数除法的教案 [有理数的除法教案]
![有理数除法的教案 [有理数的除法教案]](https://img.taocdn.com/s3/m/a4cf24dcbdeb19e8b8f67c1cfad6195f312be822.png)
有理数除法的优秀教案一、教学目标1. 知识与技能:(1)理解有理数除法的概念;(2)掌握有理数除法的运算方法;(3)能够运用有理数除法解决实际问题。
2. 过程与方法:(1)通过实例演示,引导学生掌握有理数除法的运算规律;(2)利用数轴和图形,帮助学生直观地理解有理数除法的过程;(3)设计练习题,让学生在实践中提高有理数除法的运算能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、积极思考的精神;(3)培养学生合作交流、归纳总结的能力。
二、教学重点与难点1. 教学重点:(1)掌握有理数除法的运算方法;(2)能够运用有理数除法解决实际问题。
2. 教学难点:(1)理解有理数除法中的符号变化;(2)掌握有理数除法在数轴上的表示方法。
三、教学过程1. 导入新课:(1)复习相关知识点,如相反数、绝对值、有理数乘法等;(2)通过实例引入有理数除法,激发学生的学习兴趣。
2. 知识讲解:(1)讲解有理数除法的定义和运算规律;(2)利用数轴和图形,直观地展示有理数除法的过程;(3)解释有理数除法中的符号变化,如“÷”、“-”等。
3. 课堂练习:(1)设计练习题,让学生独立完成;(2)引导学生总结有理数除法的运算规律;(3)分析练习过程中出现的问题,进行解答和讲解。
四、教学评价1. 课堂表现:(1)观察学生在课堂上的参与程度、提问回答等情况;(2)评价学生对有理数除法的理解和运用能力。
2. 练习作业:(1)检查学生完成的练习题,评价其运算能力和理解程度;(2)关注学生在练习中出现的问题,进行针对性的指导。
五、教学拓展1. 对比有理数除法和无理数除法的异同;2. 探讨有理数除法在实际生活中的应用;3. 引导学生进行有理数除法的拓展研究,如探索复杂数系的除法规律等。
六、教学策略1. 案例分析:通过分析实际案例,让学生了解有理数除法在生活中的应用,提高学生学习的兴趣和积极性。
有理数的除法(教师版+学生版)

教师版 2.4有理数的除法【知识清单】1、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不为0的数都得0.2、有理数的除法与乘法的转换:除以一个数(不等于0),等于乘以这个数的倒数.且0不能作除数,否则无意义.3、解决含有除法的题目一般步骤:(1)先将除法转化乘法;(2)再根据乘法法则和运算律进行计算.【经典例题】例题1、等式[(-7.5) -□]÷(-221)=0中,□表示的数是 . 【考点】有理数的除法,简单方程.【分析】根据有理数的除法,可得答案.【解答】 [(-7.5)-□]÷(-221)=0,得 (-7.5) -□=0,解得□=-7.5,故答案为:-7.5.【点评】本题考查了有理数的除法,零除以任何非零的数都得零.例题2、计算:(-15)÷(-5)×51= . A .4 B .10 C .12 D .20【考点】有理数的除法.【分析】先把除法转化为乘法,再根据有理数的乘法运算法则进行计算即可得解. 【解答】(-15)÷(-5)×51 =(﹣15)×(﹣51)×51 =15×51×51 =53. 故答案为:53.【点评】本题考查了有理数的除法,有理数的乘法,是基础题,要注意按照从左到右的顺序依次进行计算,不能随意简化.【夯实基础】 1、711-的倒数与7的相反数的商为( ) A .-8个 B .8 C .81- D .81 2、下列运算中,正确的是( )A .-21÷(-3) =-7B .-6÷)65(-=5C .(-0.375)÷(-3)=81D .-5÷)51(-=1 3、若两个有理数的和除以这两个有理数的积,其商为0,则这两个数为( )A .互为倒数B .互为相反数C .都为0D .互为相反数且都不为04、在算式647□-÷中“□”的所在的位置,填入下列运算符号,计算出来的值最小的是( )A. +B. -C. ×D. ÷5、若a ,b ,c 为非零有理数,则acac b b a a++可能为 . 6、有理数a 、b 在数轴上是位置如图所示,则ba ab - 0. 7、若a +5没有倒数,则a = ;在计算24÷a 时,误将“÷”看成“+”,结果得16,而24÷a 的正确结果是________8、计算:(1)-7÷(-1121)×76×(-612)÷11; (2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-); (3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-).9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n ,第6题图若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”. (1)试计算a 2= , a 3= ;(2)求a 2019的值.【提优特训】10、下列四个算式中,误用分配律的是( )A .-24×(-81+61-41)=24×81-24×61+24×41 B .(-81+61-41)×(-48)=81×48-61×48+41×48 C .-24÷(-81+61-41)=24÷81-24÷61+24÷41 D .(-81+61-41)÷(-24)=81÷24-61÷24+41÷24 11、若a +b <0,b a <0,则a ,b 为 ( ) A .异号0 B .都小于0 C .异号,且正的绝对值大 D .异号,且负的绝对值大12、已知a 是负整数,则a ,-a ,a 1的大小关系为( ) A .-a >a 1>a B .-a >a 1≥a C .a >a 1>-a D . a1>a >-a 13、若a ,b 是互为相反数且都不等于零,则(a -3+b )×(b a +3) A .6 B .3 C .0 D .-614、已知两个数的积为-31,若其中一个因数为615-,则另一个数为 . 15、若b a 36122-++=0,则ba ab +的值为 . 16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a +b )+17、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求mcd ba mb a 63299-++ 的值.18、计算: (1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-)19、阅读下列材料,然后解决问题: 计算:(481-)÷(3281-61+43-). 解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21; 解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36=2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷?然后请你解答下列问题:计算:(361-)÷(61-125+94-41+). 20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等?(2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等?(3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”).21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-, 求(a +b +c )÷abc 的值.【中考链接】22.(2018•株洲)如图,52的倒数在数轴上表示的点位于下列两个点之间( ) A. 点E 和点FB. 点F 和点GC. 点F 和点GD. 点G 和点H23、(2019•山东省聊城市•3分)计算:(2131--)÷54= . 24、(2019•浙江嘉兴•4分)数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为 (用“<”号连接).≠第22题图参考答案1、D2、C3、D4、C5、3或1或-16、<7、-5,-3 10、C 11、D12、B 13、D 14、6 15、-3 22、D 23、32-24、b <-a <a <-b 8、计算:(1)-7÷(-1121)×76×(-612)÷11; (2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-); (3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-). 解:(1)原式=-7×1311×76×613×111=-1; (2)原式=15×3652536⨯=3; (3)原式=1217-÷)636164(-+ =1217-÷31=-441; (4)原式=3×38+15×(56-) =8-18=-10.9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n ,若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.(1)试计算a 2=53 , a 3= 25 ; (2)求a 2019的值. 解:由题意得:a 1=-32,a 2不难发现-32,53,25,这三个数反复出现. ∵2019÷3=673,其余数为0,16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a+b )+∴a =11,∵11.2的相反数为-11.2,之间的整数有-11~11共23个, ∴b =23,∴(a -b )÷(a +b=(1117、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求mcd ba mb a 63299-++ 的值. 解:∵a、b 互为相反数,且a 、b 均不为0,∴a +b =0,∵c 、d 互为倒数,∴cd =1,03=+m ,∴2m+3=0,即2m=-3.mcd ba 63-+=cd m ba mb a )2(332)(9⨯-++ =0-3-3×(-3)×1=-3+9=6.18、计算: (1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-) 解:(1)原式=202020194332211÷⋅⋅⋅÷÷÷÷ =202020192020342321=⨯⋅⋅⋅⨯⨯⨯⨯. (2)原式=(-2161+-43125+)⨯(-12) =(-21)⨯(-12)61+⨯(-12)-43⨯(-12)125+⨯(-12) =6-2+9-5=8.19、阅读下列材料,然后解决问题:计算:(481-)÷(3281-61+43-). 解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21; 解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36=2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷?然后请你解答下列问题:计算:(361-)÷(61-125+94-41+). 解:解法一是错误的.在正确的解法中,解法三比较简捷.原式的倒数为(61-125+94-41+)÷(361-) =(61-125+94-41+)×(-36) =6-15+16-9=-2. 故原式=21-. 20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等?(2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等?(3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”).(1)相等,其结果均为7.(2)不相等. (-72)÷(-24-8)=49;(-72)÷(-24)+(-72)÷(-8)=12. 49≠12. (3)=;;不成立.21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-, 求(a +b +c )÷abc 的值.解:a =201820182018201920192019+⨯⨯-=12019201820182019-=⨯⨯-, b =201920192019202020202020+⨯⨯-=12020201920192020-=⨯⨯-, c =202020202020202120212021+⨯⨯-=12021202020202021-=⨯⨯-. ∴ (a +b +c )÷abc =(-1-1-1)÷(-1)⨯(-1)⨯(-1)=-3÷(-1)=3.≠≠学生版 2.4有理数的除法【知识清单】1、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不为0的数都得0.2、有理数的除法与乘法的转换:除以一个数(不等于0),等于乘以这个数的倒数.且0不能作除数,否则无意义.3、解决含有除法的题目一般步骤:(1)先将除法转化乘法;(2)再根据乘法法则和运算律进行计算.【经典例题】例题1、等式[(-7.5) -□]÷(-221)=0中,□表示的数是 .例题2、计算:(-15)÷(-5)×51= . A .4 B .10 C .12 D .20【夯实基础】1、711-的倒数与7的相反数的商为( )A .-8个B .8C .81-2、下列运算中,正确的是( )A .-21÷(-3) =-7B .-6C .(-0.375)÷(-53、若两个有理数的和除以这两个有理数的积,其商为0,则这两个数为( )A .互为倒数B .互为相反数C .都为0D .互为相反数且都不为0的是( )A. +B. -C. ×D. ÷5、若a ,b ,c 为非零有理数,则ac ac b b a a ++可能为 .6、有理数a 、b 在数轴上是位置如图所示,则b a ab - 0.7、若a +5没有倒数,则a = ;在计算24÷a 时,误将“÷”看成“+”,结果得16,而24÷a 的正确结果是________8、计算:(1)-7÷(-1121)×76×(-612)÷11; (2)-15÷)517()65()65(-÷⎥⎦⎤⎢⎣⎡-⨯-);(3)1251-÷)216132(-+ ; (4)-3÷(83-)+15÷(65-).9、有若干数,第一个数记作a 1,第二个数记作a 2, 第三个数记作a 3,…,第n 个数记作a n ,若a 1=-32,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”. (1)试计算a 2= , a 3= ;(2)求a 2019的值.【提优特训】10、下列四个算式中,误用分配律的是( )A .-24×(-81+61-41)=24×81-24×61+24×41 B .(-81+61-41)×(-48)=81×48-61×48+41×48 第6题图C .-24÷(-81+61-41)=24÷81-24÷61+24÷41 D .(-81+61-41)÷(-24)=81÷24-61÷24+41÷24 11、若a +b <0,b a <0,则a ,b 为 ( ) A .异号0 B .都小于0 C .异号,且正的绝对值大 D .异号,且负的绝对值大12、已知a 是负整数,则a ,-a ,a 1的大小关系为( ) A .-a >a 1>a B .-a >a 1≥a C .a >a 1>-a D . a1>a >-a 13、若a ,b 是互为相反数且都不等于零,则(a -3+b )×(ba +3) A .6 B .3 C .0 D .-614、已知两个数的积为-31,若其中一个因数为615-,则另一个数为 . 15、若b a 36122-++=0,则ba ab +的值为 . 16、在11.2与它的倒数之间有a 个整数,在11.2与它的相反数之间有b 个整数.求(a -b )÷(a +b )+17、若a 、b 互为相反数(a 、b 均不为0),c 、d 互为倒数,且032=+m ,求mcd ba mb a 63299-++ 的值.18、计算: (1))202011()411()311()211(1-÷⋅⋅⋅÷-÷-÷-÷;(2) (-2161+-43125+)÷(121-)19、阅读下列材料,然后解决问题: 计算:(481-)÷(3281-61+43-). 解法一:原式=(481-)÷32-(481-)÷81+(481-)÷61-(481-)÷43 =-321+6181-+361=28811; 解法二:原式=(481-)÷[(3261+)+(81-43-)]=(481-)÷(6587-)=481-×(-24)=21; 解法三:原式的倒数为(3281-61+43-)÷(481-)=(3281-61+43-)×(-48)=-32+6-8+36=2, 故原式=21. 解决问题:上述三种解法得出的结果不同,肯定有错误的,你认为哪种解法是错误的,在正确的解法中,你认为哪种解法比较简捷?然后请你解答下列问题:计算:(361-)÷(61-125+94-41+).20、(1)判断[])9()27(36-÷-+-与)9()27()9()36(-÷-+-÷-的结果是否相等?(2)计算(-72)÷(-24-8)与(-72)÷(-24)+(-72)÷(-8),观察其结果是否相等?(3)总结(1)、(2)的规律,我们得到(a +b )÷c _____,a ÷c + b ÷c ;c ÷(a +b ) _______ c ÷a + c ÷b (填入“=”或“”),其中(2)的计算结果说明:除法的分配律_____(填入“成立”或“不成立”). ≠21、已知a =201820182018201920192019+⨯⨯-, b =201920192019202020202020+⨯⨯-, c =202020202020202120212021+⨯⨯-, 求(a +b +c )÷abc 的值.【中考链接】22.如图,52的倒数在数轴上表示的点位于下列两个点之间( ) A. 点E 和点F B. 点F 和点GC. 点F 和点GD. 点G 和点H 23、计算:(2131--)÷54= . 24、数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为 (用“<”号连接).第22题图。
2.4有理数的除法

转化思想
6
杭州市十三中教育集团
口答
(1)
7
1 7
7
(__7__).
(2) 21 9 21 (___19_).
(3)
1 2
8
1
__1_6_ .
13
(4) 13 5 __5__ .
7
计算:
(1) 35÷(-21)
(2)(-1.2)÷0.8
观察右侧算式, 两个有理数相除时,
商的符号如何确定?
商的绝对值如何确定?
2
探索发现
72÷9=8, (-9)÷(-3)=3,
杭州市十三中教育集团
同号两数相除得正 并把绝对值相除
(-6) ÷2=-3, 异号两数相除得负 12÷(-4)=-3, 并把绝对值相除
0÷(-6)=0, 零除以任何非零数得零
3
杭州市十三中教育集团
两数相除,同号得正,异号得负, 并把绝对值相除; 0除以任何一个不等于0的数都 得0。
0不能作为除数!!
4
例1 计算:
(1) (-8)÷(-4) (2) (-3.5)÷0.7
(3) 2.5 1 2
(4) 2.5 1 2
杭州市十三中教育集团
5
杭州市十三中教育集团
一般地,有理数的乘法与除法之 间有以下关系:
开始
(3)
3
1 7
2 5
7 22
10
挑战自我
杭州市十三中教育集团
若a,b互为相反数, c, d互
为倒数, m的倒数是2,
求 a b cd 的值. m
11
课堂小结
杭州市十三中教育集团
通过本节课的学习,你有收获吗?
有理数的除法(共20张PPT)

除以一个有理数等于乘以它的倒数
总结词
当一个数除以一个有理数时,结果等于这个数乘以这个有理数的倒数。
详细描述
这是有理数除法的基本运算规则。例如,如果要将10除以2,可以将其转化为 10乘以2的倒数(即1/2),结果仍然是10/2。
有理数除法运算的顺序
总结词
在进行多个有理数的除法运算时,应遵循从左到右的顺序进 行计算。
详细描述
在进行多个有理数的除法运算时,应按照从左到右的顺序进行 计算,以避免混淆和错误。例如,在计算表达式"a/b/c"时,应 先计算a除以b,然后再将结果除以c。
04
有理数除法的运算技巧
利用乘法分配律简化运算
总结词
乘法分配律是有理数除法中常用的简 化运算技巧,通过将除法转化为乘法 ,可以简化计算过程。
例子
如 $10 div 3 = 3frac{1}{3}$,表示 $10$ 除以 $3$ 的结果是 $3$ 余 $frac{1}{3}$。
有理数除法的性质
性质1
除法的结合律。即 $(a div b) div c = a div (b times c)$。
性质2
除法的倒数。如果 $a div b = c$,那么 $b = a div c$。
Байду номын сангаас
综合练习题
总结词
综合运用除法解决实际问题
详细描述
综合练习题着重于培养学生运用除法解决实 际问题的能力。题目设计更加贴近生活,涉 及各种实际情境中的除法问题,如购物计算 、时间计算等。通过解决这些实际问题,学 生能够更好地理解和掌握除法的实际应用,
提高解决实际问题的能力。
THANK YOU
感谢聆听
理解有理数除法在实际问题中的应用,提高解决实际 问题的能力。 通过练习和实例,加深对有理数除法的理解和掌握。
浙教版七年级上册数学2.4有理数的除法

12.有理数 a 在数轴上对应点的位置如图所示, 请比较 a,1a,-a,-1a的大小,并用“<”连接.
解:1a<a<-a<-1a.
13.【中考·杭州】计算 6÷-12+13,方方同学的计算过程如下: 原式=6÷-12+6÷13=-12+18=6.请你判断方方的计算 过程是否正确,若不正确,请你写出正确的计算过程.
答案显示
方方的计算过程不正确. 正确的计算过程如下: 13 原式=6÷-36+26=6÷-16 =-36.
14 B种债券收益率大一些.
习题链接
提示:点击 进入习题
答案显示
15 1
17
(1)最大值为15 16
(2)最小值为-5
原式的倒数为16-134+23-27÷-412 =16-134+23-27×(-42) =-7+9-28+12=-14. 故原式=-114.(方法不唯一)
(3)根据程序可知,当输入的数为-2 时,运算为(-2)÷(- 4)×(-80)=-40,而-40=40<100,故继续按程序计算, 代入的数为-40,得(-40)÷(-4)×(-80)=-800,-800= 800>100,则输出的数为-800.
【答案】 -800
10.计算: (1)16-18+112÷-214; 解:原式=16-18+112×(-24)=234×(-24)=-3. (2)18÷12-78×-13;
解:方方的计算过程不正确.正确的计算过程如下: 原式=6÷-36+26=6÷-16=-36.
【点拨】本题主要考查有理数及其运算.有理数的除法是没 有分配律的,因此方方的计算过程不正确.正确的算法是先 进行括号里的加法运算,再进行除法运算. 【答案】 36
14.某债券市场发行两种债券,A种债券面值为100元,买入价 也为100元,一年到期本利和为113元;B种债券面值也是 100元,但买入价为88元,一年到期本利和为100元.如果 收益率=(到期本利和-买入价)÷买入价×100%,试分析, 哪种债券收益率大一些?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习:
6 2 2 (1) ( ) 13 3 39
1 1 2 ( 2) ( ) 42 6 7
1.两个数的商是正数,那么这两个数是( C ) A.和为正 B.和为负 C.积为正 D.异号 2.下列说法正确的是( D ) A. B. C. D. 任何一个数都有倒数 一个数的倒数小于这个数 0除以任何一个数商都是0 两数商为0则只有被除数为0
1 3 3 3
-0.5 -2 0.5
3 10
1 5
0
1 3
1
1
1 3 3
0.5
-5 1 5 1 5
0 0
除 数
8 72÷9=____,
被 除 数
同号两数相除得正
3 (-12)÷(-4)=____,
-3 (-6) ÷2=____, -3 12÷(-4)=____, 0÷(-6)=____, 0
除号变乘号
2 3 24 ( ) 24 ( ) 36 3 2
除数变倒数
有理数除法转化为乘法:
除以一个数(不等于0),等于乘以这个 数的倒数.
例题1
(1) (8) (4) 1 2 ( ) (3) 6 3
(2) (3.2) 0.08 (4) 0 2008.5
(2)多步乘除运算先统一为乘法
3 7 练习: (1) (7) 2 5
7 3 (2)3.5 ( ) ( ) 8 2
2 1 (3) 2 [ ( )] 3 4
例题3
1 1 1 2 1 (1) ( ) ( ) (2) 6 2 3 8 6 2
8.设a,b,c为非零有理数,求下列式子的值.
a b c a b c1 4.若a, b互为倒数, 则ab=____
5.若a, b互为相反数, 且a、b不为0,则 a a+b=____, a 3b _____ a b _____ 0 3 0 -1
b
6.若a,b互为相反数,c,d互为倒数,m的倒数是2, 求2a 2bcd 的值 m
a 1 a 7. 若a 0, 则 a ____, ____ a a a 1 若a 0,则 a ____, ____ a
, 并把绝对值相除
异号两数相除得负 , 并把绝对值相除 零除以任何非零数得零
有理数的除法法则:两数相除,同号得正,
异号得负,并把绝对值相除;0除以任何一个不等 于0的数都得0. 0不能做除数
3 (1) 12÷4 - 19 (2) (-57) ÷3 4 (3) (-36) ÷(- 9) -3 (4)( - 27 ) ÷9 (5) (- 48 )÷( - 8) 6 -6 (6)96 ÷(-16) -3 (7)7.5 ÷(-2.5) 2 (8) 24 ( ) -36 3
注意:规范解题格式 一般步骤:1.确定商的符号 2.绝对值相除
3.有时需把除法转化为乘法
3 3 练习: (1) ( 10 ) ( 5 )
3 ( 2 ) ( 2 ) 5
例题2
4 1 (1) (12) ( ) 5 3
(1)除法没有结合律 (2)
(13) (7) 7
复习回顾
1. 有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,积为0. 奇数个负数相乘时积为负 多个不为0的因数相乘, 偶数个负数相乘时积为正 2.倒数: 若两个有理数的乘积为1,则称这两个数互为倒数. 反之,若a与b互为倒数,则ab=1.
a a的倒数 a的相反数 a的绝对值 1 1 -1 -1 -1 1
3.下列计算是否正确,若不正确,请指出, 并改正。
16 4 2 16 4 2 16 2 8
除法没有结合律 4.列式计算:
(1)-3与-2的和的倒数.
(2)-3与-2的倒数和.
(3)-3与-2的倒数的和.